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Functional Clustering Drives Encoding Improvement in a
Developing Brain Network during Awake Visual Learning
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Abstract

Sensory experience drives dramatic structural and functional plasticity in developing neurons. However, for single-neuron
plasticity to optimally improve whole-network encoding of sensory information, changes must be coordinated between
neurons to ensure a full range of stimuli is efficiently represented. Using two-photon calcium imaging to monitor evoked
activity in over 100 neurons simultaneously, we investigate network-level changes in the developing Xenopus laevis tectum
during visual training with motion stimuli. Training causes stimulus-specific changes in neuronal responses and interactions,
resulting in improved population encoding. This plasticity is spatially structured, increasing tuning curve similarity and
interactions among nearby neurons, and decreasing interactions among distant neurons. Training does not improve
encoding by single clusters of similarly responding neurons, but improves encoding across clusters, indicating coordinated
plasticity across the network. NMDA receptor blockade prevents coordinated plasticity, reduces clustering, and abolishes
whole-network encoding improvement. We conclude that NMDA receptors support experience-dependent network self-
organization, allowing efficient population coding of a diverse range of stimuli.
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Introduction

The vertebrate brain exhibits intricate functional organization
at many different spatial scales, from cortical microcolumns
dedicated to processing specific receptive field properties, to large
domains such as somatotopic maps. It is thought that this
organization of neurons according to shared function optimizes
efficiency and effectiveness of neural processing. During develop-
ment, the structure [1,2] and function [3-6] of sensory neural
circuits are actively guided by both endogenous signals and
environmental stimuli. However, it is not well understood how
these changes lead to improved brain function.

Here we investigate how plasticity affects developing visual
system performance from the perspective of sensory encoding—
the representation of sensory stimuli by activity in populations of
brain neurons. Neuronal responses are inherently noisy and vary
across presentations of the same sensory stimulus, limiting how
much information can be encoded by a single neuron [7]. To
optimally encode environmental stimuli in the presence of noise
[8], sensory circuits must be organized to balance redundancy,
which makes network encoding less sensitive to neuronal noise,
with the ability to encode a diverse range of stimuli. In the absence
of noise, a given stimulus feature can be fully conveyed by a small
number of neurons, and to maximize efficiency, other neurons
should then encode different features. If neuronal responses are
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more variable, more neurons are required to reliably convey a
given feature. The optimal response pattern for each neuron thus
depends on the response properties of other neurons in the
network and the reliability of those responses.

Encoding is also affected by neuronal interactions. For example,
neuronal interactions may be organized to remove correlations
from the network’s input (decorrelation) [9], making the neural
code more efficient, and neuronal ensembles can synergistically
encode information not available from individual neurons [10].
Strategies that coordinate neuronal interactions and optimize
encoding have been identified in artificial networks under various
conditions [8], and encoding schemes have been described and
evaluated in mature neural circuits [11-14]. Further studies have
shown that adaptation of neuronal receptive fields [15] and
correlations [16] can tune encoding in response to changes in
sensory stimuli in vivo. However, little is known about how
encoding schemes arise during development or how they are
altered during early learning, when dynamically growing neural
circuits first wire themselves together. Evaluating network
encoding requires simultaneous observation of many neurons,
and understanding early network refinement requires monitoring
those networks over the course of learning and development.

The visual system of the X. laevis tadpole has been extensively
studied as a model of neuronal and neural circuit development
[1,3,4,17-21]. Transparent albino tadpoles allow minimally
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Author Summary

In the developing brain, sensory experience can exten-
sively re-wire neurons, determining both their shape and
function. It is thought that this early period of plasticity
improves the brain’s representation of sensory input. For
this plasticity to actually improve coding efficiency,
changes to individual neurons should be coordinated
across the brain to produce a network-level functional
organization. In this study, we measure such network-level
changes during visual learning in developing Xenopus
laevis (frog) tadpoles. By imaging neuronal calcium levels,
we track activity in over 100 neurons simultaneously to
observe changes in both single neurons and whole
networks during training. We find that the network
improves its representation of visual stimuli over time, by
forming spatial clusters of highly connected, similarly
responding neurons. Distant neurons, however, become
less connected. This organization improves the ability of
large groups of neurons, spanning multiple clusters, to
discriminate the trained stimuli. Finally, we show that
blockade of the NMDA receptor prevents this functional
organization and the improvement in the network’s
stimulus representation. Our study shows how develop-
mental plasticity can influence not only the proper
connectivity of the visual system, but also its coding
capacity.

invasive in vivo observation of rapid sensory circuit development,
from differentiation [22] to mature neurons driving behavioral
responses [23]. Studies in the developing brain have described
mechanisms controlling large-scale circuit patterning [24], fine-
scale morphogenesis [21], and rules by which synapses [25], single
neurons [4,18], and small groups of neurons [16] refine their
response properties with experience. However, it is largely
unknown how these developmental changes contribute to network
encoding performance, or how plasticity is coordinated across
neurons to produce functional large networks.

two-photon imaging
[3,5,18,20,23,26] to monitor network activity and plasticity during
early receptive field development in Xenopus tadpole optic tectum
[27] as we train the brain to respond to a set of visual motion
stimuli. Training causes stimulus-specific changes in evoked
neuronal responses and increases stimulus information conveyed
by neuronal firing. Decoding of network activity using computa-
tional models [28] becomes more accurate over the course of
visual training. Training induces spatial clustering of receptive
fields and correlations by increasing tuning curve similarity and
network interactions among nearby neurons and decreasing
interactions among distant neurons. Blockade of N-methyl-D-
aspartic-acid type glutamate receptors (NMDARSs) blocks spatially
graded plasticity, and prevents decoding improvement with
training. By comparing decoding in single clusters and groups,
we show that increasing network performance arises from
NMDAR-dependent improvement in encoding of stimulus
information across clusters, while encoding within single clusters
does not improve with training. We propose that NMDARs
support experience-dependent functional clustering, leading to
local redundancy and distant decorrelation, and promote receptive
field diversity by preventing loss of underrepresented receptive
fields. These results highlight contributions of network-level
organization to the performance of sensory systems in vivo and
identify mechanisms by which visual experience directs improve-
ment in whole-network function.

Here we wuse in vivo calcium
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Results

In Vivo Monitoring of Neuronal Firing Rates with Two-
Photon Calcium Imaging

In vivo two-photon calcium imaging allows simultaneous
monitoring of somatic calcium transients, induced by neuronal
firing, in hundreds of neurons in the vertebrate brain
[3,5,18,26,29]. We used this method to monitor correlated visually
evoked responses across the optic tectum, which requires that
firing-rate measurements are accurate on a single-trial basis and
not averaged across trials [28]. Optical readout of calcium
transients is hindered by drifting baseline fluorescence (F),
bleaching, and saturation, and involves fundamental tradeoffs
between imaging area and quality of signal. Moreover, the
relationship between action potentials and calcium levels is
complicated by the temporal dependence of calcium concentra-
tions on spiking history and nonlinearities in calcium influx [30].
To overcome these limitations and improve signal quality, we
developed techniques for automated video segmentation to track
cell boundaries on the basis of morphology and temporal pixel
correlations, spatial filtering to weight the contributions of pixels
within a given cell, and F, estimation using optimal linear methods
(see Methods, Figure S1). To extract firing rates from fluorescence
data we employed a spike inference algorithm, which takes into
account temporal dependence and nonlinearities in signal [30].

