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Abstract: How human cytomegalovirus (HCMV) infection impacts the transcription of the host
genome remains incompletely understood. Here, we examine the global consequences of infection
of primary human foreskin fibroblasts (HFFs) on transcription by RNA polymerase I, II, and III
over the course of a lytic infection using PRO-Seq. The expected rapid induction of innate immune
response genes is observed with specific subsets of genes exhibiting dissimilar expression kinetics.
We find minimal effects on Pol II initiation, but increased rates of the release of paused Pol II into
productive elongation are detected by 24 h postinfection and pronounced at late times postinfection.
Pol I transcription increases during infection and we provide evidence for a potential Pol I elongation
control mechanism. Pol III transcription of tRNA genes is dramatically altered, with many induced
and some repressed. All effects are partially dependent on viral genome replication, suggesting a link
to viral mRNA levels and/or a viral early–late or late gene product. Changes in tRNA transcription
are connected to distinct alterations in the chromatin state around tRNA genes, which were probed
with high-resolution DFF-ChIP. Additionally, evidence is provided that the Pol III PIC stably contacts
an upstream −1 nucleosome. Finally, we compared and contrasted our HCMV data with results from
published experiments with HSV-1, EBV, KSHV, and MHV68. We report disparate effects on Pol II
transcription and potentially similar effects on Pol III transcription.

Keywords: HSV; EBV; KSHV; MHV68; PIC; transcription; productive elongation; mRNA; rRNA; tRNA

1. Introduction

Eukaryotic nuclear transcription is primarily executed by three distinct RNA poly-
merases, Pol I, Pol II, and Pol III. Pol I synthesizes abundant ribosomal RNA (rRNA) from
clusters of rDNA repeats, accounting for approximately 30–40% of ongoing transcription in
the nucleus [1]. Pol II is the sole enzyme responsible for the synthesis of protein-coding
messenger RNA (mRNA) and is highly regulated to produce the unique transcriptional
profiles of diverse metazoan cell types and to execute timely responses to environmental
stimuli [2–4]. Pol II also transcribes long noncoding RNA, microRNA, and most small
nuclear RNAs (snRNA). Pol III is dedicated to the transcription of short noncoding RNAs,
including all transfer RNAs (tRNA), the U6 snRNA, and the 5S rRNA, three classes of
Pol III genes that differ in their promoter architecture and the involvement of general
transcription factors during initiation [5–7]. Interactions with distinct complements of basal
machinery guide these polymerases to initiate at their target core promoters. The initiation
and elongation steps of transcription are regulated and rate-limiting. Pol II transcriptional
regulation has been intensely investigated for decades, the efforts of which have uncovered
numerous control mechanisms operating at these stages [2–4]. Several strategies for Pol I
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and Pol III transcriptional control have been reported and evidence of regulatory crosstalk
between Pol I, II, and III transcription also exists [1,8,9].

Mammalian dsDNA viruses that replicate in the nucleus rely on host RNA poly-
merases to execute their gene expression programs. Here, most attention has been directed
towards the mechanisms by which viruses co-opt host Pol II to direct the transcription of
their protein-coding and long noncoding RNA genes. The human herpesviruses are dsDNA
viruses that replicate largely within the host cell nucleus and purpose Pol II for the tran-
scription of the viral genome. Decades of herpesvirus research have revealed principles of
regulated Pol II initiation at viral gene promoters, which are frequently similar in structure
and composition to host gene promoters, and are engaged by host and viral factors in a co-
ordinated manner to drive a temporal cascade of viral gene expression [10–13]. More recent
studies have demonstrated that paradigms of Pol II elongation control, including pausing
and P-TEFb-dependent release into productive elongation [14], that are reflected at host
genes also pertain to transcription on the viral genome [12,15–17]. Interestingly, however,
several reports have shown that the viral genome differs markedly from the host genome
during lytic infection in the extent to which the genome is packaged as chromatin [18–22].
The host genome is largely packaged in nucleosomes, restricting transcription initiation
to accessible nucleosome-free regions, while the viral genome is sparsely populated by
nucleosomes, a property that enables rampant transcription initiation.

Infection by herpesviruses can lead to large-scale alterations of host transcription.
Alpha and gamma herpesviruses employ host shut-off mechanisms that favor productive
viral gene expression. In the case of herpes simplex virus I (HSV-1), a model member of
the alphaherpesvirus subfamily, the major lytic transactivator ICP4 drives a competition
between the host and viral promoters for Pol II and its initiation machinery that indiscrimi-
nately diminishes transcription initiation at host promoters by late times postinfection [19].
In addition, the HSV-1 tegument protein VHS mediates the global decay of the host and vi-
ral mRNAs during early infection, a function that is essential for the full-scale production of
viral progeny [23,24]. In the case of the gammaherpesviruses Kapsosi’s sarcoma-associated
herpesvirus (KSHV) and murine gammaherpesvirus 68 (MHV68), a virally encoded RNA
endonuclease drives widespread mRNA decay, which leads to the downmodulation of Pol
II recruitment to host genes [25,26]. Here, mechanisms of anti-repression that permit robust
viral gene expression are enacted. Very recent studies have shown that infection by HSV-1
and MHV68 each dramatically impact the cellular tRNA pool, actually driving an increase
in the abundance of dozens of tRNAs [27,28]. Interestingly, infection was associated with a
much larger increase in the abundance of immature and presumably nonfunctional pre-
tRNAs than mature species, which exhibited a modest change or remained static. In one
study, it was noted that the increase in pre-tRNA abundance corresponded to an increase in
Pol III occupancy at tRNA genes, suggesting that Pol III transcription is induced in infected
cells [28]. These studies indicated that herpesviruses may commonly regulate the tRNA
pool, potentially to the benefit of productive infection, and that Pol III transcription is not
subject to shut-off mechanisms akin to those that are thought to globally downregulate
Pol II transcription of host genes. Notably, several other DNA viruses, including SV40
polyomavirus, Epstein–Barr virus, and adenovirus, as examples, have also been shown
to increase tRNA expression, through mechanisms that involve, in part, increasing the
abundance of limiting Pol III basal machinery [29–33].

Human cytomegalovirus (HCMV) is the prototypical member of the betaherpesvirus
subfamily. HCMV is a nearly ubiquitous pathogen that infects more than half of the
world’s population and persists lifelong in its hosts. Although infection by HCMV is
typically subclinical, immunocompromised populations are at risk of unchecked HCMV
replication, which can lead to systemic infection and life-threatening disease [34]. Moreover,
intrauterine HCMV infection is a common cause of morbidity in newborns and is the
leading infectious cause of birth defects in the United States [35]. Dissimilar to HSV-1, KSHV,
and MHV68, HCMV is not thought to elicit global host shutoff through transcriptional
or post-transcriptional mechanisms. HCMV infection does induce innate and adaptive
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immune responses and profoundly impacts the levels of hundreds of mRNAs encoding
factors that are involved in cell cycle progression, DNA replication, formation of the
extracellular matrix, vesicular trafficking, and metabolism [36–38]. The effects of HCMV
infection of Pol I and Pol III transcription have not, to our knowledge, been directly
examined. Here, we further explore the transcriptional and epigenetic changes driven by
lytic HCMV infection at host genes using PRO-Seq, a method that globally profiles Pol
I, Pol II, and Pol III nascent transcripts [39,40] and DFF-ChIP, which enables complexes
such as the Pol I, II, and III preinitiation complexes, in addition to their local chromatin
environment, to be probed with high resolution [18].

2. Materials and Methods
2.1. Viruses, Cells, and Conditions of Infection

Primary human foreskin fibroblasts (HFFs) were derived from deidentified, discarded
newborn infant foreskins. HFFs were maintained in Minimum Essential Medium (Gibco,
11095080) that was supplemented with 5% fetal bovine serum (Gibco, Waltham, MA, USA,
26140079) and 1% penicillin–streptomycin (Gibco, Waltham, MA, USA, 15140122). All
infections were performed with contact-inhibited HFF and TB40/E BAC4 virus at an MOI
of 3 as previously described [41]. Cells were treated with 1 µM Flavopiridol (Flavo) or
DMSO vehicle control during the last hour of infection, and phosphonoformic acid (PFA,
Sigma Aldrich, St. Louis, MO, USA) was added to the media at 400 µg/mL for the indicated
conditions as described previously [41].

