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Abstract

Sensory experience drives dramatic structural and functional plasticity in developing neurons. However, for single-neuron
plasticity to optimally improve whole-network encoding of sensory information, changes must be coordinated between
neurons to ensure a full range of stimuli is efficiently represented. Using two-photon calcium imaging to monitor evoked
activity in over 100 neurons simultaneously, we investigate network-level changes in the developing Xenopus laevis tectum
during visual training with motion stimuli. Training causes stimulus-specific changes in neuronal responses and interactions,
resulting in improved population encoding. This plasticity is spatially structured, increasing tuning curve similarity and
interactions among nearby neurons, and decreasing interactions among distant neurons. Training does not improve
encoding by single clusters of similarly responding neurons, but improves encoding across clusters, indicating coordinated
plasticity across the network. NMDA receptor blockade prevents coordinated plasticity, reduces clustering, and abolishes
whole-network encoding improvement. We conclude that NMDA receptors support experience-dependent network self-
organization, allowing efficient population coding of a diverse range of stimuli.
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Introduction

The vertebrate brain exhibits intricate functional organization

at many different spatial scales, from cortical microcolumns

dedicated to processing specific receptive field properties, to large

domains such as somatotopic maps. It is thought that this

organization of neurons according to shared function optimizes

efficiency and effectiveness of neural processing. During develop-

ment, the structure [1,2] and function [3–6] of sensory neural

circuits are actively guided by both endogenous signals and

environmental stimuli. However, it is not well understood how

these changes lead to improved brain function.

Here we investigate how plasticity affects developing visual

system performance from the perspective of sensory encoding—

the representation of sensory stimuli by activity in populations of

brain neurons. Neuronal responses are inherently noisy and vary

across presentations of the same sensory stimulus, limiting how

much information can be encoded by a single neuron [7]. To

optimally encode environmental stimuli in the presence of noise

[8], sensory circuits must be organized to balance redundancy,

which makes network encoding less sensitive to neuronal noise,

with the ability to encode a diverse range of stimuli. In the absence

of noise, a given stimulus feature can be fully conveyed by a small

number of neurons, and to maximize efficiency, other neurons

should then encode different features. If neuronal responses are

more variable, more neurons are required to reliably convey a

given feature. The optimal response pattern for each neuron thus

depends on the response properties of other neurons in the

network and the reliability of those responses.

Encoding is also affected by neuronal interactions. For example,

neuronal interactions may be organized to remove correlations

from the network’s input (decorrelation) [9], making the neural

code more efficient, and neuronal ensembles can synergistically

encode information not available from individual neurons [10].

Strategies that coordinate neuronal interactions and optimize

encoding have been identified in artificial networks under various

conditions [8], and encoding schemes have been described and

evaluated in mature neural circuits [11–14]. Further studies have

shown that adaptation of neuronal receptive fields [15] and

correlations [16] can tune encoding in response to changes in

sensory stimuli in vivo. However, little is known about how

encoding schemes arise during development or how they are

altered during early learning, when dynamically growing neural

circuits first wire themselves together. Evaluating network

encoding requires simultaneous observation of many neurons,

and understanding early network refinement requires monitoring

those networks over the course of learning and development.

The visual system of the X. laevis tadpole has been extensively

studied as a model of neuronal and neural circuit development

[1,3,4,17–21]. Transparent albino tadpoles allow minimally
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invasive in vivo observation of rapid sensory circuit development,

from differentiation [22] to mature neurons driving behavioral

responses [23]. Studies in the developing brain have described

mechanisms controlling large-scale circuit patterning [24], fine-

scale morphogenesis [21], and rules by which synapses [25], single

neurons [4,18], and small groups of neurons [16] refine their

response properties with experience. However, it is largely

unknown how these developmental changes contribute to network

encoding performance, or how plasticity is coordinated across

neurons to produce functional large networks.

Here we use in vivo two-photon calcium imaging

[3,5,18,20,23,26] to monitor network activity and plasticity during

early receptive field development in Xenopus tadpole optic tectum

[27] as we train the brain to respond to a set of visual motion

stimuli. Training causes stimulus-specific changes in evoked

neuronal responses and increases stimulus information conveyed

by neuronal firing. Decoding of network activity using computa-

tional models [28] becomes more accurate over the course of

visual training. Training induces spatial clustering of receptive

fields and correlations by increasing tuning curve similarity and

network interactions among nearby neurons and decreasing

interactions among distant neurons. Blockade of N-methyl-D-

aspartic-acid type glutamate receptors (NMDARs) blocks spatially

graded plasticity, and prevents decoding improvement with

training. By comparing decoding in single clusters and groups,

we show that increasing network performance arises from

NMDAR-dependent improvement in encoding of stimulus

information across clusters, while encoding within single clusters

does not improve with training. We propose that NMDARs

support experience-dependent functional clustering, leading to

local redundancy and distant decorrelation, and promote receptive

field diversity by preventing loss of underrepresented receptive

fields. These results highlight contributions of network-level

organization to the performance of sensory systems in vivo and

identify mechanisms by which visual experience directs improve-

ment in whole-network function.

Results

In Vivo Monitoring of Neuronal Firing Rates with Two-
Photon Calcium Imaging

In vivo two-photon calcium imaging allows simultaneous

monitoring of somatic calcium transients, induced by neuronal

firing, in hundreds of neurons in the vertebrate brain

[3,5,18,26,29]. We used this method to monitor correlated visually

evoked responses across the optic tectum, which requires that

firing-rate measurements are accurate on a single-trial basis and

not averaged across trials [28]. Optical readout of calcium

transients is hindered by drifting baseline fluorescence (F0),

bleaching, and saturation, and involves fundamental tradeoffs

between imaging area and quality of signal. Moreover, the

relationship between action potentials and calcium levels is

complicated by the temporal dependence of calcium concentra-

tions on spiking history and nonlinearities in calcium influx [30].

To overcome these limitations and improve signal quality, we

developed techniques for automated video segmentation to track

cell boundaries on the basis of morphology and temporal pixel

correlations, spatial filtering to weight the contributions of pixels

within a given cell, and F0 estimation using optimal linear methods

(see Methods, Figure S1). To extract firing rates from fluorescence

data we employed a spike inference algorithm, which takes into

account temporal dependence and nonlinearities in signal [30].

To assess the effectiveness of these methods for measuring

single-trial–evoked firing rates in the awake brain, we performed

in vivo loose seal patch clamp electrophysiological recordings to

monitor action potential spiking during simultaneous calcium

imaging and visual stimulation (Figures 1e and S2). We compared

firing rates obtained from electrophysiological recordings to two

measures of neuronal firing obtained from fluorescence data: peak

DF/F0 [3] and firing rates inferred from spike inference. Though

both measures showed significant correlations to actual firing,

inferred firing rates outperformed peak DF/F0 in all neurons

recorded (Figure S3), possibly because burst durations and

interspike intervals were long (Figure 1f), resulting in imperfect

summation of peak calcium currents. The relationship between

inferred firing rates and actual spike counts was linear (Figure S3),

showing that in vivo calcium imaging and spike inference is an

effective method for monitoring firing rate fluctuations in tectal

neurons.