To assess the effectiveness of these methods for measuring
single-trial-evoked firing rates in the awake brain, we performed
in vivo loose seal patch clamp electrophysiological recordings to
monitor action potential spiking during simultaneous calcium
imaging and visual stimulation (Figures le and S2). We compared
firing rates obtained from electrophysiological recordings to two
measures of neuronal firing obtained from fluorescence data: peak
AF/Fy [3] and firing rates inferred from spike inference. Though
both measures showed significant correlations to actual firing,
inferred firing rates outperformed peak AF/F, in all neurons
recorded (Figure S3), possibly because burst durations and
mterspike intervals were long (Figure 1f), resulting in imperfect
summation of peak calcium currents. The relationship between
inferred firing rates and actual spike counts was linear (Figure S3),
showing that in vivo calcium imaging and spike inference is an
effective method for monitoring firing rate fluctuations in tectal
neurons.

We first used rapid two-photon imaging and firing rate
inference to characterize motion receptive fields in untrained
tadpoles. Motion stimuli consisted of dark bars moving over a light
circular background in each of eight directions (see Methods), with
low contrast so as to better detect improvements in neuronal
responses with subsequent training. We found that most motion-
responsive tectal neurons respond either symmetrically to pairs of
opposing directions (orientation selectivity, 59.1%*5.0% of cells;
mean * standard deviation [SD]), and/or specifically to a narrow
band of directions (direction selectivity, 66.3% *=11.1%). Neurons
responding to two opposite directions while strongly favoring one
direction can show both selectivities (36.7%%9.3%). Average
responses of individual neurons to each stimulus direction, called
tuning curves, show varying selectivity in a topographic organi-
zation (Figure 2). These results demonstrate the effectiveness of
two-photon imaging and spike inference in measuring receptive
fields across a contiguous brain network in vivo.

Tectal Network Responses to Visual Stimuli Exhibit Noise

Correlations Indicating Functional Interconnections
Besides the single-neuron properties described above, networks of

neurons often show correlations in their firing patterns. Neurons
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Figure 1. /n vivoimaging of evoked network activity in the unanesthetized developing brain. (a) Experimental setup. Motion stimuli were
presented to the left eye of awake, immobilized Xenopus tadpoles while imaging the right optic tectum. Neurons in the tectum (green circles) extend
dendrites to receive visual input from retinal ganglion cells (red) of the contralateral eye. (b) Transmitted light image of a tadpole brain seen through
the head. Green box, optic tectum. (c) Two-photon image of optical section corresponding to green box in (b). Tectum is loaded with OGB1-AM, a
calcium-sensitive dye. Red box corresponds to the region of tectum monitored in our experiments. (d) Two-photon image of a patched neuron in
awake tectum. (e) Simultaneous recording of somatic fluorescence (AF/F,, top) and action potentials (green) in response to full field light stimuli of
varying intensity, with actual (gray) and inferred (black) firing rates in the 5s following each stimulus. (f) Expanded voltage trace for
electrophysiological recording. Pink shading marks time of stimulus. The electrical transients bounding the stimulus period are clipped. Colored dots
mark individual action potentials, which are magnified in the boxes at bottom.

doi:10.1371/journal.pbio.1001236.g001

with similar tuning curves show “signal correlations” because their [11]. Noise correlations are thus correlations in neural firing
firing is driven by the same stimuli [11]. Notably, real neuronal patterns that are not explained by shared receptive field properties.
responses also show trial-to-trial deviations from their tuning curves. Noise correlations can be positive or negative, can differ across
When these trial-to-trial deviations are shared, because of common stimuli, and do not require signal correlations to be present. When
input or interconnections, neurons are ‘“noise correlated” (Figure 3a) trial-to-trial variability is not shared, neurons are independent.
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Figure 2. Orientation and direction responses in optic tectum. (a,d) Maps of direction and orientation selectivity in naive Xenopus tectum
obtained through rapid two-photon imaging and firing rate inference. Stimuli were dark bars moving over a light background for 600 ms in eight
directions. Black circles mark neurons that responded significantly to stimuli. Colored arrows mark preferred directions (a) and orientations (d) of
neurons showing stimulus specificity. Coronal optical section, rostrum to the left. Scale bar=20 um. (b,e) Tuning curves of a direction- (b) and an
orientation- (e) selective neuron highlighted in (a,d). Error bars denote SEM. (c,f) Average temporal response of the two neurons to each stimulus
direction. Colors match those in (b,e). Gray bar marks time of stimulus presentation. All measures calculated from n=48 stimulus presentations for
each of eight directions (1 h).

doi:10.1371/journal.pbio.1001236.g002
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Figure 3. Tectal noise correlations influence network decoding.
(@) Recorded responses of two neurons (black and grey) in the same
tadpole to eight consecutive presentations of the same stimulus.
Responses vary in amplitude around their means (dotted lines). These
neurons were noise correlated: variations in amplitude were shared. (b)
Distribution of measured pairwise noise correlations (black dotted e)
taken over a 1-h stimulation period, and values expected if neurons were
independent (gray). Noise correlations were more positive (p<<10~°, t-
test) and more variable (p<1078; X2 variance test) than chance. (c)
Scatterplot of pairwise linear noise correlations measured in two
consecutive 30-min periods. Consecutive noise correlation measure-
ments are correlated (r=0.41, p<<10~% linear regression). (d) Distribution
of decoding errors under independent and noise correlation decoding of
actual response patterns (left) and with responses shuffled for each
stimulus type to remove noise correlations (right). Data from seven
tadpoles, 277 neurons (b,d), 384 stimulus presentations (c), 192 stimulus
presentations each 30 min. Error bars denote SEM. *p<<0.05; **p<<0.01.

doi:10.1371/journal.pbio.1001236.9003

The contribution of neural correlations to network activity
patterns is difficult to determine when observing only individual
neurons or small groups [28]. Effects of pairwise interactions on
network encoding may only be detectable if many neurons are
taken into account, and even small pairwise interactions strongly
impact activity patterns when large networks are considered [31].
Thus, when neurons are significantly noise correlated, under-
standing network function requires observing activity in large
groups of neurons simultaneously [28,32]. Numerous studies have
investigated the presence of noise correlations in vivo [11,16,33],
their effects on encoding [8,12,34,35], and the consequences of
ignoring them [36]. Conclusions on these topics vary with the

@ PLoS Biology | www.plosbiology.org

Rewiring of a Developing Brain Network during Visual Learning

brain regions and response properties being studied. It is agreed,
however, that the presence and impact of noise correlations
determines the experimental and theoretical methods we must use
to understand neural information processing.