2.2. PRO-Seq and PRO-Cap

Spike-in quantitative PRO-Seq data analyzed in this study from TB40/E infected
primary HFF were previously published and were prepared exactly as described in [18].
PRO-Cap data from HFF infected with TB40/E for 72 h were utilized to define transcription
start sites at Pol II genes for truQuant analysis of pause region and gene body counts. The
PRO-Cap dataset was previously published and prepared as described in [18]. All data are
available at NCBI GEO GSE185763.

2.3. DFF-ChIP

DFF-ChIP data analyzed in this study from TB40/E infected primary HFFs were
previously published. Sample processing and library construction were carried out exactly
as described by Spector et al. [18]. Data are available at NCBI GEO GSE185763.

2.4. Generation of Tracks

Stranded PRO-Seq data tracks viewable with the UCSC genome browser (human
genome assembly hg38) were generated as previously described [41], in a process that first
involved trimming of adapter sequences with trim_galore v0.6.0 (available online: https:
//github.com/FelixKrueger/TrimGalore/releases/tag/0.6.6 (accessed on 3 March 2019)),
strand-specific alignment of paired-end sequences with bowtie v1.2.3 (available online: http:
//bowtie-bio.sourceforge.net/index.shtml (accessed on 5 July 2019)), UMI-based removal
of PCR duplicates with dedup (available online: https://github.com/P-TEFb/dedup
(accessed on 14 February 2019)), and subsequent conversion of the deduplicated, aligned
data into bedGraphs and bigwigs. Read coverage at each position was normalized by
multiplication of spike-in correction factors. Spike-in correction factors were computed
based on total reads in the library and reads mapping to the spike-in genome, as previously
described [42], all details of which are provided in Supplementary Data File, PRO-Seq Stats.
Tracks for DFF-ChIP data were generated as previously described.

2.5. TruQuant Analysis, Gene Body Clustering, FragMaps, and Metaplots

The pause region and gene body intervals of 11,593 genes transcribed in the human
genome after 72 hpi HCMV infection were generated from the HFF PRO-Cap dataset using
the truQuant program with default settings (available online: https://github.com/meierjl/
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truQuant (accessed on 31 August 2020)). The bedtools coverage program v2.27.1 [43]
(available online: https://bedtools.readthedocs.io/en/latest/index.html (accessed on
14 December 2017)) was used to determine the total number of 5′ or 3′ ends in pause
region or gene body intervals, respectively. The gene body counts for all infected time
points were divided by the count from the uninfected data to calculate the fold change.
Genes with their associated fold changes at various infected time points were hierarchically
clustered using the pheatmap library in R. Pearson correlation was chosen as the clustering
distance metric and the number of clusters was retained at 10. The number of clusters was
chosen using the within-cluster sum of squares (wcss) method in Python’s sklearn.cluster
package and KMeans library. All genes and their associated fold change profiles were
scaled independently using the z-score formula and colored using the pheatmap function
in R. Average gene body changes for all clusters were calculated using a Python script by
averaging fold changes across time points and plotted as line graphs using MS Excel. Gene
sets for specific clusters were plotted independently using the pheatmap function in R.

Median fold changes of 11,593 genes across all infected time points were determined
using a Python script from the list of fold changes calculated by first dividing the total
number of 5′ end counts in their pause regions and the total number of 3′ end counts in
their gene body regions with associated counts of pause region and gene body regions
from the uninfected datasets. Median fold changes were plotted using MS Excel. The pause
ratio was computed for each gene in the DMSO-treated samples by dividing the number
of 5′ ends in the pause region by the pause region length (150 bp), and then dividing this
number by ratio of the number of 3′ ends in the gene body over the gene body length for
each gene (based downstream of the pause region to the annotated CPS). Pause ratios for
all genes in each sample were plotted as boxplot in MS excel.

The sum of H3K4me3 read densities across genomic intervals between −500 and
+3000 bp from the MaxTSS of all genes in clusters 1, 3, and the repressed set were generated
using bedtools coverage program. Read densities were plotted using MS Excel. FragMaps
were generated from the HFF uninfected and 48 hpi H3K4me3 fragments of size between
18 bp and 400 bp that were present in the genomic intervals between −/+500 bp from
the MaxTSSs of genes in the repressed set using the fragMap program (available online:
https://github.com/P-TEFb/fragMap (accessed on 13 August 2021)).

2.6. Bioinformatics Analysis of tRNA Transcription

An annotation of 429 tRNA genes was downloaded from the genomic tRNA database
(available online: http://gtrnadb.ucsc.edu/ (accessed on 1 December 2021)). The mature 5′

ends of tRNAs were used for further analysis. In total, 235 tRNA genes out of 429 were
used to compare tRNA transcription between uninfected and infected time points. These
genes exhibited most initiation from the position upstream of their mature 5′ end. Strand
specific transcription of tRNA genes was measured at their 1 bp upstream position using
bedtools coverage program [43]. Scatter plots of uninfected HFF PRO-Seq data were plotted
against the 4 hpi, 12 hpi, 24 hpi, 48 hpi, 72 hpi, and 72 hpi PFA-treated samples using MS
Excel. Read coverage of the 235 tRNA genes at the position 1 bp downstream from their
mature 3′ ends was calculated using bedtools coverage program. The program was used to
determine the total number of strand-specific fragments at this position for 48 hpi HCMV
infection and uninfected DMSO-treated datasets. Fold change calculation was performed
by dividing the fragment counts of 48 hpi HCMV infection over uninfected DMSO-treated
datasets. The scatter plot of the fold change was plotted using MS Excel.

Heatmaps of −50 bp and +200 bp genomic intervals centered on the mature 5′ ends of
235 tRNA genes were created using the heatmap program (available online: https://github.
com/P-TEFb/Heatmap (accessed on 4 March 2022)). The 5′ and 3′ ends of HFF PRO-Seq
uninfected and 48 hpi DMSO-treated datasets were generated following the steps men-
tioned in our metaplots tutorial (available online: https://github.com/P-TEFb/Metaplot-
and-Counting-fragments (accessed on 3 March 2022)). Parameters for these heatmaps

https://github.com/meierjl/truQuant
https://github.com/meierjl/truQuant
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were strand = yes, order = DESC, avgrows = 1, width = 2, height = 4, black = user-specified
(1/10th of the maximum value in the heatmap table), and gamma = 0.5.

2.7. Motif Enrichment Analysis

Motif enrichment was performed using a previously documented motif analysis
software [44] (available online: https://regulatory-genomics.org/motif-analysis/method/
(accessed on 17 February 2022)). Input regions were bed files containing 400 bp promoter
regions padded around the 150 bp pause region (−200 bp upstream, +50 bp downstream)
for genes in clusters 1, 3, 4, and 8. The background file consisted of such promoter
regions from all 11,594 active gene promoters. Transcription factor motifs enriched in
experimental regions versus the background were determined using the rgt-motifanalysis
matching function with script –input-files input/experimental.bed input/Background.bed
–organism hg38 –remove-strand-duplicates. Next, the statistical significance of enrichment
over background was measured using the rgt-motifanalysis enrichment function, which
performed a Fisher’s exact test for each enriched transcription factor binding motif.

2.8. Statistics

Statistics for motif enrichment analysis were reported by the motif analysis software.
For correlations of tRNA read coverage between DMSO and Flavo PRO-Seq datasets, a
Pearson’s correlation coefficient was computed in Microsoft Excel.