We first used rapid two-photon imaging and firing rate

inference to characterize motion receptive fields in untrained

tadpoles. Motion stimuli consisted of dark bars moving over a light

circular background in each of eight directions (see Methods), with

low contrast so as to better detect improvements in neuronal

responses with subsequent training. We found that most motion-

responsive tectal neurons respond either symmetrically to pairs of

opposing directions (orientation selectivity, 59.1%65.0% of cells;

mean 6 standard deviation [SD]), and/or specifically to a narrow

band of directions (direction selectivity, 66.3%611.1%). Neurons

responding to two opposite directions while strongly favoring one

direction can show both selectivities (36.7%69.3%). Average

responses of individual neurons to each stimulus direction, called

tuning curves, show varying selectivity in a topographic organi-

zation (Figure 2). These results demonstrate the effectiveness of

two-photon imaging and spike inference in measuring receptive

fields across a contiguous brain network in vivo.

Tectal Network Responses to Visual Stimuli Exhibit Noise
Correlations Indicating Functional Interconnections

Besides the single-neuron properties described above, networks of

neurons often show correlations in their firing patterns. Neurons

Author Summary

In the developing brain, sensory experience can exten-
sively re-wire neurons, determining both their shape and
function. It is thought that this early period of plasticity
improves the brain’s representation of sensory input. For
this plasticity to actually improve coding efficiency,
changes to individual neurons should be coordinated
across the brain to produce a network-level functional
organization. In this study, we measure such network-level
changes during visual learning in developing Xenopus
laevis (frog) tadpoles. By imaging neuronal calcium levels,
we track activity in over 100 neurons simultaneously to
observe changes in both single neurons and whole
networks during training. We find that the network
improves its representation of visual stimuli over time, by
forming spatial clusters of highly connected, similarly
responding neurons. Distant neurons, however, become
less connected. This organization improves the ability of
large groups of neurons, spanning multiple clusters, to
discriminate the trained stimuli. Finally, we show that
blockade of the NMDA receptor prevents this functional
organization and the improvement in the network’s
stimulus representation. Our study shows how develop-
mental plasticity can influence not only the proper
connectivity of the visual system, but also its coding
capacity.

Rewiring of a Developing Brain Network during Visual Learning
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with similar tuning curves show ‘‘signal correlations’’ because their

firing is driven by the same stimuli [11]. Notably, real neuronal

responses also show trial-to-trial deviations from their tuning curves.

When these trial-to-trial deviations are shared, because of common

input or interconnections, neurons are ‘‘noise correlated’’ (Figure 3a)

[11]. Noise correlations are thus correlations in neural firing

patterns that are not explained by shared receptive field properties.

Noise correlations can be positive or negative, can differ across

stimuli, and do not require signal correlations to be present. When

trial-to-trial variability is not shared, neurons are independent.

Figure 1. In vivo imaging of evoked network activity in the unanesthetized developing brain. (a) Experimental setup. Motion stimuli were
presented to the left eye of awake, immobilized Xenopus tadpoles while imaging the right optic tectum. Neurons in the tectum (green circles) extend
dendrites to receive visual input from retinal ganglion cells (red) of the contralateral eye. (b) Transmitted light image of a tadpole brain seen through
the head. Green box, optic tectum. (c) Two-photon image of optical section corresponding to green box in (b). Tectum is loaded with OGB1-AM, a
calcium-sensitive dye. Red box corresponds to the region of tectum monitored in our experiments. (d) Two-photon image of a patched neuron in
awake tectum. (e) Simultaneous recording of somatic fluorescence (DF/F0, top) and action potentials (green) in response to full field light stimuli of
varying intensity, with actual (gray) and inferred (black) firing rates in the 5 s following each stimulus. (f) Expanded voltage trace for
electrophysiological recording. Pink shading marks time of stimulus. The electrical transients bounding the stimulus period are clipped. Colored dots
mark individual action potentials, which are magnified in the boxes at bottom.
doi:10.1371/journal.pbio.1001236.g001

Figure 2. Orientation and direction responses in optic tectum. (a,d) Maps of direction and orientation selectivity in naive Xenopus tectum
obtained through rapid two-photon imaging and firing rate inference. Stimuli were dark bars moving over a light background for 600 ms in eight
directions. Black circles mark neurons that responded significantly to stimuli. Colored arrows mark preferred directions (a) and orientations (d) of
neurons showing stimulus specificity. Coronal optical section, rostrum to the left. Scale bar = 20 mm. (b,e) Tuning curves of a direction- (b) and an
orientation- (e) selective neuron highlighted in (a,d). Error bars denote SEM. (c,f) Average temporal response of the two neurons to each stimulus
direction. Colors match those in (b,e). Gray bar marks time of stimulus presentation. All measures calculated from n = 48 stimulus presentations for
each of eight directions (1 h).
doi:10.1371/journal.pbio.1001236.g002

Rewiring of a Developing Brain Network during Visual Learning
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The contribution of neural correlations to network activity

patterns is difficult to determine when observing only individual

neurons or small groups [28]. Effects of pairwise interactions on

network encoding may only be detectable if many neurons are

taken into account, and even small pairwise interactions strongly

impact activity patterns when large networks are considered [31].

Thus, when neurons are significantly noise correlated, under-

standing network function requires observing activity in large

groups of neurons simultaneously [28,32]. Numerous studies have

investigated the presence of noise correlations in vivo [11,16,33],

their effects on encoding [8,12,34,35], and the consequences of

ignoring them [36]. Conclusions on these topics vary with the

brain regions and response properties being studied. It is agreed,

however, that the presence and impact of noise correlations

determines the experimental and theoretical methods we must use

to understand neural information processing.

Examining multineuronal firing patterns elicited by motion

stimuli, we find that noise correlations are prominent in the awake

developing tectum (Figure 3b and 3c). Noise correlation measure-

ments were correlated over consecutive 30-min periods (Figure 3c).

Noise correlations varied across stimuli (Figure S4), and may thus

convey stimulus information not present in single-neuron responses

(Figure S5) [37]. Noise correlations between neurons tended to have

the same sign as signal correlations (Figure S6), indicating that many

tectal noise correlations reflect shared errors in similarly responding

neurons. These results demonstrate that tectal noise correlations can

be measured with two-photon calcium imaging and may have

consequences for information processing in this network.

Tectal Noise Correlations Can Encode Stimulus
Information, But Impair Overall Network Performance

Noise correlations can both help and hurt network stimulus

encoding, depending on how they vary with stimuli and the

response properties of neurons in the network [8,11,32,35,37].

Because noise correlations are prominent in developing tectum

and are stimulus dependent, we expected that knowledge of noise

correlations may be important for downstream neurons to extract

all available information from network activity patterns. However,

because we found that tectal noise correlations largely reflect

shared errors, we expected removal of noise correlations from

population activity would increase the amount of information

available in those firing patterns [7,8]. To test these predictions,

we constructed two model decoders: one that takes into account

pairwise noise correlations, and an optimal independent decoder,

which ignores noise correlations. A decoder is a model based on a

set of real network responses, which takes a second set of measured

activity patterns as input and predicts the inducing stimuli [28].

Decoders thus perform the same task as downstream neurons to

recover stimulus information from upstream network activity. By

building decoders, we can ask two distinct questions: Regarding

encoding—Would population encoding accuracy be altered if

noise correlations were somehow abolished? Regarding decod-

ing—Is knowledge of noise correlations necessary to fully decode

network activity from a population response? We find that

abolishing noise correlations by shuffling neurons’ responses across

trials of each stimulus improves accuracy of both decoders

(Figure 3e). This finding confirms that encoding would improve

overall if responses were uncorrelated, likely because the noise

correlations we observe are largely shared errors among similarly

responding neurons. Nevertheless, ignoring noise correlations in

actual data significantly reduced decoding accuracy (Figure 3e).