Examining multineuronal firing patterns elicited by motion
stimuli, we find that noise correlations are prominent in the awake
developing tectum (Figure 3b and 3c). Noise correlation measure-
ments were correlated over consecutive 30-min periods (Figure 3c).
Noise correlations varied across stimuli (Figure S4), and may thus
convey stimulus information not present in single-neuron responses
(Figure S5) [37]. Noise correlations between neurons tended to have
the same sign as signal correlations (Figure S6), indicating that many
tectal noise correlations reflect shared errors in similarly responding
neurons. These results demonstrate that tectal noise correlations can
be measured with two-photon calcium imaging and may have
consequences for information processing in this network.

Tectal Noise Correlations Can Encode Stimulus
Information, But Impair Overall Network Performance

Noise correlations can both help and hurt network stimulus
encoding, depending on how they vary with stimuli and the
response properties of neurons in the network [8,11,32,35,37].
Because noise correlations are prominent in developing tectum
and are stimulus dependent, we expected that knowledge of noise
correlations may be important for downstream neurons to extract
all available information from network activity patterns. However,
because we found that tectal noise correlations largely reflect
shared errors, we expected removal of noise correlations from
population activity would increase the amount of information
available in those firing patterns [7,8]. To test these predictions,
we constructed two model decoders: one that takes into account
pairwise noise correlations, and an optimal independent decoder,
which ignores noise correlations. A decoder is a model based on a
set of real network responses, which takes a second set of measured
activity patterns as input and predicts the inducing stimuli [28].
Decoders thus perform the same task as downstream neurons to
recover stimulus information from upstream network activity. By
building decoders, we can ask two distinct questions: Regarding
encoding—Would population encoding accuracy be altered if
noise correlations were somehow abolished? Regarding decod-
ing—Is knowledge of noise correlations necessary to fully decode
network activity from a population response? We find that
abolishing noise correlations by shuflling neurons’ responses across
trials of each stimulus improves accuracy of both decoders
(Figure 3e). This finding confirms that encoding would improve
overall if responses were uncorrelated, likely because the noise
correlations we observe are largely shared errors among similarly
responding neurons. Nevertheless, ignoring noise correlations in
actual data significantly reduced decoding accuracy (Figure 3e).
This outcome suggests that sensitivity to noise correlations would
help downstream neurons to decode firing rates in this network.
However, changes in neural response properties over the sampling
period can make noise correlations important for decoding, even
in cases where they would not be important if responses were
stationary [38]. To properly evaluate the contribution of noise
correlations to decoding we must thus determine whether tectal
responses change with repeated stimulus exposure, and manipu-
late this contribution by altering neuronal interactions.

Visual Training Induces Neural Plasticity, Improving
Stimulus Encoding

During development, sensory experience drives dramatic neural
plasticity [3-5,18,20,26], but how these changes lead to improved
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Figure 4. Effects of visual training on single-neuron response properties. (a) Tuning curve dynamic range, the fraction by which a neuron'’s
firing changes in response to different stimuli during early and late epochs. (b,c) Stimulus mutual information conveyed by single neuron (b) and
neuron pair (c) firing patterns. Upper asterisks denote difference in the change with treatment. Lower asterisks denote significant change across
epochs (paired t-test). (d) Evoked firing rates in control (black) and MK-801 treated (gray) tadpoles during first hour of stimulation. Each point
corresponds to a single tadpole; error bars denote standard deviation across neurons within a given tadpole. MK-801 does not acutely affect evoked
firing rates (t-test, p=0.61). (e) Proportion of neurons showing direction (yellow), orientation (blue), both (green), or neither (red) selectivity in control
(top) and MK-801-(bottom) treated tadpoles, in the first (left) and second (right) hour of stimulation. Asterisks denote significant change across
epochs (paired t-test). (f,g) Mean normalized amplitude (f) and response reliability (g) over the course of visual training (black). Reliability increased
with training (ANCOVA, p<<0.01). Neither measure was affected by MK-801 (gray) (ANCOVA, p>0.05). Reliability is the proportion of evoked responses

with amplitude larger than the median spontaneous firing rate. Error bars denote SEM. *p<<0.05.

doi:10.1371/journal.pbio.1001236.g004

circuit function is not understood. To investigate how stimulus
encoding changes in response to visual experience, we presented
tadpoles the eight motion stimuli of different directions repeatedly
over 2 h. This training improved sensory responses over time,
increasing dynamic range and response reliability (Iigure 4a, 4f, and
4g). Training also shifted neural response properties, increasing the
proportion of neurons showing combined orientation and direction
selectivity and decreasing the proportion showing only direction
selectivity (Figure 4e). Encoding was enhanced, evident from
increased stimulus mutual information conveyed by both individual
neurons and neuron pairs (Figure 4b and 4c), and improvement in
both independent and noise-correlation—based decoding of whole-
network activity (Figure 5a). To further demonstrate that visual
experience modifies network encoding over time, we split the
stimulation period into two 60-min epochs (“early” and “late”), and
built decoders for each using firing statistics from either the same or
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the opposite epoch. Both independent and noise correlation
decoding improved from early to late epochs, and decoding
performance decreased when using firing statistics from the opposite
epoch (Figure 5c), demonstrating that experience changes how
developing brain networks encode stimuli.

NMDAR Blockade Does Not Alter Basal Neuronal or
Network Responses

NMDARSs act as molecular detectors of correlations between
pre- and postsynaptic firing and are known to mediate several
types of functional [3,25,39] and structural [20,21,40,41] plasticity
in tectal neurons. To investigate NMDAR roles in shaping
neuronal correlations and network-level encoding, we tested
tadpoles treated with MK-801, a noncompetitive NMDAR
antagonist. MK-801 was infused directly into the tectum and
applied to tadpole bath, conditions we find to completely block

January 2012 | Volume 10 | Issue 1 | 1001236
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panels; ANOVA). Asterisks in rightmost panel denote significant difference from corresponding value in leftmost panel. Error bars denote SEM.

*p<0.05; **p<0.01.
doi:10.1371/journal.pbio.1001236.g005

NMDAR synaptic currents evoked by optic nerve stimulation in
vivo (Figure S7). With calcium imaging, we first investigated the
acute effects of MK-801 on neuronal firing and network
performance. NMDAR blockade did not affect basal neuronal
firing rates (Figure 4d), or the relative proportions of different types
of motion stimulus selectivities across neurons (Figure 4e). MK-801
treatment also did not alter basal network encoding performance
(Figure 5b) or neuronal reliability (Figure 4g). Previous studies
have also found that NMDAR antagonism does not acutely affect
tectal motion responses [4], and MK-801 does not acutely affect
cortical response properties [42], or temporal properties of evoked
tectal firing [19]. Consistent with these studies, we find that
NMDAR currents do not contribute strongly to visually evoked
responses in this system.