3. Results
3.1. Global Changes in Pol II Transcription during HCMV Infection

To investigate the effects of HCMV infection on transcription of the host genome, we
carried out a time course of HCMV infection (TB40/E strain, MOI 3) in contact-inhibited
HFF and performed spike-in quantitative PRO-Seq. Libraries were prepared from unin-
fected cells and cells infected for 4, 12, 24, 48, and 72 hpi, which sample the early-stage
of lytic infection (4, 12 hpi), a mid-stage of infection close to the onset of viral genome
replication (24 hpi), and late-stage (48, 72 hpi) that follows the onset of genome replication.
Additional samples in which the uninfected or infected cells were treated for the final hour
prior to harvest with Flavopiridol, a P-TEFb inhibitor that blocks Pol II pause-release [45],
were prepared. In addition, a sample in which cells were infected for 72 h and treated from
the onset of infection with phosphonoformic acid (PFA), an HCMV replication inhibitor,
was prepared, and this condition was additionally combined with the Flavo treatment
during the final hour of infection (Figure 1A). PRO-Seq involves the rapid isolation of
native nuclei followed by a nuclear-run on reaction in the presence of biotinylated nu-
cleotides [39,40]. Total RNA was afterwards isolated and biotinylated nascent transcripts
were enriched with streptavidin beads under stringent conditions for the subsequent li-
brary construction. The efficiency of adding consecutive biotinylated nucleotides to the
nascent RNA chain was extremely low, at least for Pol II [39]; this affords single-nucleotide
resolution not offered by other run-on and metabolic labeling approaches. PRO-Seq does
not distinguish between transcription by Pol I, II, or III, such that a single experiment
theoretically enables one to query transcription by any of these polymerases.

https://regulatory-genomics.org/motif-analysis/method/
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Figure 1. Effects of HCMV infection on Pol II transcription. (A) Schematic depicting experimental 
design. Spike-in quantitative PRO-Seq was performed with samples derived from contact-inhibited 
HFFs that were mock-infected or infected for 4, 12, 24, 48, or 72 h. For all time points, an additional 
sample in which the cells were treated with Flavo for the final hour of infection to block Pol II pause-
release was collected. For the 72 h time point, the effect of blocking HCMV replication by treatment 
with PFA from the onset of infection was also tested −/+ Flavo during the final hour of infection. At 
the bottom, a diagram depicting the pause and gene body regions quantified for analysis is shown; 
(B) Heatmap displaying hierarchical clustering of ratios in PRO-Seq gene body counts, which were 
computed for each gene at each time point over the uninfected control and are represented as Z-
scores, which were computed for each gene. Certain clusters are identified at the right of the 
heatmap; (C) plot of average fold change in gene body counts for all genes within clusters 1, 3, 4, 
and 7 along the infection time course; (D) top: blown up views of heatmaps representing genes in 
clusters 1, 3, 4, and 8. Legends represent the Z-score. Middle: UCSC Genome Browser snapshots 

Figure 1. Effects of HCMV infection on Pol II transcription. (A) Schematic depicting experimental
design. Spike-in quantitative PRO-Seq was performed with samples derived from contact-inhibited
HFFs that were mock-infected or infected for 4, 12, 24, 48, or 72 h. For all time points, an additional
sample in which the cells were treated with Flavo for the final hour of infection to block Pol II
pause-release was collected. For the 72 h time point, the effect of blocking HCMV replication by
treatment with PFA from the onset of infection was also tested −/+ Flavo during the final hour of
infection. At the bottom, a diagram depicting the pause and gene body regions quantified for analysis
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is shown; (B) Heatmap displaying hierarchical clustering of ratios in PRO-Seq gene body counts,
which were computed for each gene at each time point over the uninfected control and are represented
as Z-scores, which were computed for each gene. Certain clusters are identified at the right of the
heatmap; (C) plot of average fold change in gene body counts for all genes within clusters 1, 3, 4, and
7 along the infection time course; (D) top: blown up views of heatmaps representing genes in clusters
1, 3, 4, and 8. Legends represent the Z-score. Middle: UCSC Genome Browser snapshots showing
forward strand (Fw) PRO-Seq data from DMSO-treated samples, for example, genes representing the
above clusters. Bottom: graphs displaying fold changes in pause region and gene body counts from
DMSO-treated samples and fold change in pause region counts from Flavo-treated samples along the
infection time course for the above genes.

The total number of sequenced reads in each sample, numbers of reads mapping to the
host, viral, and spike-in (Spodoptera) genomes, percentage of reads mapping to the viral
genome, and spike-in normalization factors for each sample are shown in Supplementary
Data File, PRO-Seq Stats. All subsequent analyses utilized spike-in normalized data.
Initial focus was directed towards the effects of HCMV infection on Pol II transcription.
PRO-Cap data for HFFs infected for 72 h with TB40/E were utilized to annotate a set of
transcriptionally active genes (n = 11,594) with our previously described tsrFinder and
truQuant algorithms [12,41]. For every active gene, the number of 5′ ends in the Pol II
pause region, defined by the truQuant algorithm [41], and the number of 3′ ends in the
gene body region, beginning at the base after the pause region end and extending to the
annotated cleavage and polyadenylation site (CPS), were quantified for each PRO-Seq
dataset (Figure 1A, Supplementary Data File). As gene body counts were more highly
correlated with transcriptional output than pause region counts, we took the ratio of gene
body counts for all genes at every time point over the uninfected control and utilized these
ratios to perform hierarchical clustering and identify groups of genes that exhibited similar
patterns of change along the infection time course (Figure 1B). Ten clusters were selected
using the elbow method. Clusters five, six, and seven, containing a total of 9605 (82%) active
genes, reflected a major, unexpected trend in the data, which was a gradual increase in gene
body counts along the time course, peaking at 48 or 72 h. Genes within clusters one (n = 90),
three (n = 85), and four (n = 336) exhibited a sharp increase in gene body counts at 4 hpi over
the uninfected control, but differed with respect to change in gene body counts at later time
points (Figure 1C,D). These clusters were, as expected, highly enriched for genes involved
in innate immunity, as revealed by the pathway and ontology analysis performed with
Enrichr [46] (Supplementary Data File, GO-Terms and BioPlanet Pathways). For example,
the cluster one gene RSAD2, an interferon-stimulated gene (ISG) [47], exhibited a great
induction at 4 hpi that further increased at 12 hpi and peaked at 24–48 hpi (Figure 1D). The
cluster three gene IFIT2, an ISG [48], was greatly induced at 4 hpi and gradually decreased
as infection progressed. The well-characterized ISG MX1 [48] fell within cluster four, and
was sharply induced at 4 hpi and exhibited a reduced but relatively stable level of gene
body transcription between 12 and 48 hpi. Cluster eight genes (n = 884) contained genes
such as the putative interferon-responsive gene GPR180 [49], which was modestly induced
at 4 hpi, decreased at 12 hpi, and then in association with most other active genes, exhibited
an upward trend in transcription during the later stages of infection (Figure 1D).

Intriguingly, we found that the trends in the pause region and gene body counts,
plotted as a fold change over the uninfected control for each example gene (Figure 1D,
lower panels), were frequently inconsistent, which indicated an uncoupling between
initiation and release into productive elongation. Following initiation, paused Pol II either
terminates or undergoes a P-TEFb-dependent release into productive elongation, a step that
is known to be regulated and govern transcriptional output [50]. The amount of paused
Pol II observed in the presence of Flavo is in part dependent on termination. However,
due to the inhibition of P-TEFb, this amount is not influenced by release into productive
elongation, and, therefore, more accurately represents the levels of initiation. Accordingly,
treatment with Flavo partially corrected discrepant trends in the pause region and gene
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body counts in the presence of DMSO along the course of infection, indicating that a
substantial fraction of paused Pol II at these genes entered into productive elongation
(Figure 1D).