This outcome suggests that sensitivity to noise correlations would

help downstream neurons to decode firing rates in this network.

However, changes in neural response properties over the sampling

period can make noise correlations important for decoding, even

in cases where they would not be important if responses were

stationary [38]. To properly evaluate the contribution of noise

correlations to decoding we must thus determine whether tectal

responses change with repeated stimulus exposure, and manipu-

late this contribution by altering neuronal interactions.

Visual Training Induces Neural Plasticity, Improving
Stimulus Encoding

During development, sensory experience drives dramatic neural

plasticity [3–5,18,20,26], but how these changes lead to improved

Figure 3. Tectal noise correlations influence network decoding.
(a) Recorded responses of two neurons (black and grey) in the same
tadpole to eight consecutive presentations of the same stimulus.
Responses vary in amplitude around their means (dotted lines). These
neurons were noise correlated: variations in amplitude were shared. (b)
Distribution of measured pairwise noise correlations (black dotted e)
taken over a 1-h stimulation period, and values expected if neurons were
independent (gray). Noise correlations were more positive (p,1025, t-
test) and more variable (p,1028; X2 variance test) than chance. (c)
Scatterplot of pairwise linear noise correlations measured in two
consecutive 30-min periods. Consecutive noise correlation measure-
ments are correlated (r = 0.41, p,1028; linear regression). (d) Distribution
of decoding errors under independent and noise correlation decoding of
actual response patterns (left) and with responses shuffled for each
stimulus type to remove noise correlations (right). Data from seven
tadpoles, 277 neurons (b,d), 384 stimulus presentations (c), 192 stimulus
presentations each 30 min. Error bars denote SEM. *p,0.05; **p,0.01.
doi:10.1371/journal.pbio.1001236.g003

Rewiring of a Developing Brain Network during Visual Learning
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circuit function is not understood. To investigate how stimulus

encoding changes in response to visual experience, we presented

tadpoles the eight motion stimuli of different directions repeatedly

over 2 h. This training improved sensory responses over time,

increasing dynamic range and response reliability (Figure 4a, 4f, and

4g). Training also shifted neural response properties, increasing the

proportion of neurons showing combined orientation and direction

selectivity and decreasing the proportion showing only direction

selectivity (Figure 4e). Encoding was enhanced, evident from

increased stimulus mutual information conveyed by both individual

neurons and neuron pairs (Figure 4b and 4c), and improvement in

both independent and noise-correlation–based decoding of whole-

network activity (Figure 5a). To further demonstrate that visual

experience modifies network encoding over time, we split the

stimulation period into two 60-min epochs (‘‘early’’ and ‘‘late’’), and

built decoders for each using firing statistics from either the same or

the opposite epoch. Both independent and noise correlation

decoding improved from early to late epochs, and decoding

performance decreased when using firing statistics from the opposite

epoch (Figure 5c), demonstrating that experience changes how

developing brain networks encode stimuli.

NMDAR Blockade Does Not Alter Basal Neuronal or
Network Responses

NMDARs act as molecular detectors of correlations between

pre- and postsynaptic firing and are known to mediate several

types of functional [3,25,39] and structural [20,21,40,41] plasticity

in tectal neurons. To investigate NMDAR roles in shaping

neuronal correlations and network-level encoding, we tested

tadpoles treated with MK-801, a noncompetitive NMDAR

antagonist. MK-801 was infused directly into the tectum and

applied to tadpole bath, conditions we find to completely block

Figure 4. Effects of visual training on single-neuron response properties. (a) Tuning curve dynamic range, the fraction by which a neuron’s
firing changes in response to different stimuli during early and late epochs. (b,c) Stimulus mutual information conveyed by single neuron (b) and
neuron pair (c) firing patterns. Upper asterisks denote difference in the change with treatment. Lower asterisks denote significant change across
epochs (paired t-test). (d) Evoked firing rates in control (black) and MK-801 treated (gray) tadpoles during first hour of stimulation. Each point
corresponds to a single tadpole; error bars denote standard deviation across neurons within a given tadpole. MK-801 does not acutely affect evoked
firing rates (t-test, p = 0.61). (e) Proportion of neurons showing direction (yellow), orientation (blue), both (green), or neither (red) selectivity in control
(top) and MK-801–(bottom) treated tadpoles, in the first (left) and second (right) hour of stimulation. Asterisks denote significant change across
epochs (paired t-test). (f,g) Mean normalized amplitude (f) and response reliability (g) over the course of visual training (black). Reliability increased
with training (ANCOVA, p,0.01). Neither measure was affected by MK-801 (gray) (ANCOVA, p.0.05). Reliability is the proportion of evoked responses
with amplitude larger than the median spontaneous firing rate. Error bars denote SEM. *p,0.05.
doi:10.1371/journal.pbio.1001236.g004

Rewiring of a Developing Brain Network during Visual Learning
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NMDAR synaptic currents evoked by optic nerve stimulation in

vivo (Figure S7). With calcium imaging, we first investigated the

acute effects of MK-801 on neuronal firing and network

performance. NMDAR blockade did not affect basal neuronal

firing rates (Figure 4d), or the relative proportions of different types

of motion stimulus selectivities across neurons (Figure 4e). MK-801

treatment also did not alter basal network encoding performance

(Figure 5b) or neuronal reliability (Figure 4g). Previous studies

have also found that NMDAR antagonism does not acutely affect

tectal motion responses [4], and MK-801 does not acutely affect

cortical response properties [42], or temporal properties of evoked

tectal firing [19]. Consistent with these studies, we find that

NMDAR currents do not contribute strongly to visually evoked

responses in this system.

NMDARs Mediate Experience-Driven Network Plasticity
To investigate NMDAR effects on experience-dependent

network plasticity, we performed the previously described visual

training protocol using moving bar stimuli of eight directions with

tadpoles treated with MK-801. We find that distinct components

of experience-dependent plasticity are NMDAR dependent and

independent. In contrast to untreated tadpoles, training did not

shift the proportions of different response selectivities in MK801-

treated tadpoles (Figure 4e). MK-801 reduced improvement in

whole-network encoding, dynamic range, and stimulus informa-

tion of neuron pairs, but not in single-neuron stimulus information

(Figure 4a–4c and 5a). MK-801 also blocked increases in decoding

performance when the stimulation period was split into early to

late epochs (Figure 5c). In fact, correlation-based decoding with

MK-801 worsened from early to late epochs when decoded with

each epoch’s own training statistics, suggesting a strong role for

NMDARs in changes to network interactions and their effects on

population encoding.

Further aspects of network plasticity observed with training

were NMDAR-independent. MK-801 treatment did not affect the

time course of neuronal reliability or mean response amplitude

(Figure 4f and 4g), and a significant portion of training-induced

increases in mutual information and dynamic range remained in

MK-801 treated tadpoles (Figure 4a–4c).