NMDARs Mediate Experience-Driven Network Plasticity

To investigate  NMDAR effects on experience-dependent
network plasticity, we performed the previously described visual
training protocol using moving bar stimuli of eight directions with
tadpoles treated with MK-801. We find that distinct components
of experience-dependent plasticity are NMDAR dependent and
independent. In contrast to untreated tadpoles, training did not
shift the proportions of different response selectivities in MK801-
treated tadpoles (Figure 4e). MK-801 reduced improvement in
whole-network encoding, dynamic range, and stimulus informa-
tion of neuron pairs, but not in single-neuron stimulus information
(Figure 4a—4c and 5a). MK-801 also blocked increases in decoding
performance when the stimulation period was split into early to
late epochs (Figure 5c). In fact, correlation-based decoding with
MK-801 worsened from early to late epochs when decoded with
each epoch’s own training statistics, suggesting a strong role for
NMDARSs in changes to network interactions and their effects on
population encoding.

Further aspects of network plasticity observed with training
were NMDAR-independent. MK-801 treatment did not affect the
time course of neuronal reliability or mean response amplitude
(Figure 4f and 4g), and a significant portion of training-induced
increases in mutual information and dynamic range remained in
MK-801 treated tadpoles (Figure 4a—4c).

@ PLoS Biology | www.plosbiology.org

Training-Induced Plasticity and Encoding Improvement
Are Stimulus Specific

To determine whether improvements in network function are
specific to the training stimuli, we trained tadpoles for 1 h with
four of the eight motion stimuli (0°, 45°, 90°, 135°), followed by
probing with the full eight stimuli (0°-360°), and compared
network responses to trained versus untrained stimuli. Training
improved decoding of the trained stimuli only for both the
correlation-based (Figure 6a) and independent (unpublished data)
decoders. Relative to naive tadpoles, training with four stimuli
increased the proportion of neurons showing combined orienta-
tion and direction selectivity and decreased the proportion of
responsive neurons showing no selectivity (Figure 6b). Among
direction-selective neurons, direction of selectivity favored the
center of the trained directions (Figure 6¢ and 6d). Dynamic range
was higher in response to trained stimuli, while reliability and
evoked firing were not significantly different between trained and
untrained stimuli (unpublished data). These results demonstrate
that training-induced changes are stimulus dependent and favor
encoding of the specific visual stimuli experienced.

Training Induces Anatomically Structured Network

Plasticity

Imaging a contiguous population of neurons allows us to relate
experience-dependent plasticity to anatomical structure [5].
Similar to visual cortex [29], optic tectum has a precise functional
architecture [18], where nearby neurons exhibit similar receptive
fields and thus strong signal correlations (Figure 2). We also find
that nearby neuron pairs show higher noise correlations and a
significant association between stimulus and noise correlation,
consistent with locally shared input or direct connectivity. We
tracked these measures across epochs of visual training among
nearby (<25 um), moderate (25-50 um), and distant (50-75 pm)
neurons. Tectal somata have diameters of 10-15 um. These
measures changed in a distance-specific manner as visual training
mmproved network encoding. Visual training increased signal
correlations among nearby but not more distant neuron pairs
(Figure 7a). Visual training also increased nearby noise correla-
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Figure 6. Training-induced changes are stimulus-specific. (a) Decoding error for each direction in tadpoles trained with four of eight stimuli
(0-135°), using the correlation decoder. Gray, decoding error of naive control tadpoles. Training-induced decoding improvement is specific to the
trained stimuli. (b) Proportion of neurons showing direction (yellow), orientation (blue), both (green), or neither (red) selectivity in tadpoles trained
with four stimuli. Asterisks denote significant difference from corresponding proportion in naive control tadpoles. (c) Angle histogram of preferred
directions of direction-selective neurons in tadpoles trained with four stimuli. Points are the proportion of neurons with center directions falling
between adjacent stimulus directions. Pink shading indicates the trained directions. Responses strongly favored the center of the trained directions
(one-sample t-test, p<<10~>). Gray dotted line indicates preferred directions in naive control tadpoles. (d) Map of direction selectivity in a tadpole after
training with four stimuli. Black circles mark neurons showing significant direction selectivity. Colored arrows mark preferred directions. Error bars

denote SEM. (a-c) n=3 tadpoles (152 neurons). *p<<0.05; **p<<0.01.
doi:10.1371/journal.pbio.1001236.9006

tions and decreased distant ones (Figure 7b). Larger signal and
noise correlations for nearby neurons indicate increased local
redundancy with training, likely because of strengthening of
shared stimulus inputs. The decrease in distant noise correlations,
however, suggests that encoding strategies thought to improve
mature circuit performance [8,9], such as network decorrelation,
can result from plasticity during early experience in vivo. These
results show that visual training leads to anatomically structured
network refinement.

NMDAR  blockade prevented this refinement and led to
degradation of fine-scale functional organization over time. Here,
signal correlations were increased equally for all neuron pairs,
regardless of spatial distance, reducing receptive field diversity
across the tectum (Figures 7c and 8b). MK-801 also blocked
training-induced changes in noise correlations (Figure 7d), sug-
gesting that development of efficient network correlation structure
is NMDAR-dependent. The loss of spatial organization we
observe with MK-801 over time is consistent with lack of
competition between locally represented and distant inputs in
the absence of NMDAR transmission.

MK-801-induced changes in plasticity were recapitulated by
training with the four-stimulus subset. Tuning curve similarity was
greater over untrained stimuli than trained stimuli across
moderate and distant, but not nearby, neuron pairs (Figure 7e).
Networks showed strongly decreased noise correlations to trained
stimuli, while noise correlations to untrained stimuli increased
above levels in naive tadpoles. These results show that training
with a set of stimuli affects the encoding of unpresented stimuli,
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and stimuli can compete In determining network connectivity

(Figure 7f) [40,43,44].

Coordination between Neuronal Clusters Supports
Experience-Dependent Encoding Improvement

Visual training induces remarkable spatially divergent plasticity.
On one hand, training-induced encoding improvement 1is
associated with lower signal and noise correlations among distant
neurons. On the other hand, local plasticity opposes this trend,
increasing redundancy between nearby neurons over the course of
visual training. To determine how these opposing forces contribute
to overall network improvement, we grouped neurons according
to receptive field so as to monitor stimulus decoding within clusters
of similarly responding neurons over time (see Methods).
Consistent with our measurements of tectal signal correlations,
functionally defined groups showed significant spatial clustering
(Figure S8). Interestingly, decoding success of single clusters did
not change with training (Figure 8c), suggesting that interactions
between clusters may be more important in supporting overall
encoding improvement. To understand how well clusters interact
to encode information, we measured intercluster cooperation,
which we defined as the decoding performance of two clusters
taken together minus the maximum decoding performance of
either taken alone. Cooperation is high when clusters encode
distinct information or encode information synergistically [10],
and low when clusters encode the same information. Notably,
cooperation increased with visual training in control tadpoles,
while training during NMDAR blockade decreased cluster
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Figure 7. Training strengthens clustering of receptive fields
and network correlations. (a-d) Tuning curve similarity (a,c) and
mean noise correlation (b,d) of neuron pairs binned by spatial distance,
during early (teal) and late (purple) epochs, in control (a,b) and MK801-
treated (c,d) tadpoles. (ef) Tuning curve similarity (e) and noise
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doi:10.1371/journal.pbio.1001236.g007

cooperation (Figure 8d). To further investigate how plasticity in
neuronal interactions contributes to changes in encoding perfor-
mance, we again removed the contribution of noise correlations by
shuffling neuronal responses prior to decoding (as in Figure 3e).
Shuffled decoding accuracy did not change from EARLY to
LATE epochs, even as nonshuffled decoding accuracy increased in
control tadpoles and decreased in MK-801-treated tadpoles
(Figure S9), consistent with a role for neuronal interactions in
driving the changes in network performance we observe. These
results show that improvements in the brain’s ability to represent
visual stimuli are not due only to improved encoding in single
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neurons or local groups, but are driven strongly by changes in the
functional organization of the sensory network.