These patterns were representative of dozens of other genes induced by infection,
many of which are known ISGs. The transcriptional mechanisms that control the induction
of ISGs have been intensely investigated, but remain incompletely understood and are
complex, involving numerous transcription factors (TFs) operating concertedly and dynam-
ically across time [51–53]. This transcriptional response is wired to be transient, at least in
part to limit the deleterious effects of long-term proinflammatory gene expression. In addi-
tion, HCMV encodes a large arsenal of immunomodulatory factors that counter innate and
adaptive immune responses. HCMV is known to subvert innate immune responses through
transcriptional [54], post-transcriptional [55], and post-translational mechanisms [56]. Our
PRO-Seq data, which highlighted the dynamic nature of ISG induction, measured nascent
transcription, and were not significantly impacted by post-transcriptional mechanisms
regulating RNA abundance, represent a minable source of information that may be useful
in unraveling the direct transcriptional response to HCMV infection and innate immune
signaling more broadly. In this regard, we investigated the promoter regions of genes
in clusters one, three, four, and eight for enriched TF motifs using a motif analysis soft-
ware [44] (Figure S1). The region queried was 400 bp, padded around the pause region,
which captured most of the sequence contained within a typical nucleosome-free region
(NFR), and enrichment was tested relative to a background consisting of equivalent regions
from all 11,594 active host gene promoters. Interestingly, genes in clusters three and four,
which were enriched for ISGs that were most induced shortly after infection at 4 hpi, ex-
hibited a highly significant enrichment of IRF and STAT-family TF motifs in the proximal
promoter region. Cluster one genes, which exhibited a delayed but a robust induction,
differed in that their proximal promoters were only weakly enriched for IRF-family TF
motifs, and no enrichment of STAT-family TF motifs was detected. By contrast, cluster
eight genes, which were mildly induced at 4 hpi, exhibited a weak enrichment for STAT
and IRF-family TF motifs.

3.2. Late HCMV Infection Is Associated with Increased Rates of Release into Productive Elongation
at Host Pol II Genes

The observation that gene body transcription trended upwards during late HCMV
infection was unexpected and further explored. The median fold change in the pause
region and gene body counts along the infection time course, as well as the median fold
change in the number of pause region counts in the presence of Flavo which blocked the
release into productive elongation, was plotted (Figure 2A). Clearly, the median number of
gene body counts increased substantially along the course of infection, while the number of
pause region counts modestly decreased. Blocking the release into productive elongation
led to an increase in counts in the pause region at late times postinfection. Extending this
analysis, the pause ratio for each gene, which measures the proportion of Pol II engaged
in pause regions versus gene bodies (after normalization to the size of the regions), was
calculated (Figure 2B). In uninfected cells and cells infected for 4 or 12 hpi, most genes
exhibited a high pause ratio, but a near-global downward shift was detected at 24 hpi and
the pause ratio dramatically reduced at 48 and 72 hpi, reflecting the widespread increase
in gene body counts. Interestingly, blocking HCMV replication with PFA in cells infected
for 72 h resulted in increased pause ratios compared to the 72 h time point, mirroring the
result acquired at 24 hpi (pre-replication), and suggesting that the substantial decrease in
pause ratios observed at late times may have required viral genome replication and/or
increasing levels of viral transcription. The above described trends were well represented
by the PRO-Seq signal over the EXOC4 gene, which, for clarity, was broken into the pause
and gene body regions (Figure 2C). This result was also captured in cells treated with Flavo,
as there was a notable increase in the ‘receding wave’ of Pol II elongating down the long
EXOC4 gene at late times postinfection, following the acute inhibition of pause release.
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Figure 2. Late HCMV infection is associated with increased rates of release into productive elongation.
(A) Graph displaying median fold change in pause region and gene body counts from DMSO-treated
samples and fold change in pause region counts from Flavo-treated samples along the infection time
course; (B) boxplot displaying calculated pause ratios for each gene across all samples; (C) genome
browser snapshots of the pause region and gene body of the EXOC4 gene, showing a modest
decrease in pausing and a substantial increase in amounts of productively elongating Pol II at late
times postinfection.
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3.3. Chromatin Changes at Pol II Genes Activated and Repressed by HCMV Infection

Next, we sought to address whether HCMV infection drove changes in the chromatin
state of differentially transcribed genes. We recently reported DFF-ChIP for H3K4me3, an
epigenetic modification that was enriched on the positioned nucleosomes flanking active
Pol II promoters, in uninfected HFFs and HFFs infected for 48 h with HCMV TB40/E.
DFF-ChIP utilizes the dsDNA-specific endonuclease DFF to digest chromatin prior to
IP [18]. Importantly, DFF exhibits very little propensity to digest within nucleosomes, a
property that enables sites of H3K4me3 nucleosome occupancy to be defined with high
resolution [57]. ISGs are transcribed at very low levels under normal conditions, but
their promoters are, nevertheless, reported to be open and primed for induction [53,58].
Congruent with these descriptions, we observed that the ISG OAS1 contained a well-
defined nucleosome-free region (NFR) in uninfected cells flanked by H3K4me3-modified
nucleosomes (Figure 3A). At 48 hpi, the NFR was unaltered, but the profile of H3K4me3
extended deeply into the gene body, which was consistent with the current model that Pol
II elongation is associated with H3K4me3 installment [59,60]. H3K4me3 was recognized by
the TAF3 subunit of TFIID [61] and the chromatin remodeler CHD1 [62], which is thought
to also tether components of spliceosome. Thus, the increased load of H3K4me3 may
function to facilitate the robust initiation and elongation at ISGs.

By contrast, 86 genes were observed to undergo a significant repression of gene body
transcription across consecutive time points of the infection time course. For example,
the transcription of the normally active COL1A2 gene was repressed more than five-
fold at 48 hpi compared to the uninfected control (Figure 3B). Repression was initiated
rapidly after infection, at 4 hpi, and deepened over time. H3K4me3 DFF-ChIP revealed
a broad profile of the modification that extended far into the gene body in uninfected
cells and was considerably retracted at 48 hpi. Strikingly, the COL1A2 NFR exhibited an
encroachment of H3K4me3 nucleosomes at 48 hpi compared to the uninfected control,
likely a consequence of the reduction in promoter activity. A gene ontology and pathway
analysis revealed that this set of repressed genes was enriched for proteins involved in
the organization of the extracellular matrix, including several collagens, lumican, and
metallopeptidases (Supplementary Data File, GO-Terms, BioPlanet Pathways). The HCMV-
induced repression of these genes has been reported [36,37,63], and may be linked to the
well-documented observation that HCMV-infected cells exhibit cytopathic cell rounding
and compromised substrate adhesion [64,65]. Our data added that the repression of
these genes initiated rapidly following infection through a mechanism that ultimately
resulted in the closure of the promoter NFRs. Metaplots were generated for H3K4me3
in uninfected cells and cells infected for 48 at all cluster one and cluster three genes,
which were enriched for induced ISGs, in addition to the 86 defined repressed genes. These
metaplots revealed an overall unchanged NFR for cluster one and three genes and increased
H3K4me3 levels downstream in gene bodies. Repressed genes exhibited a retraction of the
H3K4me3 signal from gene bodies and an increase in H3K4me3 nucleosomes within the
NFR (Figure 3C). To view these data another way, we generated fragMaps of the H3K4me3
signal at repressed genes in uninfected cells and cells infected with HCMV for 48 h. A
fragMap is a quantitative 2D plot of the level of fragments of various sizes versus the
position [18], here centered on the MaxTSS for every gene represented. The fragMaps
revealed a well-positioned +1 nucleosome downstream of the TSS, and in infected cells,
fragments corresponding to a nucleosome in size (~150 bp) further extended into the NFR,
which was consistent with promoter occlusion (Figure 3D).