Training-Induced Plasticity and Encoding Improvement
Are Stimulus Specific

To determine whether improvements in network function are

specific to the training stimuli, we trained tadpoles for 1 h with

four of the eight motion stimuli (0u, 45u, 90u, 135u), followed by

probing with the full eight stimuli (0u–360u), and compared

network responses to trained versus untrained stimuli. Training

improved decoding of the trained stimuli only for both the

correlation-based (Figure 6a) and independent (unpublished data)

decoders. Relative to naive tadpoles, training with four stimuli

increased the proportion of neurons showing combined orienta-

tion and direction selectivity and decreased the proportion of

responsive neurons showing no selectivity (Figure 6b). Among

direction-selective neurons, direction of selectivity favored the

center of the trained directions (Figure 6c and 6d). Dynamic range

was higher in response to trained stimuli, while reliability and

evoked firing were not significantly different between trained and

untrained stimuli (unpublished data). These results demonstrate

that training-induced changes are stimulus dependent and favor

encoding of the specific visual stimuli experienced.

Training Induces Anatomically Structured Network
Plasticity

Imaging a contiguous population of neurons allows us to relate

experience-dependent plasticity to anatomical structure [5].

Similar to visual cortex [29], optic tectum has a precise functional

architecture [18], where nearby neurons exhibit similar receptive

fields and thus strong signal correlations (Figure 2). We also find

that nearby neuron pairs show higher noise correlations and a

significant association between stimulus and noise correlation,

consistent with locally shared input or direct connectivity. We

tracked these measures across epochs of visual training among

nearby (,25 mm), moderate (25–50 mm), and distant (50–75 mm)

neurons. Tectal somata have diameters of 10–15 mm. These

measures changed in a distance-specific manner as visual training

improved network encoding. Visual training increased signal

correlations among nearby but not more distant neuron pairs

(Figure 7a). Visual training also increased nearby noise correla-

Figure 5. Training induces NMDAR-dependent improvement of whole-network encoding. (a) Time course of noise-correlation–based
(red) and independent (blue) decoding performance. Light curves, improvement is blocked by MK-801. Bars denote early and late epochs. Decoding
improvement is the decrease in decoding error relative to the independent decoder at the first timepoint. Both decoders improved from early to late
epochs in control, but not MK-801–treated tadpoles (paired t-tests). (b) Decoding error of control (left, blue) and MK-801–treated (right, red) tadpoles
over first hour of stimulation. Lighter shades denote decoding using the optimal independent decoder, darker shades mark noise correlation-based
decoding. (c) Improvement, relative to the early epoch, of decoders trained on data from early (left two panels) or late (right two panels) epochs, used
to decode early or late neuronal firing patterns. Performance decreased when decoding the epoch on which the decoder was not trained (center two
panels; ANOVA). Asterisks in rightmost panel denote significant difference from corresponding value in leftmost panel. Error bars denote SEM.
*p,0.05; **p,0.01.
doi:10.1371/journal.pbio.1001236.g005
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tions and decreased distant ones (Figure 7b). Larger signal and

noise correlations for nearby neurons indicate increased local

redundancy with training, likely because of strengthening of

shared stimulus inputs. The decrease in distant noise correlations,

however, suggests that encoding strategies thought to improve

mature circuit performance [8,9], such as network decorrelation,

can result from plasticity during early experience in vivo. These

results show that visual training leads to anatomically structured

network refinement.

NMDAR blockade prevented this refinement and led to

degradation of fine-scale functional organization over time. Here,

signal correlations were increased equally for all neuron pairs,

regardless of spatial distance, reducing receptive field diversity

across the tectum (Figures 7c and 8b). MK-801 also blocked

training-induced changes in noise correlations (Figure 7d), sug-

gesting that development of efficient network correlation structure

is NMDAR-dependent. The loss of spatial organization we

observe with MK-801 over time is consistent with lack of

competition between locally represented and distant inputs in

the absence of NMDAR transmission.

MK-801–induced changes in plasticity were recapitulated by

training with the four-stimulus subset. Tuning curve similarity was

greater over untrained stimuli than trained stimuli across

moderate and distant, but not nearby, neuron pairs (Figure 7e).

Networks showed strongly decreased noise correlations to trained

stimuli, while noise correlations to untrained stimuli increased

above levels in naive tadpoles. These results show that training

with a set of stimuli affects the encoding of unpresented stimuli,

and stimuli can compete in determining network connectivity

(Figure 7f) [40,43,44].

Coordination between Neuronal Clusters Supports
Experience-Dependent Encoding Improvement

Visual training induces remarkable spatially divergent plasticity.

On one hand, training-induced encoding improvement is

associated with lower signal and noise correlations among distant

neurons. On the other hand, local plasticity opposes this trend,

increasing redundancy between nearby neurons over the course of

visual training. To determine how these opposing forces contribute

to overall network improvement, we grouped neurons according

to receptive field so as to monitor stimulus decoding within clusters

of similarly responding neurons over time (see Methods).

Consistent with our measurements of tectal signal correlations,

functionally defined groups showed significant spatial clustering

(Figure S8). Interestingly, decoding success of single clusters did

not change with training (Figure 8c), suggesting that interactions

between clusters may be more important in supporting overall

encoding improvement. To understand how well clusters interact

to encode information, we measured intercluster cooperation,

which we defined as the decoding performance of two clusters

taken together minus the maximum decoding performance of

either taken alone. Cooperation is high when clusters encode

distinct information or encode information synergistically [10],

and low when clusters encode the same information. Notably,

cooperation increased with visual training in control tadpoles,

while training during NMDAR blockade decreased cluster

Figure 6. Training-induced changes are stimulus-specific. (a) Decoding error for each direction in tadpoles trained with four of eight stimuli
(0–135u), using the correlation decoder. Gray, decoding error of naive control tadpoles. Training-induced decoding improvement is specific to the
trained stimuli. (b) Proportion of neurons showing direction (yellow), orientation (blue), both (green), or neither (red) selectivity in tadpoles trained
with four stimuli. Asterisks denote significant difference from corresponding proportion in naive control tadpoles. (c) Angle histogram of preferred
directions of direction-selective neurons in tadpoles trained with four stimuli. Points are the proportion of neurons with center directions falling
between adjacent stimulus directions. Pink shading indicates the trained directions. Responses strongly favored the center of the trained directions
(one-sample t-test, p,1025). Gray dotted line indicates preferred directions in naive control tadpoles. (d) Map of direction selectivity in a tadpole after
training with four stimuli. Black circles mark neurons showing significant direction selectivity. Colored arrows mark preferred directions. Error bars
denote SEM. (a–c) n = 3 tadpoles (152 neurons). *p,0.05; **p,0.01.
doi:10.1371/journal.pbio.1001236.g006
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cooperation (Figure 8d). To further investigate how plasticity in

neuronal interactions contributes to changes in encoding perfor-

mance, we again removed the contribution of noise correlations by

shuffling neuronal responses prior to decoding (as in Figure 3e).

Shuffled decoding accuracy did not change from EARLY to

LATE epochs, even as nonshuffled decoding accuracy increased in

control tadpoles and decreased in MK-801–treated tadpoles

(Figure S9), consistent with a role for neuronal interactions in

driving the changes in network performance we observe. These

results show that improvements in the brain’s ability to represent

visual stimuli are not due only to improved encoding in single

neurons or local groups, but are driven strongly by changes in the

functional organization of the sensory network.

Discussion

The functional organization of the brain contributes to effective

neural processing, and neurons can coordinate or compete to

encode distinct stimulus dimensions [11,13,45]. We find that

developmental plasticity in response to visual experience estab-

lishes such organization in the optic tectum (Figure 9). This

plasticity strengthens divisions between microarchitectural brain

regions specialized to encode distinct stimuli that the organism

experiences. Visual training improves both individual neuron and

network response properties, but single-neuron changes only

weakly impact network performance. This weak reliance on single

neurons likely arises because the tectal network is organized in

local receptive field clusters that exhibit high redundancy;

information gained from improved fidelity in any individual

neuron tends to already be available from other nearby neurons.