Discussion

The functional organization of the brain contributes to effective
neural processing, and neurons can coordinate or compete to
encode distinct stimulus dimensions [11,13,45]. We find that
developmental plasticity in response to visual experience estab-
lishes such organization in the optic tectum (Figure 9). This
plasticity strengthens divisions between microarchitectural brain
regions specialized to encode distinct stimuli that the organism
experiences. Visual training improves both individual neuron and
network response properties, but single-neuron changes only
weakly impact network performance. This weak reliance on single
neurons likely arises because the tectal network is organized in
local receptive field clusters that exhibit high redundancy;
information gained from improved fidelity in any individual
neuron tends to already be available from other nearby neurons.
Our results show that the functional organization of the network
plays a larger role in the overall improvement of population
encoding with training. This organization consists of specialization
by distinct groups of neurons to convey distinct information, as
training drives distant neurons to become more independent while
strengthening local redundancy. This spatially driven plasticity
arises from forces acting to increase or decrease functional
connectivity in the tectum on different spatial scales.

Spatial clustering of functional properties is a common feature
in the brain [3,5,26,29], which can lead to redundant local
encoding. Redundancy is important in mitigating effects of
variability of individual neuronal responses. Because neuron
response fidelity is fundamentally limited by both physics [46]
and physiology [47,48], redundant encoding by groups can be
more practical than decreasing variability in single neurons.
Moreover, response properties in a given brain volume are limited
by the availability of presynaptic partners, as each neuron must
search its local environment for appropriate connections. In
tectum, prominent inputs are likely to be shared by nearby
neurons because of the localized arborization of retinal ganglion
cell axons [40], and plasticity that strengthens those inputs thus
promotes local redundancy. Finally, local similarity can make
wiring of developing networks more economical [49], as neurons
responding to a particular stimulus should then receive inputs from
a restricted anatomical region. Learning-associated functional
clustering and correlation changes similar to those described here
have been described in mouse motor cortex [26], raising the
possibility that common constraints drive functional optimization
across network structures and functions.

Measurement of single-trial firing rates enables monitoring of
redundancy and noise correlations in large populations of tectal
neurons. We found that noise correlations can be repeatably
measured and are altered by training in an experience- and
NMDAR-dependent fashion. These results show that two-photon
calcium imaging can be used to investigate shared connections
across contiguous brain regions and how these change in vivo.
However, the anatomical substrates underlying tectal noise
correlation plasticity remain unclear, since noise correlations
could arise either from shared retinal inputs or intratectal
connections. Plasticity in noise correlations may indicate formation
and elimination of these connections or alteration of synaptic
strengths. We found that accounting for noise correlations
mmproves decoding of tectal population activity, but this effect
could be due to changes in neural activity patterns over the
stimulation period [38]. However, the specific effects of NMDAR
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n=7 tadpoles (255 neurons). *p<<0.05; **p<<0.01.
doi:10.1371/journal.pbio.1001236.g008

blockade on noise correlation-based decoding with training
suggest that noise correlations are indeed important for decoding
tectal activity (Figures 5c and S9). Despite their importance to
decoding, we found that the presence of noise correlations does
not improve network encoding. The reduction of correlations
typically enables networks to convey more information [9].
Indeed, we found that artificially eliminating noise correlations
in network activity data increased decoding performance.
Networks whose function is limited by the number of neurons
available for encoding should thus benefit from decreased noise
correlations. Coonsistent with this prediction, we found that distant
network correlations decrease with training in a stimulus-specific
manner, as encoding of those stimuli improves. Changes on these
larger spatial scales, spanning functional clusters in the tectum,
underlie the overall improvement of network encoding with
training. Our results show that spatial refinement of noise
correlations occurs during experience-dependent plasticity, and
changes to such network-level properties are important to the
development of tectal function with training.

We find that visual training with motion stimuli induces
extensive plasticity in the tectum, distinct components of which
are NMDAR dependent or independent. Consistent with previous
studies [4,19,42], we find no effect of NMDAR blockade on basal
motion response properties in tectum. We found that NMDAR-
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independent mechanisms mediate training-induced increases in
reliability and partly mediate improvements in dynamic range,
single-neuron mutual information, and neuron-pair mutual
information. NMDAR blockade does not completely abolish
tectal plasticity [3], and NMDAR-independent plasticity has been
described in other systems [50]. However, NMDAR blockade has
dramatic effects on coordination of plasticity across the network
and components of single-neuron plasticity. When NMDARs are
blocked, visual training fails to induce spatially structured changes
in tectal network architecture, and NMDAR-independent plastic-
ity drives neurons toward common receptive fields over time. This
progressive loss of network organization prevents training from
improving whole-network performance. Our findings suggest that
NMDARs are essential to coordinated experience-dependent
network plasticity by (1) mediating spatial refinement of network
connections, leading to localized redundancy and distant correla-
tion reduction, and (2) promoting receptive field diversity and
preventing loss of underrepresented receptive fields even as local
similarity increases.

Results from training with a restricted stimulus set suggest that
competition between synaptic connections underlies network
changes in response properties and noise correlations. Training
with a subset of stimuli dramatically increased the proportion of
responsive neurons with selectivity towards the four stimuli
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Figure 9. Schematic of receptive field and noise correlation
plasticity for trained (red) and untrained (blue) stimuli. Tectal
neurons are represented as circles, circle color marks preferred direction
(red, down; blue, up), and dotted lines represent noise correlations.
Training with down direction increases and clusters receptive fields
oriented toward the trained stimuli and decreases long-distance noise
correlations (dashed lines). Receptive fields preferring untrained stimuli
(blue) are reduced, and noise correlations to these stimuli are increased
on all spatial scales. Note that noise correlations can differ across stimuli
and are not necessarily determined by neurons’ preferred directions.
doi:10.1371/journal.pbio.1001236.g009

presented, showing that motion-responsive tectal neurons can alter
their preferred directions with training, and that stimuli compete
for representation by a limited pool of tectal neurons. Further-
more, decreases in noise correlations over the four trained stimuli
were accompanied by increases over the untrained stimuli,
showing that improvements in stimulus representation can occur
at a cost to opposing receptive fields. Training with four stimuli
also reduced noise correlations across all spatial distances more
dramatically than training with the full eight stimuli, showing that
more specific training elicits stronger network plasticity, and
suggesting that receptive fields compete for efficient representation
by the network.