Viruses 2022, 14, 779 11 of 25Viruses 2022, 14, x FOR PEER REVIEW 12 of 14 
 

 

 
Figure 3. Changes in the chromatin status of genes induced and repressed by HCMV infection. (A) 
Top: genome browser snapshot of PRO-Seq data for the induced OAS1 gene in uninfected HFFs and 
HFFs infected for 4 or 48 h, and H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs infected for 
48 h. Bottom: blown up view of H3K4me3 DFF-ChIP data at the OAS1 promoter region; (B) top: 
Genome browser snapshot of PRO-Seq data for the repressed COL1A2 gene in uninfected HFFs and 
HFFs infected for 4 or 48 h, and H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs infected for 
48 h. Bottom: blown up view of H3K4me3 DFF-ChIP data at the COL1A2 promoter region; (C) met-
aplots of H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs infected for 48 h for cluster 1 genes 
and cluster 3 genes, which were enriched for induced ISGs and repressed genes. Summed H3K4me3 

Figure 3. Changes in the chromatin status of genes induced and repressed by HCMV infection.
(A) Top: genome browser snapshot of PRO-Seq data for the induced OAS1 gene in uninfected HFFs
and HFFs infected for 4 or 48 h, and H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs infected
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for 48 h. Bottom: blown up view of H3K4me3 DFF-ChIP data at the OAS1 promoter region; (B)
top: Genome browser snapshot of PRO-Seq data for the repressed COL1A2 gene in uninfected
HFFs and HFFs infected for 4 or 48 h, and H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs
infected for 48 h. Bottom: blown up view of H3K4me3 DFF-ChIP data at the COL1A2 promoter
region; (C) metaplots of H3K4me3 DFF-ChIP data in uninfected HFFs and HFFs infected for 48 h
for cluster 1 genes and cluster 3 genes, which were enriched for induced ISGs and repressed genes.
Summed H3K4me3 signals were plotted over a region spanning −500 to +3000 relative to the Max
TSS; (D) FragMaps of H3K4me3 DFF-ChIP data at repressed genes in uninfected HFF and HFF
infected for 48 h.

3.4. HCMV Infection Alters Transcription of the 45S rDNA Repeat by Pol I

Ribosomal RNA is synthesized by Pol I, which transcribes a single 45S precursor RNA
that is, subsequently, processed to yield the 18S, 5.8S, and 28S ribosomal RNAs; 45S is
encoded within an rDNA repeat that exists as a tandem array found on the short arms
of chromosomes 13, 14, 15, 21, and 22. In the present hg38 assembly, eight rDNA repeats
are annotated. Due to the remarkable abundance of ribosomal RNA in cells, mature 18S,
5.8S, and 28S rRNAs can contaminate PRO-Seq libraries despite extensive selection for
biotinylated nascent transcripts, but we found that thorough washing eliminated most of
this contaminating background signal over mature rRNA. To eliminate all background, the
analysis of Pol I transcription was restricted to the 45S promoter region and 5′ portion of
45S that is not retained as a mature transcript. Initiation by Pol I occurred at a single sharp
start site. Pol I is not thought to undergo promoter-proximal pausing like Pol II. However,
unexpectedly, we observed an accumulation of transcripts all starting at the 5′ end of the
45S gene, extending up to about 200 bp downstream. This was reminiscent of Pol II pausing,
though the transcripts associated with Pol I were about 2–3 times longer than typically
seen for paused Pol II (Figure 4A). Very interestingly, as infection progressed, this signal
corresponding to ‘paused Pol I’ was diminished, and a more elongating Pol I was detected
downstream. At 72 hpi, this effect on Pol I transcription was partially reversed by treatment
with PFA, suggesting that the apparent stimulation of Pol I elongation may depend on viral
genome replication, increasing levels of viral mRNA and/or the involvement of a viral
factor. These effects were also observed in the presence of Flavo, indicating that P-TEFb is
not involved in regulating Pol I transcription and suggesting that the differences in Pol I
transcription during late infection were not directly coupled to ongoing Pol II productive
elongation (Figure S2).

We recently reported DFF-ChIP for TATA-binding protein (TBP) [18], a core general
transcription factor that assembles into Pol I, Pol II, and Pol III preinitiation complexes
(PICs), in HFFs infected for 48 h with HCMV TB40/E. Our DFF-ChIP approach was
demonstrated to define the boundaries of Pol II PICs with an unprecedented resolution.
Although not reported in the original publication, major TBP features were detected in
the rDNA loci. Two were in the 45S promoter region and unexpectedly three other TBP-
containing complexes were detected downstream of the region encoding the 45S precursor
rRNA (Figure 4B,C). The two upstream features were present at all eight annotated rDNA
repeats; they corresponded to PICs formed over the previously described spacer promoter
and the rRNA promoter [66] (Figure 4C, left). Downstream of the 45S gene, in the five rDNA
repeats that contained sequence information, three apparent PICs spaced approximately
700 bp apart were detected (Figure 4C, right). All of the PICs (both the upstream and
downstream) drove transcription initiation, albeit at vastly different levels, starting 5–10
bp beyond the downstream edge of the PIC. Only initiation from the main PIC located
immediately upstream of the 45S gene drove 45S transcription. Transcription from the
downstream PICs was slightly increased during late HCMV infection, while transcription
from the upstream spacer promoter was not impacted either at the level of initiation or
elongation. A set of TBP fragMaps for the example shown demonstrated that these PICs
all had similar 160 bp footprints (Figure 4C). Presumably, all of the PICs were occupied
by the TBP-containing SL1 complex downstream of a region bound by UBF [67]. DFF
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digestion between these two subcomplexes was detected in the main PIC driving rRNA
transcription (Figure 4C, left). The rRNA promoter was also unique among the regions
directing PIC assembly, as it alone contained a TATAT sequence upstream of the TSS. It is
not clear what role the downstream PICs possess, but it was noted that their upstream edges
were intimately associated with TTF1 termination sites (Sal boxes, GGGTCGACCAG) [68]
and, thus, could be involved in preventing transcription read-through into adjacent rDNA
repeats (Figure 4D).
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of 45S, 18S, 5.8S, and 28S below; (C) left: blown up view of TBP DFF-ChIP data at the 45S promoter
region, indicating the positions of Pol I PICs, and a fragMap below corresponding the region indicated
by the dashed lines. Right: blown up view of TBP DFF-ChIP data at the 45S downstream region,
indicating the positions of Pol I PICs, and a fragMap below corresponding the region indicated by the
dashed lines; (D) UCSC Genome Browser of TBP DFF-ChIP and PRO-Seq data at the 45S downstream
region documenting evidence that the downstream PICs drive transcription initiation, and that the
PICs are intimately associated at their upstream end with TTF1 termination sites.

3.5. HCMV Infection Dramatically Impacts tRNA Transcription by Pol III

In light of recent reports suggesting that infection by both alpha- and gammaher-
pesviruses induces tRNA expression [27,28,31], we next investigated whether HCMV, a
betaherpesvirus, also affects tRNA transcription. The measurement of tRNAs by sequenc-
ing approaches has been limited, as mature tRNAs are refractory to reverse transcription
due to their extensive base modifications and secondary structure. Several recently devel-
oped approaches have enabled better quantitative profiling of tRNAs [69–72]. As tRNAs
are thought to be post-transcriptionally processed and modified, the measurement of
nascent Pol III transcripts theoretically eliminates the restriction to sequencing posed by
base modifications. In addition, secondary structure may be minimal on tRNAs that are
not completely transcribed. Finally, mature tRNAs are extremely stable, with a half-life of
days [72], and, thus, small changes measured in the mature tRNA population may belie
major changes at the level of transcription. PRO-Seq could, therefore, be uniquely informa-
tive of changes in tRNA expression, with the caveat that post-transcriptional mechanisms
also contribute to the abundance of functional tRNAs.