Our results show that the functional organization of the network

plays a larger role in the overall improvement of population

encoding with training. This organization consists of specialization

by distinct groups of neurons to convey distinct information, as

training drives distant neurons to become more independent while

strengthening local redundancy. This spatially driven plasticity

arises from forces acting to increase or decrease functional

connectivity in the tectum on different spatial scales.

Spatial clustering of functional properties is a common feature

in the brain [3,5,26,29], which can lead to redundant local

encoding. Redundancy is important in mitigating effects of

variability of individual neuronal responses. Because neuron

response fidelity is fundamentally limited by both physics [46]

and physiology [47,48], redundant encoding by groups can be

more practical than decreasing variability in single neurons.

Moreover, response properties in a given brain volume are limited

by the availability of presynaptic partners, as each neuron must

search its local environment for appropriate connections. In

tectum, prominent inputs are likely to be shared by nearby

neurons because of the localized arborization of retinal ganglion

cell axons [40], and plasticity that strengthens those inputs thus

promotes local redundancy. Finally, local similarity can make

wiring of developing networks more economical [49], as neurons

responding to a particular stimulus should then receive inputs from

a restricted anatomical region. Learning-associated functional

clustering and correlation changes similar to those described here

have been described in mouse motor cortex [26], raising the

possibility that common constraints drive functional optimization

across network structures and functions.

Measurement of single-trial firing rates enables monitoring of

redundancy and noise correlations in large populations of tectal

neurons. We found that noise correlations can be repeatably

measured and are altered by training in an experience- and

NMDAR-dependent fashion. These results show that two-photon

calcium imaging can be used to investigate shared connections

across contiguous brain regions and how these change in vivo.

However, the anatomical substrates underlying tectal noise

correlation plasticity remain unclear, since noise correlations

could arise either from shared retinal inputs or intratectal

connections. Plasticity in noise correlations may indicate formation

and elimination of these connections or alteration of synaptic

strengths. We found that accounting for noise correlations

improves decoding of tectal population activity, but this effect

could be due to changes in neural activity patterns over the

stimulation period [38]. However, the specific effects of NMDAR

Figure 7. Training strengthens clustering of receptive fields
and network correlations. (a–d) Tuning curve similarity (a,c) and
mean noise correlation (b,d) of neuron pairs binned by spatial distance,
during early (teal) and late (purple) epochs, in control (a,b) and MK801-
treated (c,d) tadpoles. (e,f) Tuning curve similarity (e) and noise
correlations (f) in tadpoles trained with four stimuli (0u–135u), binned by
distance, in response to trained (orange) and untrained (yellow) stimuli.
(f) Shaded area highlights the range of plots in (b,d). Noise correlations
to untrained stimuli were significantly lower than in naive control
animals (p,1025, two-way ANOVA) and those to trained stimuli were
significantly higher than in naive controls (p,1025, two-way ANOVA).
Error bars denote SEM. Control, n = 7 tadpoles (277 neurons), MK801,
n = 7 tadpoles (255 neurons) (e,f) n = 3 tadpoles (152 neurons). *p,0.05;
**p,0.01.
doi:10.1371/journal.pbio.1001236.g007
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blockade on noise correlation-based decoding with training

suggest that noise correlations are indeed important for decoding

tectal activity (Figures 5c and S9). Despite their importance to

decoding, we found that the presence of noise correlations does

not improve network encoding. The reduction of correlations

typically enables networks to convey more information [9].

Indeed, we found that artificially eliminating noise correlations

in network activity data increased decoding performance.

Networks whose function is limited by the number of neurons

available for encoding should thus benefit from decreased noise

correlations. Consistent with this prediction, we found that distant

network correlations decrease with training in a stimulus-specific

manner, as encoding of those stimuli improves. Changes on these

larger spatial scales, spanning functional clusters in the tectum,

underlie the overall improvement of network encoding with

training. Our results show that spatial refinement of noise

correlations occurs during experience-dependent plasticity, and

changes to such network-level properties are important to the

development of tectal function with training.

We find that visual training with motion stimuli induces

extensive plasticity in the tectum, distinct components of which

are NMDAR dependent or independent. Consistent with previous

studies [4,19,42], we find no effect of NMDAR blockade on basal

motion response properties in tectum. We found that NMDAR-

independent mechanisms mediate training-induced increases in

reliability and partly mediate improvements in dynamic range,

single-neuron mutual information, and neuron-pair mutual

information. NMDAR blockade does not completely abolish

tectal plasticity [3], and NMDAR-independent plasticity has been

described in other systems [50]. However, NMDAR blockade has

dramatic effects on coordination of plasticity across the network

and components of single-neuron plasticity. When NMDARs are

blocked, visual training fails to induce spatially structured changes

in tectal network architecture, and NMDAR-independent plastic-

ity drives neurons toward common receptive fields over time. This

progressive loss of network organization prevents training from

improving whole-network performance. Our findings suggest that

NMDARs are essential to coordinated experience-dependent

network plasticity by (1) mediating spatial refinement of network

connections, leading to localized redundancy and distant correla-

tion reduction, and (2) promoting receptive field diversity and

preventing loss of underrepresented receptive fields even as local

similarity increases.

Results from training with a restricted stimulus set suggest that

competition between synaptic connections underlies network

changes in response properties and noise correlations. Training

with a subset of stimuli dramatically increased the proportion of

responsive neurons with selectivity towards the four stimuli

Figure 8. NMDAR-dependent coordination between clusters supports network encoding improvement. (a) Preferred directions of
example control (top) and MK801-treated (bottom) tadpoles during early (left) and late (right) epochs. Scale bar = 20 mm. (b) Receptive field diversity
across the tectum during early and late epochs, in untreated (black) and MK801-treated (gray) tadpoles. Diversity decreased with training in MK-801–
treated tadpoles (paired t-test, p,0.05). (c) Mean decoding error of independent (blue) and correlation-based (red) decoding of single clusters during
early and late epochs, in untreated and MK801-treated (lighter shades) tadpoles. (d) Mean decoding cooperation (decoding performance of two
clusters taken together minus the maximum decoding performance of either taken alone) during early and late epochs, in untreated and MK801-
treated tadpoles. Cooperation increased in control tadpoles and decreased in MK-801 treated tadpoles with training (paired t-tests). Number of
clusters: untreated, n = 29; MK801, n = 25 clusters per epoch in seven tadpoles. Error bars denote SEM. Control, n = 7 tadpoles (277 neurons); MK801,
n = 7 tadpoles (255 neurons). *p,0.05; **p,0.01.
doi:10.1371/journal.pbio.1001236.g008

Rewiring of a Developing Brain Network during Visual Learning

PLoS Biology | www.plosbiology.org 9 January 2012 | Volume 10 | Issue 1 | e1001236



presented, showing that motion-responsive tectal neurons can alter

their preferred directions with training, and that stimuli compete

for representation by a limited pool of tectal neurons. Further-

more, decreases in noise correlations over the four trained stimuli

were accompanied by increases over the untrained stimuli,

showing that improvements in stimulus representation can occur

at a cost to opposing receptive fields. Training with four stimuli

also reduced noise correlations across all spatial distances more

dramatically than training with the full eight stimuli, showing that

more specific training elicits stronger network plasticity, and

suggesting that receptive fields compete for efficient representation

by the network.