A number of competitive mechanisms mediated by NMDARs
could support the structured plasticity we observe. These
mechanisms include removal of axonal projections from tectal
regions dominated by opposing axons [40], spike timing-
dependent plasticity [25] shown to intrinsically mediate compe-
tition between synaptic inputs [51], and NMDAR-dependent
metaplasticity [3] that mediates competition by altering plasticity
thresholds according to a neuron’s overall input rate. Our results
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demonstrate a role for NMDAR-mediated plasticity mechanisms
such as these in experience-driven network refinement.

For developing neurons to form functional networks, each
neuron must possess learning mechanisms that change its response
properties to ultimately improve whole-network performance.
Optimal changes depend on both the specific stimuli encountered
and the response patterns of other neurons throughout the
network [8,9,52]. Our findings show that both of these factors
guide NMDAR-dependent plasticity induced by structured visual
input in the awake, developing brain.

Methods

Animal Rearing Conditions

Freely swimming albino X. laevis tadpoles were reared in 0.1 x
Steinberg’s solution (1 X Steinberg’s in mM: 10 HEPES, 58 NaCl,
0.67 KCl, 0.34 Ca(NOs)y, 0.83 MgSO,, [pH 7.4]) and housed at
room temperature on a 12-h light/dark cycle. Experiments were
conducted with stage 50 tadpoles in accordance with the Canadian
Council on Animal Care guidelines and were approved by the
Animal Care Committee of the University of British Columbia
Faculty of Medicine.

Imaging

Oregon Green BAPTA-1 AM (Molecular Probes) was pressure
injected into the optic tectum as described previously [3]. 1 h after
injection, tadpoles were placed in a bath containing 4 mM
pancuronium dibromide for 7 min, then placed in the imaging
chamber and immobilized with agar. The imaging chamber was
perfused with oxygenated 0.1x Steinberg’s solution during
mmaging. The region imaged was determined by anatomical
landmarks and was roughly 200 pm below the surface of the
tectum. Images were acquired at 5 Hz using a two-photon laser
scanning microscope adapted from an Olympus FV300 confocal
microscope (Olympus) and a Chameleon XR Ti:Sapphire laser
(Coherent) tuned to 910 nm. Images were acquired using a
60 x1.1NA water objective and encompassed a region of roughly
50x150 um.

Visual Stimulation

Stimuli were presented on the center of a 6-mm (1,024 %768
pixels) LCD screen 7 mm from the surface of the left eye. The
screen was covered by a longpass filter to block bleed though of
stimulus light into detected fluorescence. Stimuli consisted of solid
dark bars with a thickness of 0.09 rad moving at 0.6 rad/s. The
edges of the stimulus region were obscured by a circular Gaussian
mask, so that the eight stimuli were identical except for rotation
and had identical intensity profiles over time. The contrast of
stimuli was chosen to be at the threshold of the tadpoles’ detection
ability, to better compare decoding performance across models
over the course of training.

Stimulus presentation and timing were controlled in MATLAB
using the Psychophysics Toolbox extensions [53]. Stimuli were
presented repeatedly with interstimulus intervals uniform random-
ly selected from the set (6, 7, 8, 9) s. Movies were acquired in 4-
min periods, with l-min periods for microscope alignment
between movies, during which stimuli were shown but images
were not recorded. The order of presentation of stimuli was
randomized such that an equal number of each stimulus was
presented in each 4-min period, and the probability that any
stimulus followed any other stimulus was roughly equal over
stimulus pairs over the entire experiment.

Tadpoles were presented with one of two stimulus paradigms,
4STIM or 8STIM. Starting 1 h after dye loading, the 4STIM
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group was presented with a set of four stimuli corresponding to
one half of the stimulus space (0-135°) for 1 h, followed by 1 h of
the full stimulus space. The 8STIM group was presented with the
full stimulus space for 2 h. MK801-treated tadpoles received tectal
and ventricular microinjections of 20 pm MKS801 after dye
loading.

Two-Photon Guided Patch Recording and Ca?* Imaging

For simultaneous imaging and electrophyisiological recording,
loading and imaging of Ca2+ indicators were performed as
described above. Tadpoles’ heads were mounted in a clear acrylic
chamber and held in place by mesh, with tails free to allow
respiration. Patch pipettes (tip resistance 7 MOhm), filled with
tadpole extracellular solution (115 mM NaCl, 4 mM KCl, 3 mM
CaCl2, 3 mM MgCl2, 5 mM HEPES, 10 mM glucose,10 mM
glycine; [pH 7.2], adjusted with NaOH; osmolality 255 mOsm)
were inserted through the ventricle, approaching the tectum from
the medial side. Two-photon imaging was used to guide the
pipette tip to responsive neurons and gentle suction was applied to
achieve loose seals (80200 MOhm) at which point action
potentials could be clearly discerned. We obtained loose patch
recordings at command voltages, which resulted in no net current
flow to detect endogenous activity with minimal effect on neuronal
firing properties [54]. Imaging and recording were performed
while stimulating the contralateral eye with brief flashes from a red
LED. Electrical recordings were acquired using an Axon
Instruments Axopatch 200B amplifier, digitized at 10 kHz using
a Digidata 1322A board, and recorded using pClamp 9 software.

Fluorescence Data Processing

Fluorescence data stacks were x—y aligned using Turboreg
(Image]J, NIH) [55]. Experiments that showed vertical drift after
alignment were discarded (approximately one in four cases).
Custom-written software was used to identify and track regions of
interest (ROIs) for each cell over the course of each experiment.
Initial ROIs were formed on the basis of morphological
characteristics and temporal correlation and excluded cell edges,
ensuring no overlapping signal from neighbouring cells. ROIs
were then expanded, and these regions were refined and
fluorescence signal was denoised using iterated singular value
decomposition (SVD), where only pixels with common weighting
indicating a positive correlation with cell calcium concentration
were retained in successive SVD iterations. Pixels in the expanded
region were only retained if they predicted signal in the initial
ROV, and if they showed less correlation to overlapping ROIs than
the maximum correlation of any pixel in the initial ROIL. Raw
fluorescence for each cell was the reconstructed time-varying mean
pixel intensity based on SVD weightings. The fluorescence time
series for each cell was then calculated as (F—Fy)/Fy. The time-
varying baseline fluorescence, Fy(f), was fit for each cell using a
Kalman smoother implementing the Rauch-Tung-Striebel algo-
rithm [56]. The model used for the Kalman smoother consisted of
a signal with no velocity and Gaussian noise of constant amplitude
to model the slowly drifting baseline. The observation of Fj at each
timepoint was the minimum of the smoothed fluorescence trace in
a 10-s window around the timepoint, and the covariance was the
variance of the raw fluorescence trace within that window, to
reflect the confidence that the baseline was observed in that
window.

At this point, cells were excluded from the dataset: (1) If fewer
than 80% of pixels from the original morphological ROI had
common weighting in the SVD decomposition over 80% of the
duration of the experiment; this implied that the singular value did
not adequately track the calcium concentration of the cell, which
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should always be positively correlated to fluorescence intensity. (2)
If the estimated signal-to-noise ratio for the calcium trace in the
cell was less than 1.