Dramatic changes in the transcription of most tRNAs were observed over the course
of infection. For example, the transcription of tRNA-Met-CAT-5-1 was induced more than
400-fold at 48 hpi. Major increases in PRO-Seq signal were detected over the TSS and
downstream of the mature tRNA 3′ end (Figure 5A, left). Interestingly, blocking HCMV
replication with PFA was associated with only a partial induction of transcription, which
suggests that accumulating levels of viral genomes and mRNA may drive tRNA induction.
This result also suggests the involvement of a viral early-late or late factor in the effect
on tRNA transcription, and is partly in keeping with a recent study, which showed that
an HSV-1 mutant deficient for the viral DNA polymerase (UL30) did not induce tRNA
expression to the same extent as the wild-type virus, nor did infected cells treated with
DNA polymerase inhibitors [27]. By contrast, certain tRNAs, such as tRNA-Ser-TGA-1-1,
were apparently repressed (Figure 5A, right). Interestingly, the PRO-Seq signal within
tRNA-Ser-TGA-1-1 was characterized by sharp decreases that were not associated with
termination signals and may represent Pol III pausing, which is further explored later.

We noticed that some tRNAs transcripts had 5′ end signals coinciding with the mature
5′ end of the tRNA (Figure S3A). Many transcripts contained 3′ ends upstream of the
mature 3′ end, indicating that they may be nascent transcripts. However, this could be
due to transcription actually starting at the mature 5′ end, 5′ end processing occurring
co-transcriptionally, or some amount of processed tRNA contamination. Because of this
uncertainty, we developed a method to separate those transcripts from those that started
upstream of the mature 5′ end (Figure 5B). Using the PRO-Seq signal for the tRNA-Leu-
CAG-2-1 gene as an example, we quantified the number of reads at the mature 5′ end seen in
the annotation, the number of reads crossing the preceding base position from transcription
that started upstream of the mature 5′ end (termed the 5′ upstream position), and the
number of reads crossing the base following the mature 3′ end (termed the 3′ downstream
position) (Figure 5B, Supplementary Data File, tRNA Analyses). The short segment of the
pre-tRNA between the TSSs and the mature 5′ end is referred to as the leader sequence and
is removed during 5′ end processing. It was noted for tRNA-Leu-CAG-2-1 that PRO-Seq
fragments beginning at the mature 5′ end were associated with 3′ ends within the tRNA
gene body or close to the mature 3′ end, whereas fragments containing the leader sequence
were primarily associated with 3′ ends downstream of the mature 3′ end, reflecting Pol III
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elongation (Figure S3B). Pol III terminates while synthesizing polyuridine tracts, which
destabilize the elongation complex [73]. Accordingly, sharp decreases in engaged Pol III
were detected precisely in line with poly-T stretches on the nontemplate strand (Figure 5B).
For subsequent analyses, we used tRNA genes that had a ratio of read coverage at the base
preceding the mature 5′ end over the reads starting at the mature 5′ end of 0.8 or greater
(269/429, or 63% of annotated tRNAs). A minimum read cutoff for the analysis was also
imposed, resulting in a final list of 235 tRNAs. That the majority of transcribed tRNAs
contained upstream leader sequences and many, by observation, exhibited termination
over poly-T stretches verified that PRO-Seq captured nascent Pol III transcripts.
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Figure 5. HCMV infection dramatically impacted Pol III transcription of tRNAs. (A) Genome browser
snapshots of forward-strand (Fw) PRO-Seq data at tRNA genes that were significantly induced along
the course of infection (left) repressed along the course of infection (right); (B) genome browser snapshot
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of forward-strand PRO-Seq data of the tRNA-Leu-CAG-2-1 gene at 48 hpi. Sites where read coverage
was quantified for analysis are indicated. Matches to the motif TTTT on the nontemplate strand
detected with the UCSC genome browser short match function are indicated; (C) plots of read
coverage at the 5′ upstream position in uninfected HFFs and HFFs infected for 4, 12, 24, 48, or 72 h,
and 72 h + PFA. In each plot, the read coverage for each tRNA in the uninfected HFFs is displayed
with the data for the infection time point, and the data are sorted by lowest to highest read coverage
in uninfected cells. Data are plotted on a log10 scale; (D) Graphs depicting the fold-change in read
coverage at the 5′ upstream position (48 hpi/uninfected) for all 235 analyzed tRNA genes, sorted
from most induced to most repressed. Fold change was plotted on a log10 scale; (E) heatmaps of
PRO-Seq 5′ ends and 3′ ends at tRNA genes in uninfected HFFs and HFFs infected for 48 h. Data are
displayed for a region spanning −50 to +200 relative to the mature 5′ end and are sorted from top to
bottom by most induced at 48 h to most repressed according to the ratio of read coverage at the 5′

upstream position.

To view the global effects of HCMV infection on tRNA transcription, scatterplots of
read coverage at the 5′ upstream position, representing initiation, were generated compar-
ing the uninfected control to each infection time point (Figure 5C). The data were sorted by
an increasing read coverage in the uninfected control. At early times postinfection (4 hpi),
differences in tRNA transcription were subtle, but were notable at 12 hpi and marked
by 24 hpi. At 48 and 72 hpi, the global profile of tRNA transcription was remarkably
transformed. The blockage of HCMV replication with PFA partially attenuated global
effects on tRNA transcription. Interestingly, tRNAs that were virtually silent in uninfected
cells were activated, many more than 100-fold, while repressed tRNAs tended to correlate
with those that were already highly transcribed in uninfected cells. Of the 235 analyzed
tRNAs, 138 (59%) exhibited an increase in transcription, while 97 (41%) exhibited a decrease
(Figure 5D). Interestingly, the induced population of tRNAs was modestly enriched for
a set containing AT-rich anticodons (45% GC, 55% AT) versus those that were repressed
(50% GC, 50% GC). The effects on tRNA transcription were also reproduced in samples
treated with Flavo, which indicated that the dramatically altered occupancy of Pol III was
not affected by the loss of Pol II productive elongation for 1h (Figure S3C). Coverage at the
5′ upstream position correlated poorly between the samples uninfected at 48 hpi (r = 0.18),
as expected, but each of the mock infected or time-matched samples −/+ Flavo correlated
well (r = 0.78 to 0.97). Similar effects on tRNA transcription were also observed by plotting
the coverage over the base downstream of the annotated 3′ end in uninfected and infected
samples (Figure S3D).

To view the effects on tRNA transcription on a gene-by-gene basis, heatmaps of tRNA
5′ and 3′ ends were generated spanning a region of −50 to +200 bp relative to the mature
5′ ends (Figure 5E). The genes were sorted by most induced at 48 hpi to most repressed,
top to bottom. The position of the mature 5′ end was indicated. Notably, for virtually
all tRNAs, PRO-Seq 5′ ends were located upstream of the mature 5′ end, indicating that
the data represented true Pol III initiation. The apparently inverse relationship between
tRNA genes that were active in uninfected cells and those that were most induced at 48 hpi
was highly evident. With infection, PRO-Seq 3′ ends extended well past the mature 3′

end at most tRNA genes, which are on average 74 nt downstream of the mature 5′ end.
Interestingly, a recurrent pattern of 3′ ends in the heatmap for the uninfected sample was
evident, and this pattern was diminished at 48 hpi, reflected instead by a shift in 3′ ends
downstream. Barring the possibility that these apparent pauses in Pol III transcription
arose from an undiscovered mapping artifact linked possibly to tRNA gene duplication,
it seems that infection could alter tRNA transcription, in part, through the stimulation
of Pol III elongation. However, a more extensive investigation would be needed to test
this hypothesis.
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3.6. HCMV Infection Alters the Chromatin State of Pol III-Transcribed Genes