A number of competitive mechanisms mediated by NMDARs

could support the structured plasticity we observe. These

mechanisms include removal of axonal projections from tectal

regions dominated by opposing axons [40], spike timing-

dependent plasticity [25] shown to intrinsically mediate compe-

tition between synaptic inputs [51], and NMDAR-dependent

metaplasticity [3] that mediates competition by altering plasticity

thresholds according to a neuron’s overall input rate. Our results

demonstrate a role for NMDAR-mediated plasticity mechanisms

such as these in experience-driven network refinement.

For developing neurons to form functional networks, each

neuron must possess learning mechanisms that change its response

properties to ultimately improve whole-network performance.

Optimal changes depend on both the specific stimuli encountered

and the response patterns of other neurons throughout the

network [8,9,52]. Our findings show that both of these factors

guide NMDAR-dependent plasticity induced by structured visual

input in the awake, developing brain.

Methods

Animal Rearing Conditions
Freely swimming albino X. laevis tadpoles were reared in 0.16

Steinberg’s solution (16Steinberg’s in mM: 10 HEPES, 58 NaCl,

0.67 KCl, 0.34 Ca(NO3)2, 0.83 MgSO4, [pH 7.4]) and housed at

room temperature on a 12-h light/dark cycle. Experiments were

conducted with stage 50 tadpoles in accordance with the Canadian

Council on Animal Care guidelines and were approved by the

Animal Care Committee of the University of British Columbia

Faculty of Medicine.

Imaging
Oregon Green BAPTA-1 AM (Molecular Probes) was pressure

injected into the optic tectum as described previously [3]. 1 h after

injection, tadpoles were placed in a bath containing 4 mM

pancuronium dibromide for 7 min, then placed in the imaging

chamber and immobilized with agar. The imaging chamber was

perfused with oxygenated 0.16 Steinberg’s solution during

imaging. The region imaged was determined by anatomical

landmarks and was roughly 200 mm below the surface of the

tectum. Images were acquired at 5 Hz using a two-photon laser

scanning microscope adapted from an Olympus FV300 confocal

microscope (Olympus) and a Chameleon XR Ti:Sapphire laser

(Coherent) tuned to 910 nm. Images were acquired using a

6061.1NA water objective and encompassed a region of roughly

506150 mm.

Visual Stimulation
Stimuli were presented on the center of a 6-mm (1,0246768

pixels) LCD screen 7 mm from the surface of the left eye. The

screen was covered by a longpass filter to block bleed though of

stimulus light into detected fluorescence. Stimuli consisted of solid

dark bars with a thickness of 0.09 rad moving at 0.6 rad/s. The

edges of the stimulus region were obscured by a circular Gaussian

mask, so that the eight stimuli were identical except for rotation

and had identical intensity profiles over time. The contrast of

stimuli was chosen to be at the threshold of the tadpoles’ detection

ability, to better compare decoding performance across models

over the course of training.

Stimulus presentation and timing were controlled in MATLAB

using the Psychophysics Toolbox extensions [53]. Stimuli were

presented repeatedly with interstimulus intervals uniform random-

ly selected from the set (6, 7, 8, 9) s. Movies were acquired in 4-

min periods, with 1-min periods for microscope alignment

between movies, during which stimuli were shown but images

were not recorded. The order of presentation of stimuli was

randomized such that an equal number of each stimulus was

presented in each 4-min period, and the probability that any

stimulus followed any other stimulus was roughly equal over

stimulus pairs over the entire experiment.

Tadpoles were presented with one of two stimulus paradigms,

4STIM or 8STIM. Starting 1 h after dye loading, the 4STIM

Figure 9. Schematic of receptive field and noise correlation
plasticity for trained (red) and untrained (blue) stimuli. Tectal
neurons are represented as circles, circle color marks preferred direction
(red, down; blue, up), and dotted lines represent noise correlations.
Training with down direction increases and clusters receptive fields
oriented toward the trained stimuli and decreases long-distance noise
correlations (dashed lines). Receptive fields preferring untrained stimuli
(blue) are reduced, and noise correlations to these stimuli are increased
on all spatial scales. Note that noise correlations can differ across stimuli
and are not necessarily determined by neurons’ preferred directions.
doi:10.1371/journal.pbio.1001236.g009
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group was presented with a set of four stimuli corresponding to

one half of the stimulus space (0–135u) for 1 h, followed by 1 h of

the full stimulus space. The 8STIM group was presented with the

full stimulus space for 2 h. MK801-treated tadpoles received tectal

and ventricular microinjections of 20 mm MK801 after dye

loading.

Two-Photon Guided Patch Recording and Ca2+ Imaging
For simultaneous imaging and electrophyisiological recording,

loading and imaging of Ca2+ indicators were performed as

described above. Tadpoles’ heads were mounted in a clear acrylic

chamber and held in place by mesh, with tails free to allow

respiration. Patch pipettes (tip resistance 7 MOhm), filled with

tadpole extracellular solution (115 mM NaCl, 4 mM KCl, 3 mM

CaCl2, 3 mM MgCl2, 5 mM HEPES, 10 mM glucose,10 mM

glycine; [pH 7.2], adjusted with NaOH; osmolality 255 mOsm)

were inserted through the ventricle, approaching the tectum from

the medial side. Two-photon imaging was used to guide the

pipette tip to responsive neurons and gentle suction was applied to

achieve loose seals (80–200 MOhm) at which point action

potentials could be clearly discerned. We obtained loose patch

recordings at command voltages, which resulted in no net current

flow to detect endogenous activity with minimal effect on neuronal

firing properties [54]. Imaging and recording were performed

while stimulating the contralateral eye with brief flashes from a red

LED. Electrical recordings were acquired using an Axon

Instruments Axopatch 200B amplifier, digitized at 10 kHz using

a Digidata 1322A board, and recorded using pClamp 9 software.

Fluorescence Data Processing
Fluorescence data stacks were x–y aligned using Turboreg

(ImageJ, NIH) [55]. Experiments that showed vertical drift after

alignment were discarded (approximately one in four cases).

Custom-written software was used to identify and track regions of

interest (ROIs) for each cell over the course of each experiment.

Initial ROIs were formed on the basis of morphological

characteristics and temporal correlation and excluded cell edges,

ensuring no overlapping signal from neighbouring cells. ROIs

were then expanded, and these regions were refined and

fluorescence signal was denoised using iterated singular value

decomposition (SVD), where only pixels with common weighting

indicating a positive correlation with cell calcium concentration

were retained in successive SVD iterations. Pixels in the expanded

region were only retained if they predicted signal in the initial

ROI, and if they showed less correlation to overlapping ROIs than

the maximum correlation of any pixel in the initial ROI. Raw

fluorescence for each cell was the reconstructed time-varying mean

pixel intensity based on SVD weightings. The fluorescence time

series for each cell was then calculated as (F2F0)/F0. The time-

varying baseline fluorescence, F0(t), was fit for each cell using a

Kalman smoother implementing the Rauch-Tung-Striebel algo-

rithm [56]. The model used for the Kalman smoother consisted of

a signal with no velocity and Gaussian noise of constant amplitude

to model the slowly drifting baseline. The observation of F0 at each

timepoint was the minimum of the smoothed fluorescence trace in

a 10-s window around the timepoint, and the covariance was the

variance of the raw fluorescence trace within that window, to

reflect the confidence that the baseline was observed in that

window.