Spiking parameters for each cell, including the maximum
likelihood spike train, were fit using nonlinear state space methods
[30], with initial parameter estimates for spike amplitude, Ca2+
channel time constant, and saturation determined from 10-kHz
two-photon imaging line scan data acquired under the same
conditions, and fit to each cell using expectation-maximization.
After fitting, spike rate time series for each cell were temporally
aligned to each other on the basis of x and y position, to account
for the amount of time required to acquire a video frame. Because
this model can only place one spike per time bin, it is effective
when interspike intervals are consistently longer than the bin width
used for inferring spike timings. Over 92% of interspike intervals
in electrophysiological recordings during visual stimulation were
greater than the 50-ms bin width used for spike inference, and less
than 0.1% of time bins contained two spikes, with no bins
containing three.

Single-Neuron Properties

Temporal response curves for each stimulus type were
generated by averaging neurons’ firing rate in the temporal
vicinity of each stimulus over all stimulus presentations of that
type. Each neuron’s evoked response to each stimulus presentation
was the neuron’s mean firing rate between an onset and offset
latency after the stimulus, which were chosen to maximize the
variance of the neuron’s activity across stimulus types. Most
tadpoles showed potentiation of evoked responses over time (seven
of nine 8STIM; seven of nine 8STIM+MKS801; three of five
4STIM). Tadpoles showing significant decrease of response
amplitude from the first to second hour of training were not
included in analyses.

Evoked responses for each neuron were normalized to their
mean over each 4-min imaging period to ensure that any changes
in overall measured activity would not affect subsequent analyses.
Tuning curves were calculated as the mean evoked activity in
response to each stimulus over all imaging periods within an epoch
of interest. Dynamic range of neuronal tuning curves was defined
as the mean absolute deviation of the normalized tuning curve
from its mean, 1. Dynamic range is thus the average fraction by
which firing rate is altered in response to different stimuli. To
compare trained and untrained stimuli in Figure 6, dynamic range
was calculated in the same way over each set of four stimuli.

Each neuron’s baseline firing rate during each 4-min movie was
defined as the median of its spiking rate binned at 200-ms
mtervals. The 5-s period following each stimulus presentation was
excluded from baseline estimation. Neuron reliability in response
to each stimulus type was defined as the fraction of stimulus
presentations to which the neuron responded with a firing rate
greater than baseline.

Orientation and direction selectivity were measured in the
manner of Zhang [57]. The centers of the resulting orientation
and direction curves, as plotted in Figure 2, were determined by
fitting a cos® or angular Gaussian function, respectively. Neurons
were considered significantly selective if the amplitude of these fits
was significantly different from 0, with variability in initial
measurements taken into account. The preferred overall directions
plotted in Figure 8 were determined by the 2-D vector sum of
neuron-tuning curve values to each direction. The direction of the
resulting vector was the preferred orientation.

Single-neuron mutual information is the mutual information
between a single neuron’s responses and the stimuli, corrected for
bias because of limited sample size [58]. For the calculation of
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mutual information and decoding, evoked activities were dis-
cretized into five bins for each neuron, with each bin containing an
equal number of samples.

Network Properties

Neuron-pair mutual information is the mutual information
between a bivariate neuronal activity distribution and the stimuli.
p-Values for bivariate mutual information were estimated by
generating random samples with the same number of observations
from the independent distribution having the same single-neuron
marginal probabilities.

Noise correlation was measured as the correlation between the
responses of a pair of neurons to a single stimulus type. With the
exception of results presented in Figure 3b and 3¢ we use mutual
information between the two neuron’s responses as our measure of
correlation, so as not to limit our investigation to linear
correlation. In Figure 3b and 3c linear correlations were used to
illustrate that these correlations are positive and the nature, not
merely the degree, of the correlation is stable.

Tuning curve similarity was defined as the Pearson correlation
between tuning curve values across stimuli. To better detect shifts
in similarity and because similarity differed across imaging regions,
initial similarity was normalized through mean subtraction in each
tadpole.

Receptive field diversity is a measure of how well the tuning
curves of observed neurons cover the full space of possible
receptive fields. We defined this as the variance, across neurons, of
tuning curve amplitudes to a given stimulus, summed over all
stimuli.

Cooperation in cluster decoding was defined as the decoding
performance of two groups taken together minus the maximum
decoding performance of either taken alone. Decoding perfor-
mance is the negative of the mean classification error of the
decoder, in degrees. To better display shifts in decoding success
with training and under different decoding conditions, decoding
performance in Figure 5a and 5c was normalized to initial
decoding success of the independent model in each tadpole.

Decoding Algorithms

Because we do not know the methods that downstream neurons
use to decode network information, we build “optimal” decod-
ers—which calculate stimulus probabilities as accurately as
possible given an underlying model—so as to measure the overall
encoding capability of the network. Decoding of network
responses consists of assigning a probability P(S/R) that each
stimulus (S) was presented, given the network response vector
R=[ry,ry,....rn], where each r;is the activity of neuron i. The most
common approach to this task is to calculate the inverse
distribution, P(R/S), and use Bayes’ rule to obtain the desired
result:

P(R/S) * P(S)

P(S/R)= =~ 73

(Bayes’ Rule)

Maximum a posteriori (MAP) decoding consists of identifying the
peak of this distribution, useful for categorical classification. These
probability distributions are hard to estimate from biological data
because the number of neurons, the dimensionality of R, is high
compared to the number of samples available. A simplifying
assumption that is often made is to assume that the firing rates of
all neurons are conditionally independent given the stimulus S. In
this case, P(R/S)=1I; P(r;/S). This model requires fewer
observations to fit because it requires estimation only of the one-
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dimensional distribution of 7 for each stimulus. To perform
categorical classification that is sensitive to pairwise interactions
between neurons, we used a simple model that relies on the
pairwise conditional probability distributions P(r;,rj/S), which are
more easily estimated than the full distribution but can capture
more complexity than the independent model:

_ H,jJ P(r,‘,}"j/S)
PR/S)= ZTL, P(r;/ S )
where
Hl,} P(er]/Sk)
Z I1; P(r;/ Sip)Y

Where the denominator in (1) is a correction for the overrepre-
sentation of single-neuron probabilities in the product of pairwise
tables. The optimal value of the parameter N depends on the size
of the network and its correlation structure. In practice, we
selected V'a priori on the basis of a linear regression of the optimal
N against sample size in separate test data. A separate regression
for N was used for cluster decoding presented in Figure 8. A prior
probability was added to both models to assure that under-
sampling would not result in zero probability being assigned to a
stimulus-response pair. Parameter settings, i.e., number of bins
and prior probability, were chosen to maximize absolute decoding
success under the independent model, but results were similar
under a wide range of parameter settings. Stimulus probabilities
generated by both models were adjusted such that long-run
probabilities of all stimuli given the training data were equal.

Assuming sufficiently large samples, this model performs
identically to the independent model when neuronal firing is
actually independent. For small deviations from independence,
consisting of increased probability of a single network pattern, it
categorizes stimuli more accurately than the independent model.
This decoder outperformed the independent model on virtually all
real data we collected, and in artificial datasets of size 3—150
neurons having small pairwise correlations and varying sample
sizes (unpublished data). Notably, this model does not make any
assumptions about the nature of the bivariate relationships within
the network, unlike parametric models such as copulas [59], and
allows for graded activity, unlike the Ising model [60].