Next, we investigated whether changes in Pol III transcription induced by infection
were associated with changes in the chromatin structure around Pol III-transcribed genes,
once more drawing upon our recently published DFF-ChIP data for H3K4me3 and TBP [18].
Similar to Pol II promoters, tRNA genes are couched within accessible regions of the
genome [74]. H3K4me3 was also detected around Pol III promoters, though the abundance
of this modification was often considerably less than that observed at Pol II promoters,
and there was no consistent pattern of H3K4me3 flanking tRNA genes. In some cases,
neighboring Pol II transcription impacts tRNA expression [9] and is likely to influence the
epigenetic environment of tRNA genes. Three distinct effects on H3K4me3 were observed
in association with tRNA induction by infection. Some tRNAs, such as tRNA-Val-TAC-4-1,
tRNA-Met-CAT-5-1, and tRNA-Lys-TTT-7-1, which were nearly silent in uninfected cells,
exhibited a marked gain in H3K4me3 in association with their induction (Figure 6A, left).
At induced tRNAs, where H3K4me3-modified nucleosomes were detected downstream of
the tRNA gene, such as tRNA-Met-CAT-4-2, tRNA-Gln-CGT-5-1, and tRNA-Pro-CGG-2-1,
a downstream shift in the proximal H3K4me3 nucleosomes was often observed, which
may be related to increased levels of Pol III elongation downstream of the tRNA gene
(Figure 6A, middle). DFF-ChIP for TBP revealed prominent signals corresponding to Pol
III PICs that, interestingly, were almost always associated with an upstream extension of
approximately 150 bp that appeared to reflect association of the PIC with the -1 nucleosome
(Figure 6). In yeast, the -1 nucleosome is more strongly positioned at tRNA genes than
the downstream +1 nucleosome [74]. This is at contrast with Pol II promoters, where the
+1 nucleosome was more strongly positioned, and interactions between the Pol II PIC
and +1 nucleosome were detectable [18]. In view of this finding, at tRNA genes where
H3K4me3 nucleosomes were detected primarily upstream, such as tRNA-Thr-CGT-5-1,
tRNA-Ser-GCT-2-1, tRNA-Ser-AGA-2-4, and tRNA-Asp-GTC-2-7, stronger positioning
of the −1 nucleosome was detected, and the signal profiles of H3K4me3 data suggested
an increased contact between the −1 nucleosome and the PIC −/+ infection (Figure 6A,
right). A fragMap for TBP at all tRNA genes revealed the size and position of the Pol III
PIC relative to the major TSS and clearly showed an association between this PIC and the
upstream −1 nucleosome (Figure 6B). The significance of this interaction was unclear, but
it is possible that maintaining an interaction between the Pol III PIC and −1 nucleosome
could block Pol II PIC assembly and transcriptional interference. Pol III also transcribes
the 5S rRNA and a variety of snRNAs, including 7SK, which contain Class I and Class III
promoters, respectively. An investigation of our PRO-Seq and DFF-ChIP data suggested
that Pol III transcription of these genes was also induced by infection. Relating to this, it
was previously noted that the Epstein–Barr virus induces the expression of 5S rRNA and
7SL [31]. Our TBP DFF-ChIP data revealed a unique struc-ture to PICs at Class I and Class
III genes as compared to Class II tRNA genes, pre-sumably reflecting the involvement of
different general transcription factors in the as-sembly of the complex. A diagram that
depicts the size of the protected region detected by TBP DFF-ChIP in relation to the TSS for
each promoter subtype, in addition to Pol II and Pol I promoters, is provided in Figure S4.



Viruses 2022, 14, 779 18 of 25Viruses 2022, 14, x FOR PEER REVIEW 20 of 22 
 

 

 
Figure 6. HCMV alters the chromatin state at induced tRNA genes. (A) Genome browser snapshots 
of forward strand PRO-Seq data in uninfected HFFs and HFFs infected for 4 or 48 h, DFF-ChIP for 
H3K4me3 in uninfected HFFs and HFFs 48 hpi, and DFF-ChIP for TBP in HFFs 48 hpi, at tRNA 
genes that represented three distinct changes in local chromatin observed in association with HCMV 
infection (gain in H3K4me3, shift in H3K4me3 nucleosomes, and increased contact between the −1 
nucleosome and the Pol III PIC). Three examples of each effect are shown; (B) FragMap of TBP DFF-
ChIP data tRNA genes centered on the tRNA max TSS. The location of the Pol III PIC with respect 
to the TSS and association between the Pol III PIC and the upstream −1 nucleosome are visible; (C) 

Figure 6. HCMV alters the chromatin state at induced tRNA genes. (A) Genome browser snapshots
of forward strand PRO-Seq data in uninfected HFFs and HFFs infected for 4 or 48 h, DFF-ChIP for
H3K4me3 in uninfected HFFs and HFFs 48 hpi, and DFF-ChIP for TBP in HFFs 48 hpi, at tRNA genes
that represented three distinct changes in local chromatin observed in association with HCMV infection
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(gain in H3K4me3, shift in H3K4me3 nucleosomes, and increased contact between the−1 nucleosome
and the Pol III PIC). Three examples of each effect are shown; (B) FragMap of TBP DFF-ChIP data
tRNA genes centered on the tRNA max TSS. The location of the Pol III PIC with respect to the TSS and
association between the Pol III PIC and the upstream −1 nucleosome are visible; (C) genome browser
snapshots of PRO-Seq data and DFF-ChIP data for H3K4me3 and TBP revealing an induction of the
Class I 5S rRNA gene and Class III 7SK gene by HCMV infection, and features of TBP-containing
PICs at these Pol III promoters.

4. Discussion

Here, we investigated the transcriptional effects of lytic HCMV infection in HFFs
using PRO-Seq, which profiles nascent transcripts being generated by Pol I, II, and III. Our
study provided surprising new insights, revealing, most significantly, that late HCMV
infection was associated with a nearly global increase in the rate of the release of Pol II into
productive elongation, that infection was seemingly linked to a change in Pol I transcription
of the 45S rRNA at the level of elongation, and that, like HSV-1 and MHV68 [27,28], HCMV
dramatically impacted tRNA expression at the level of transcription. These findings were
connected to chromatin and epigenetic changes at affected genes, and together signifi-
cantly extended our understanding of how HCMV manipulates the transcription of the
host genome.

Our PRO-Seq data unexpectedly showed that that levels of Pol II productive elon-
gation were substantially increased at late times postinfection (48, 72 h), while levels of
initiation appeared to be largely unaffected. This observation is in alignment with the
idea that HCMV does not shut off transcription of host genes as is thought to occur in the
context of HSV-1, KSHV, and MHV68 infection. The trend was observed at most actively
transcribed genes (Figures 1B and 2A,B) and appeared to be dependent on viral genome
replication, as treatment with PFA from the onset of a 72 h infection restored pause ratios to
a prereplication level (24 h). Pol II pause release is achieved by the action of P-TEFb, which
is recruited to pause regions by BRD4 and other transcriptional coactivators, and critically
phosphorylates the pausing and productive elongation factor DSIF. The phosphorylation
of DSIF leads to the dissociation of the pausing factor NELF, after which the elongation
complex is engaged by productive elongation factors to facilitate elongation through the
gene body [14,75]. In cells, a portion of P-TEFb is free and able to mediate pause release,
while the remainder exists within an inhibitory 7SK snRNP. P-TEFb is directly controlled
by certain viruses, such as HIV, to drive productive viral gene expression [76], and P-
TEFb release from the 7SK snRNP may be an important effector of HSV-1 reactivation
from latency [77]. P-TEFb is generally required for productive transcription at the HCMV
genome [12], reflective of its general role in Pol II transcription. At late times, following the
onset of the HCMV genome replication, the transcription of the HCMV genome accounted
for ~10–25% of the transcription in the cell (Supplementary Data File, PRO-Seq Stats), and,
thus, a substantial fraction of free cellular P-TEFb must be needed to drive productive
elongation on the HCMV genome. A previous study indicated that total P-TEFb levels are
increased in HCMV-infected cells and that Cdk9 localization is altered during early and
late times postinfection [78]. An increase in P-TEFb levels may explain our observed effects
on pause release. Whether HCMV impacts the fraction of P-TEFb present in the snRNP or
the total amount of P-TEFb is unknown and should be explored. In addition to uncovering
this previously unreported broad effect of HCMV infection on pausing and productive
elongation, our PRO-Seq data identified subsets of genes, consisting of many ISGs that
were induced with differential kinetics in response to infection, and using DFF-ChIP for
H3K4me3, we also showed that genes repressed by HCMV infection exhibited NFR closure.