At this point, cells were excluded from the dataset: (1) If fewer

than 80% of pixels from the original morphological ROI had

common weighting in the SVD decomposition over 80% of the

duration of the experiment; this implied that the singular value did

not adequately track the calcium concentration of the cell, which

should always be positively correlated to fluorescence intensity. (2)

If the estimated signal-to-noise ratio for the calcium trace in the

cell was less than 1.

Spiking parameters for each cell, including the maximum

likelihood spike train, were fit using nonlinear state space methods

[30], with initial parameter estimates for spike amplitude, Ca2+
channel time constant, and saturation determined from 10-kHz

two-photon imaging line scan data acquired under the same

conditions, and fit to each cell using expectation-maximization.

After fitting, spike rate time series for each cell were temporally

aligned to each other on the basis of x and y position, to account

for the amount of time required to acquire a video frame. Because

this model can only place one spike per time bin, it is effective

when interspike intervals are consistently longer than the bin width

used for inferring spike timings. Over 92% of interspike intervals

in electrophysiological recordings during visual stimulation were

greater than the 50-ms bin width used for spike inference, and less

than 0.1% of time bins contained two spikes, with no bins

containing three.

Single-Neuron Properties
Temporal response curves for each stimulus type were

generated by averaging neurons’ firing rate in the temporal

vicinity of each stimulus over all stimulus presentations of that

type. Each neuron’s evoked response to each stimulus presentation

was the neuron’s mean firing rate between an onset and offset

latency after the stimulus, which were chosen to maximize the

variance of the neuron’s activity across stimulus types. Most

tadpoles showed potentiation of evoked responses over time (seven

of nine 8STIM; seven of nine 8STIM+MK801; three of five

4STIM). Tadpoles showing significant decrease of response

amplitude from the first to second hour of training were not

included in analyses.

Evoked responses for each neuron were normalized to their

mean over each 4-min imaging period to ensure that any changes

in overall measured activity would not affect subsequent analyses.

Tuning curves were calculated as the mean evoked activity in

response to each stimulus over all imaging periods within an epoch

of interest. Dynamic range of neuronal tuning curves was defined

as the mean absolute deviation of the normalized tuning curve

from its mean, 1. Dynamic range is thus the average fraction by

which firing rate is altered in response to different stimuli. To

compare trained and untrained stimuli in Figure 6, dynamic range

was calculated in the same way over each set of four stimuli.

Each neuron’s baseline firing rate during each 4-min movie was

defined as the median of its spiking rate binned at 200-ms

intervals. The 5-s period following each stimulus presentation was

excluded from baseline estimation. Neuron reliability in response

to each stimulus type was defined as the fraction of stimulus

presentations to which the neuron responded with a firing rate

greater than baseline.

Orientation and direction selectivity were measured in the

manner of Zhang [57]. The centers of the resulting orientation

and direction curves, as plotted in Figure 2, were determined by

fitting a cos2 or angular Gaussian function, respectively. Neurons

were considered significantly selective if the amplitude of these fits

was significantly different from 0, with variability in initial

measurements taken into account. The preferred overall directions

plotted in Figure 8 were determined by the 2-D vector sum of

neuron-tuning curve values to each direction. The direction of the

resulting vector was the preferred orientation.

Single-neuron mutual information is the mutual information

between a single neuron’s responses and the stimuli, corrected for

bias because of limited sample size [58]. For the calculation of
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mutual information and decoding, evoked activities were dis-

cretized into five bins for each neuron, with each bin containing an

equal number of samples.

Network Properties
Neuron-pair mutual information is the mutual information

between a bivariate neuronal activity distribution and the stimuli.

p-Values for bivariate mutual information were estimated by

generating random samples with the same number of observations

from the independent distribution having the same single-neuron

marginal probabilities.

Noise correlation was measured as the correlation between the

responses of a pair of neurons to a single stimulus type. With the

exception of results presented in Figure 3b and 3c we use mutual

information between the two neuron’s responses as our measure of

correlation, so as not to limit our investigation to linear

correlation. In Figure 3b and 3c linear correlations were used to

illustrate that these correlations are positive and the nature, not

merely the degree, of the correlation is stable.

Tuning curve similarity was defined as the Pearson correlation

between tuning curve values across stimuli. To better detect shifts

in similarity and because similarity differed across imaging regions,

initial similarity was normalized through mean subtraction in each

tadpole.

Receptive field diversity is a measure of how well the tuning

curves of observed neurons cover the full space of possible

receptive fields. We defined this as the variance, across neurons, of

tuning curve amplitudes to a given stimulus, summed over all

stimuli.

Cooperation in cluster decoding was defined as the decoding

performance of two groups taken together minus the maximum

decoding performance of either taken alone. Decoding perfor-

mance is the negative of the mean classification error of the

decoder, in degrees. To better display shifts in decoding success

with training and under different decoding conditions, decoding

performance in Figure 5a and 5c was normalized to initial

decoding success of the independent model in each tadpole.

Decoding Algorithms
Because we do not know the methods that downstream neurons

use to decode network information, we build ‘‘optimal’’ decod-

ers—which calculate stimulus probabilities as accurately as

possible given an underlying model—so as to measure the overall

encoding capability of the network. Decoding of network

responses consists of assigning a probability P(S=R) that each

stimulus (S) was presented, given the network response vector

R~½r1,rs,:::,rn�, where each ri is the activity of neuron i. The most

common approach to this task is to calculate the inverse

distribution, P(R=S), and use Bayes’ rule to obtain the desired

result:

P(S=R)~
P(R=S) � P(S)

P(R)
Bayes0 Ruleð Þ

Maximum a posteriori (MAP) decoding consists of identifying the

peak of this distribution, useful for categorical classification. These

probability distributions are hard to estimate from biological data

because the number of neurons, the dimensionality of R, is high

compared to the number of samples available. A simplifying

assumption that is often made is to assume that the firing rates of

all neurons are conditionally independent given the stimulus S. In

this case, P(R=S)~Pi P(ri=S). This model requires fewer

observations to fit because it requires estimation only of the one-

dimensional distribution of ri for each stimulus. To perform

categorical classification that is sensitive to pairwise interactions

between neurons, we used a simple model that relies on the

pairwise conditional probability distributions P(ri,rj=S), which are

more easily estimated than the full distribution but can capture

more complexity than the independent model:

P(R=S)~
Pi,j P(ri,rj=S)

Z Pi P(ri=S)N
ð1Þ

where

Z~
X

k

Pi,j P(ri,rj=Sk)

Pi P(ri=Sk)N

Where the denominator in (1) is a correction for the overrepre-

sentation of single-neuron probabilities in the product of pairwise

tables. The optimal value of the parameter N depends on the size

of the network and its correlation structure. In practice, we

selected N a priori on the basis of a linear regression of the optimal

N against sample size in separate test data. A separate regression

for N was used for cluster decoding presented in Figure 8. A prior

probability was added to both models to assure that under-

sampling would not result in zero probability being assigned to a

stimulus-response pair. Parameter settings, i.e., number of bins

and prior probability, were chosen to maximize absolute decoding

success under the independent model, but results were similar

under a wide range of parameter settings. Stimulus probabilities

generated by both models were adjusted such that long-run

probabilities of all stimuli given the training data were equal.

Assuming sufficiently large samples, this model performs

identically to the independent model when neuronal firing is

actually independent. For small deviations from independence,

consisting of increased probability of a single network pattern, it

categorizes stimuli more accurately than the independent model.