In all cases, statistics for decoding were calculated from a
training set separate from the test set to be decoded, using a
“leave-one-out” strategy, in which each short segment (eight
stimuli) of activity was decoded using statistics calculated on the
basis of all other stimulus presentations in the epoch of interest.
For Figure 5c, decoders were trained either on the same epoch
being decoded, using a leave-one-out strategy, or all stimulus
presentations in the opposite epoch.

Decoding error was defined as the absolute difference between
the MAP estimate and the actual stimulus presented, measured in
degrees. Decoding improvement is change in decoding error, with
positive values representing a decrease in error. Decoding
improvement in Figure 5 was measured relative to performance
of the independent decoder at the first timepoint.

Clustering

Clusters (Figure 8c and 8d) were initially formed using the
normalized cuts graph clustering algorithm [61] over neuron-pair
tuning curve similarity. This was followed by gradient descent to
generate groups of uniform size (nine neurons) having maximum
within-group similarity. Groups that did not reach a threshold
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value of within-group similarity were not included in decoding.
The group size was made uniform to better compare decoding
performance across groups. The number of neurons per group was
selected to maximize the difference between the minimum
pairwise within-group similarity and the maximum pairwise
across-group similarity over all datasets.

The median distance between pairs of neurons within these
functionally defined clusters (Figure S8) was used to measure
spatial clustering. These medians were compared to the boot-
strapped distribution of randomly generated “clusters” using the
same neuron positions for each tadpole.

Statistics

Except where mentioned in the methods and figure captions,
unpaired #tests were used to compare mean values across
tadpoles.

Supporting Information

Figure S1 Methods for fluorescence data processing. (A)
Initial ROIs were identified automatically on the basis of
morphological properties and pixel-to-pixel correlations, with cells
automatically tracked from video to video. Cells not highlighted
drifted out of the imaging plane in one or more videos over the
course of the experiment. (B) Expansion of green bounded region
in (A). Morphological ROIs are conservative and do not overlap.
(C) ROIs are then expanded for spatial filtering using iterated
singular value decomposition. (D) Pixel weights indicating the
relative contribution of pixels to fluorescence signal reconstruction
for their respective cells. Brighter pixels indicate higher weighting.
(E) Time-varying baseline fluorescence (£p) was fit using a Kalman
filter smoother taking into account the amplitude of spiking to
estimate the accuracy of baseline estimates.

JPG)

Figure $2 Correlation of optical and electrophysiologi-
cal firing rate measurements. Left, simultaneous recording
of somatic fluorescence (AF/Fy, top) and action potentials (green)
in response to full field light stimuli of varying intensity, with actual
(gray) and inferred (black) firing rates in the 5 s following each
stimulus, for three different cells. Right, expanded voltage traces
for the regions marked in red at left. Pink shading marks time of
stimulus. The electrical transients bounding the stimulus period
are clipped. Colored dots mark individual action potentials, which
are magnified in the boxes at bottom.

JrG)

Figure S3 Optical measures of firing rate are correlated
with electrophysiological measurements. Left, scatterplots
of number of spikes evoked by visual stimuli versus inferred firing
rate (b) measured optically. Evoked spikes refers to total number of
spikes evoked in the 5-s period following stimulus onset. Each
point represents a single stimulus presentation, and symbol colors
correspond to distinct neurons. All optical recording parameters
(duration, frame rate, optical setup) and fitting method for spike
inference were identical to experiments performed with optical
methods alone. Right, correlation between visually evoked firing
rates obtained from cell-attached recording and (left) inferred
firing rates or (right) peak AF/F, Firing rate inference
outperformed peak AF/F; (paired ttest, p=0.001). n=5 visually
responsive neurons.

(JPG)

Figure S4 Noise correlations differ across stimuli.
Distribution of magnitude of Fisher’s z (normalized to expected
SD) for all pairwise comparisons of noise correlation coefficients in
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neuron pairs. Dotted line represents the null distribution (normal
with unit variance). Observed noise correlations between neuron
pairs vary across stimuli 14% more than expected by chance if
they were actually equal (9<<10~'% Chi-square variance test).
JPG)

Figure S5 Noise correlation encoding. Responses of two
example neurons to two stimulus types. Arrows denote the two
stimulus directions plotted. As their single-neuron firing distribu-
tions (top and right) indicate, neither neuron taken alone
significantly discriminates the two stimuli. However, because noise
correlations differ for the stimuli, the joint firing distribution
(center) does discriminate them: when presented with a left moving
stimulus (blue), neuron 2 is strongly active only when neuron 1 is
inactive (negatively correlated); when presented with a right
moving stimulus (red), neuron 2 is strongly active only when
neuron 1 is strongly active (positively correlated). As discussed in
the text, such encoding is not prominent in the tectum.

JPG)

Figure S6 Receptive field similarity and noise correla-
tion are associated. (a) Scatterplot of signal correlation versus
mean linear (Pearson’s) noise correlation between tectal neuron
pairs. Black points fall outside two SDs of mean of the null
distribution. (b) Quantification of (a). Mean signal correlation
binned for extreme (>two SDs from the mean) and moderate
noise correlations. Values are mean * standard error of the mean
(SEM).

JPG)

Figure S7 The noncompetitive NMDA receptor antago-
nist MK-801 blocks evoked NMDA receptor currents in
Xenopus tectal neurons in vivo. Whole cell patch clamp
recordings were performed at a holding potential of +55 mV while
stimulating axonal inputs at the optic chiasm in the presence of
CNQX (10 m) to block AMPA receptor currents. Addition of
20 M MK-801 caused a progressive blockade of evoked synaptic
NMDA receptor mediated currents. Colors denote recording trials
before (black), and the first, tenth, and 29th stimulation trials after
MK-801 application, with a 10-s interstimulus interval. Complete
blockade of NMDA receptor-mediated currents were observed in
a total of five neurons recorded from five tadpoles.

JPG)

Figure S8 Neuron receptive fields are spatially clus-
tered. Median neuron-neuron distance within groups generated
by the clustering algorithm, which is based only on tuning curves.
This is the median distance between pairs of neurons belonging to
the same group, averaged across all groups in a given tadpole.
Values are the mean = SEM over n=7 tadpoles (29 clusters).
Dotted line is the mean value of this measure across 1,000
randomly selected “clusters” in each tadpole using the same
neuron positions that were included in the real clusters. Neurons
with similar receptive fields are closer to each other than expected
by chance (two-sample I-test). #p<<0.05; **p<<0.01.

JPG)

Figure S9 Performance of shuffled decoders does not
change with training. Performance of decoders trained and
tested on shuffled (blue) or unshuffled (orange) data during early
(left) and late (right) epochs in control (top) and MK-801—treated
(bottom) tadpoles. To generate shuffled data, responses to each
stimulus type were shuffled for each neuron, a procedure that
removes noise correlations but maintains neuronal tuning curves.
Asterisks denote significant difference relative to the same decoder
in the early epoch (paired #test). **$<<0.01.

JPG)
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