Our PRO-Seq data unexpectedly suggested that Pol I transcription of the 45S rRNA is
impacted by HCMV infection. Relatively few studies have investigated Pol I initiation and
elongation in cells using next-generation sequencing approaches, which is in part related
to limitations of existing annotations of rDNA repeats. Our data suggests that there is
an enrichment of elongating Pol I at the 5′ end of the 45S gene, which is reminiscent of
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Pol II pausing, and that late HCMV infection was associated with a decrease in this 5′

pileup and increased levels of Pol I elongation downstream. This effect also appeared to be
dependent on viral replication, increased levels of viral mRNA, and/or a viral factor, as
treatment with PFA led to its partial reversal. These data suggest that HCMV may drive
productive rRNA transcription and perhaps downstream ribosome biogenesis to facilitate
robust translation of viral mRNAs in a competitive environment where host mRNAs remain
abundant. Additionally, our DFF-ChIP data for TBP sharply demarcated the boundaries
of Pol I PICs in the 45S promoter region, and unexpectedly revealed PICs downstream of
45S that drive low levels of transcription initiation, are intimately associated with TTF1
termination sites, and could be involved in insulating tandem rDNA repeats from upstream
Pol I transcription.

Finally, our PRO-Seq data revealed that HCMV dramatically induced the transcription
of tRNAs. Our use of PRO-Seq to address effects on tRNA transcription is novel. Standard
RNA-Seq approaches fail to accurately quantify the abundance of mature tRNAs due to
extensive base modifications and secondary structure, which are both refractory to reverse
transcription. Resultantly, methods that partially overcome these obstacles and enable
a quantitative assessment of the levels of both mature tRNAs and pre-tRNAs have been
developed [69–71,79,80]. PRO-Seq differs in that Pol III nascent transcripts are captured
and sequenced. As tRNAs are post-transcriptionally processed, nascent Pol III transcripts
lack base modifications. Also, the secondary structure within incompletely synthesized
tRNAs may be minimal. Enrichment for nascent Pol III transcripts by PRO-Seq was shown
through abundant evidence of unprocessed tRNA leader sequences, Pol III elongation
downstream of the mature tRNA 3′ end, and termination over sites of poly-U incorporation.
An advantage to measuring nascent transcripts is that mature tRNA half-lives are long,
on the order of days, and, thus, small changes in the level of mature tRNAs could belie
a major change at the level of transcription. In addition, effects on nascent transcription
measured by PRO-Seq are likely to directly correlate with downstream changes in the levels
of mature tRNA. We found that HCMV infection primarily resulted in an upregulation
of tRNA transcription. Many tRNAs were induced more than 10-fold, and it was noted
that induced tRNAs were modestly biased towards those containing AT-rich anticodons
compared to repressed tRNAs. Interestingly, viral genome replication appeared to be
important for the full induction of tRNA transcription, as treatment with PFA shifted the
induction of tRNAs to prereplication levels observed at 24 h. This result suggests that
tRNA induction may be linked to an increasing abundance of viral mRNAs, a result that is
mirrored by a recent study of HSV-1 [27], and suggests the involvement of a viral factor
in Pol III stimulation. Interestingly, and apparently unique to HCMV, the most induced
tRNAs tended to be transcribed at low levels in uninfected cells, while repressed tRNAs
tended to be very actively transcribed in uninfected cells. Thus, it appears that viruses from
all major human herpesvirus subfamilies impact tRNA expression, possibly to the benefit
of productive infection.

Interestingly, recent reports have suggested that HSV-1 and MHV68 generally lead
to a greater increase in levels of pre-tRNAs than mature tRNAs [27,28]. It is possible that
immature tRNAs may give rise to tRNA-derived fragments, which have recently emerged
as important regulators of gene expression at the post-transcriptional level [81]. Whether
tRNA transcripts that are induced by HCMV infection undergo complete maturation
remains to be discerned. Regarding a mechanism for tRNA induction by HCMV, one
possibility relates to the induction of Pol III initiation machinery, which has been reported
to occur in the context of EBV infection [31]. Another interesting possibility relates to the
function of Maf1, a Pol III transcriptional repressor that blocks the function of TFIIIB in Pol
III PIC assembly [82,83]. Maf1 is rendered inactive by phosphorylation, which is thought
to be mediated, at least in part, by the mTOR kinase [84,85]. The mTOR complex is a
major player in the regulation of cellular metabolism and translation, and viral infection
often triggers a cellular stress response that inactivates mTOR and, consequently, leads to
a global downregulation of mRNA translation [86]. However, the HCMV UL38 protein,
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which is expressed with early kinetics, is thought to subvert this response by binding to
and inhibiting TSC2, which with TSC1 indirectly represses mTOR, thereby promoting
mTOR function [87,88]. Notably, some tRNAs began to be induced at 4 and 12 hpi, which
was possibly consistent with early UL38 function, and UL38 protein levels apparently
increase between 24 and 48 hpi [88]. This action may not only enable the translation of viral
mRNAs, but could also lead to Maf1 inactivation by mTOR-mediated phosphorylation,
with downstream consequences for tRNA transcription. Relating to this, HSV-1 is also a
known mediate constitutive in mTOR activation, even in the context of nutrient deprivation,
using similar mechanisms that impinge on upstream mTOR effectors [89,90]. However,
possibly at contrast with these ideas, it was demonstrated that MHV68 infection induced
tRNA upregulation in wild-type and Maf1-deficient cells [28].

Finally, our DFF-ChIP data provided several new insights regarding the chromatin
status of tRNA genes and how it is impacted by infection. We observed that some induced
tRNA genes exhibited gains in H3K4me3 at proximal nucleosomes, while tRNAs that
were associated with H3K4me3 nucleosomes downstream exhibited a shift in the down-
stream nucleosomes to a more distal position in association with tRNA induction. The
latter may be the result of increased levels of Pol III elongation downstream of the tRNA.
Finally, our DFF-ChIP data resolved a striking connection between Pol III PICs and the
upstream −1 nucleosome. At induced tRNAs, the profile of H3K4me3 signal appeared to
suggest stronger positioning of the −1 nucleosome and increased contact with the Pol III
PIC. A caveat to these interpretations is that H3K4me3 is likely substoichiometric with re-
spect to nucleosomes flanking tRNA genes. As such, future studies should explore changes
in the tRNA chromatin structure using approaches that are agnostic to the epigenetic status.
Overall, our results positioned PRO-Seq and DFF-ChIP as useful tools for investigating the
dynamics of tRNA transcription and chromatin.

5. Conclusions

In this study, we showed that HCMV infection elicited major changes in transcription
by Pol I, II, and III using PRO-Seq. Our investigation of Pol II transcription unexpectedly
revealed a substantial increase in the rates of Pol II pause release at late times postinfection
that was reflected at most genes. This is in contrast with the effects of alpha and gamma-
herpesviruses, which are thought to shut off host Pol II transcription. We showed that Pol I
transcription was characterized by an apparent block to elongation at the 5′ end of the 45S
gene that diminished during late infection, where increased levels of elongating Pol I were
detected downstream. Finally, we reported on massive changes in Pol III transcription of
tRNA genes, similar to recent reports on HSV-1 and MHV68 [27,28]. Hundreds of tRNAs
were differentially transcribed during infection, and many were induced massively, up to
nearly 500-fold. This effect largely required HCMV genome replication, indicating that
tRNA induction may be coupled to increasing levels of viral mRNA or involve viral factors
that remain to be identified.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v14040779/s1, Supplementary Figure S1: Motif enrichment analysis in clustered regions,
Figure S2: Reproducibility of Pol I transcription profile, Figure S3: Reproducibility of Pol III findings,
Figure S4: Schematic depicting the regions protected by DFF-ChIP for TBP at Pol I, Pol II, and Pol III
promoters, Supplementary Data File.
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