This decoder outperformed the independent model on virtually all

real data we collected, and in artificial datasets of size 3–150

neurons having small pairwise correlations and varying sample

sizes (unpublished data). Notably, this model does not make any

assumptions about the nature of the bivariate relationships within

the network, unlike parametric models such as copulas [59], and

allows for graded activity, unlike the Ising model [60].

In all cases, statistics for decoding were calculated from a

training set separate from the test set to be decoded, using a

‘‘leave-one-out’’ strategy, in which each short segment (eight

stimuli) of activity was decoded using statistics calculated on the

basis of all other stimulus presentations in the epoch of interest.

For Figure 5c, decoders were trained either on the same epoch

being decoded, using a leave-one-out strategy, or all stimulus

presentations in the opposite epoch.

Decoding error was defined as the absolute difference between

the MAP estimate and the actual stimulus presented, measured in

degrees. Decoding improvement is change in decoding error, with

positive values representing a decrease in error. Decoding

improvement in Figure 5 was measured relative to performance

of the independent decoder at the first timepoint.

Clustering
Clusters (Figure 8c and 8d) were initially formed using the

normalized cuts graph clustering algorithm [61] over neuron-pair

tuning curve similarity. This was followed by gradient descent to

generate groups of uniform size (nine neurons) having maximum

within-group similarity. Groups that did not reach a threshold
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value of within-group similarity were not included in decoding.

The group size was made uniform to better compare decoding

performance across groups. The number of neurons per group was

selected to maximize the difference between the minimum

pairwise within-group similarity and the maximum pairwise

across-group similarity over all datasets.

The median distance between pairs of neurons within these

functionally defined clusters (Figure S8) was used to measure

spatial clustering. These medians were compared to the boot-

strapped distribution of randomly generated ‘‘clusters’’ using the

same neuron positions for each tadpole.

Statistics
Except where mentioned in the methods and figure captions,

unpaired t-tests were used to compare mean values across

tadpoles.

Supporting Information

Figure S1 Methods for fluorescence data processing. (A)

Initial ROIs were identified automatically on the basis of

morphological properties and pixel-to-pixel correlations, with cells

automatically tracked from video to video. Cells not highlighted

drifted out of the imaging plane in one or more videos over the

course of the experiment. (B) Expansion of green bounded region

in (A). Morphological ROIs are conservative and do not overlap.

(C) ROIs are then expanded for spatial filtering using iterated

singular value decomposition. (D) Pixel weights indicating the

relative contribution of pixels to fluorescence signal reconstruction

for their respective cells. Brighter pixels indicate higher weighting.

(E) Time-varying baseline fluorescence (F0) was fit using a Kalman

filter smoother taking into account the amplitude of spiking to

estimate the accuracy of baseline estimates.

(JPG)

Figure S2 Correlation of optical and electrophysiologi-
cal firing rate measurements. Left, simultaneous recording

of somatic fluorescence (DF/F0, top) and action potentials (green)

in response to full field light stimuli of varying intensity, with actual

(gray) and inferred (black) firing rates in the 5 s following each

stimulus, for three different cells. Right, expanded voltage traces

for the regions marked in red at left. Pink shading marks time of

stimulus. The electrical transients bounding the stimulus period

are clipped. Colored dots mark individual action potentials, which

are magnified in the boxes at bottom.

(JPG)

Figure S3 Optical measures of firing rate are correlated
with electrophysiological measurements. Left, scatterplots

of number of spikes evoked by visual stimuli versus inferred firing

rate (b) measured optically. Evoked spikes refers to total number of

spikes evoked in the 5-s period following stimulus onset. Each

point represents a single stimulus presentation, and symbol colors

correspond to distinct neurons. All optical recording parameters

(duration, frame rate, optical setup) and fitting method for spike

inference were identical to experiments performed with optical

methods alone. Right, correlation between visually evoked firing

rates obtained from cell-attached recording and (left) inferred

firing rates or (right) peak DF/F0. Firing rate inference

outperformed peak DF/F0 (paired t-test, p = 0.001). n = 5 visually

responsive neurons.

(JPG)

Figure S4 Noise correlations differ across stimuli.
Distribution of magnitude of Fisher’s z (normalized to expected

SD) for all pairwise comparisons of noise correlation coefficients in

neuron pairs. Dotted line represents the null distribution (normal

with unit variance). Observed noise correlations between neuron

pairs vary across stimuli 14% more than expected by chance if

they were actually equal (p,10212; Chi-square variance test).

(JPG)

Figure S5 Noise correlation encoding. Responses of two

example neurons to two stimulus types. Arrows denote the two

stimulus directions plotted. As their single-neuron firing distribu-

tions (top and right) indicate, neither neuron taken alone

significantly discriminates the two stimuli. However, because noise

correlations differ for the stimuli, the joint firing distribution

(center) does discriminate them: when presented with a left moving

stimulus (blue), neuron 2 is strongly active only when neuron 1 is

inactive (negatively correlated); when presented with a right

moving stimulus (red), neuron 2 is strongly active only when

neuron 1 is strongly active (positively correlated). As discussed in

the text, such encoding is not prominent in the tectum.

(JPG)

Figure S6 Receptive field similarity and noise correla-
tion are associated. (a) Scatterplot of signal correlation versus

mean linear (Pearson’s) noise correlation between tectal neuron

pairs. Black points fall outside two SDs of mean of the null

distribution. (b) Quantification of (a). Mean signal correlation

binned for extreme (.two SDs from the mean) and moderate

noise correlations. Values are mean 6 standard error of the mean

(SEM).

(JPG)

Figure S7 The noncompetitive NMDA receptor antago-
nist MK-801 blocks evoked NMDA receptor currents in
Xenopus tectal neurons in vivo. Whole cell patch clamp

recordings were performed at a holding potential of +55 mV while

stimulating axonal inputs at the optic chiasm in the presence of

CNQX (10 m) to block AMPA receptor currents. Addition of

20 M MK-801 caused a progressive blockade of evoked synaptic

NMDA receptor mediated currents. Colors denote recording trials

before (black), and the first, tenth, and 29th stimulation trials after

MK-801 application, with a 10-s interstimulus interval. Complete

blockade of NMDA receptor-mediated currents were observed in

a total of five neurons recorded from five tadpoles.

(JPG)

Figure S8 Neuron receptive fields are spatially clus-
tered. Median neuron-neuron distance within groups generated

by the clustering algorithm, which is based only on tuning curves.

This is the median distance between pairs of neurons belonging to

the same group, averaged across all groups in a given tadpole.

Values are the mean 6 SEM over n = 7 tadpoles (29 clusters).

Dotted line is the mean value of this measure across 1,000

randomly selected ‘‘clusters’’ in each tadpole using the same

neuron positions that were included in the real clusters. Neurons

with similar receptive fields are closer to each other than expected

by chance (two-sample I-test). *p,0.05; **p,0.01.

(JPG)

Figure S9 Performance of shuffled decoders does not
change with training. Performance of decoders trained and

tested on shuffled (blue) or unshuffled (orange) data during early

(left) and late (right) epochs in control (top) and MK-801–treated

(bottom) tadpoles. To generate shuffled data, responses to each

stimulus type were shuffled for each neuron, a procedure that

removes noise correlations but maintains neuronal tuning curves.

Asterisks denote significant difference relative to the same decoder

in the early epoch (paired t-test). **p,0.01.

(JPG)
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