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Density fluctuations in granular piles traversing 
the glass transition: A grain-scale characterization  
via the internal energy
Paula A. Gago1* and  Stefan Boettcher2

The transition into a glassy state of the ensemble of static, mechanically stable configurations of a tapped granular 
pile is explored using extensive molecular dynamics simulations. We show that different horizontal subregions 
(“layers”) along the height of the pile traverse this transition in a similar manner but at distinct tap intensities. We 
supplement the conventional approach based purely on properties of the static configurations with investiga-
tions of the grain-scale dynamics by which the tap energy is transmitted throughout the pile. We find that the 
effective energy that particles dissipate is a function of each particle’s location in the pile and, moreover, that its 
value plays a distinctive role in the transformation between configurations. This internal energy provides a 
“temperature-like” parameter that allows us to align the transition into the glassy state for all layers, as well as 
different annealing schedules, at a critical value.

INTRODUCTION
Granular materials are ubiquitous in nature and have always fasci-
nated scientists, Coulomb and Reynolds among them, due to their 
somewhat counterintuitive behavior (1). They have been considered 
as an additional state of matter in its own right (2) and although 
they are the second-most common form by which mankind handles 
materials (behind fluids), the way in which mechanical perturba-
tions define its macroscopic properties are still not well understood. 
One of their key characteristic is that they tend to be at rest: Any 
input of energy provided to the system, whether by tapping, shearing, 
or tilting, is eventually dissipated through frictional contacts and 
collisions among the grains. Specifically, it requires such an external 
input of energy to be able to modify its configuration. Thus, the way 
in which the system behaves (fluid, solid, and gas) is strongly deter-
mined by the way this external energy is dispensed and the 
microscopic processes leading to its dissipation. Attributes such as 
friction, density, the granular contact network, container geometry, 
etc., will likely play a role in this process.

Although their propensity to stay at rest marks these materials as 
“athermal,” any boundary making it distinct from other, thermal 
states of matter are progressively weakening. For example, we have 
recently described the transition of a tapped granular pile into a 
glassy state (3) familiar from polymers, complex fluids, and frustrated 
magnets (4–9). For these disordered thermal materials, relaxation 
times increase for many orders of magnitude (and possibly even 
diverge) over a small range of temperatures (5), beyond which the 
systems remains out of equilibrium for any practical purpose. 
Whether the transition was approached gradually or via a hard-
quench in the intensity of taps, we encountered the same phenome-
nology in the granular pile as is observed for other glass-forming 
materials. Although the distribution of fluctuations elicited by a 
perturbation within a granular medium may have profound 
differences to conventional thermal noise (10), as long as sizable 

fluctuations exist to activate events, glassy relaxation appears to be 
universal (11, 12).

In 1989, Edwards and Oakeshott (13) proposed the possibility of 
using the formalism of statistical mechanics to describe the proper-
ties of static granular materials. His theory considered as the statis-
tical ensemble the set of static, mechanically stable configurations, 
which the system acquires after having dissipated the kinetic energy 
received by repeated perturbation. It set a milestone in the study of 
granular materials, as it hinted at some order behind the disorder. 
Since then, many studies (10, 14–22) have addressed these questions.

One of these studies is the well-known Chicago experiment (23), 
which presented a simple perturbation protocol able to create such 
a collection of states. This protocol consists of the repeated applica-
tion of discrete “taps” to a granular pile confined inside a container, 
and the collection of static configurations obtained after the system 
has dissipated the injected energy. For taps with low (fixed) intensi-
ties, the system shows a logarithmic increase in density, or packing 
fraction , with the number of applied taps (3, 10, 24, 25). However, 
executing a series of stepped annealing protocols, both for increasing 
and decreasing intensities of the perturbation, the system undergoes 
a fast “irreversible” transient of low densities and reaches a so-called 
“reversible regime.” There, the density of the static configurations 
becomes a function only of the intensity of the tap applied. The col-
lection of static configurations at a given tap intensity serves as a 
setting to test Edwards’ hypothesis.

Using a protocol similar to stepwise annealing used in (23), but 
decreasing the tap intensity (represented conventionally by its re-
duced acceleration ) continually between taps at various variation 
rates (​​ ̇ ​​), we have shown (3) that the packing fraction  as a func-
tion of  behaves in a manner resembling the glass transition found 
in thermal materials (5, 8, 26, 27). That is, at high , () evolves 
independent of ​​ ̇ ​​, while for lower intensities, it splits into a separate 
branch for each ​​ ̇ ​​, reaching higher densities for lower ​​ ̇ ​​.

Here, we explore the origin of that transition in greater detail, 
accounting for the heterogeneous response of the system at different 
heights of the pile to the same tap (10, 28, 29), as imposed by gravity. 
As different layers attain different densities along the same protocol 
and enter a glassy state at different tap intensities , we find that a 
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grain-level examination of the energy propagation along the system 
during a tap allows us to collapse the density behavior for the different 
layers when plotted as a function of the effective energy grains 
receive from the collective perturbation. In particular, we find a 
critical value of this effective energy along which the peaks exhibited 
by the density fluctuations in each layer align.

In effect, we are taking back a step from the macroscopic per-
spective of Edwards’ hypothesis, especially its focus on volume 
assuming the role of the controlling parameter (13) (comparable with 
temperature in equilibrium statistical mechanics). Instead, we delve 
into a microscopic analysis of the dynamic process that leads from 
one static configuration to the next. It opens the door to a first-
principles, grain-level characterization of the impact a perturbation 
has on granular systems, in the spirit of a kinetic theory in statistical 
physics relating temperature to internal energy. Hence, this micro-
scopic perspective holds the promise to be generalizable to other 
perturbation protocols (such as seismic or acoustic waves, avalanches, 
etc.) and to systems with different geometries and grain properties. 
Although our investigations as of yet fall short in understanding the 
full impact this effective energy has on transforming configurations, 
aligning data according to it already explains, e.g., unusual behavior 
of critical density fluctuations observed previously for the pile as a 
whole (17).

For these insights, we had to perform detailed and extensive 
molecular dynamics (MD) simulation of soft spheres, in particular 
using the implementation provided by LIGGGHTS (30) open-
source software, to record internal energies during the dynamic 
process and to sample with sufficient statistics for macroscopic 
variables of static configurations, such as the density and its fluctu-
ations in each layer of the pile.

Figure 1 serves to illustrate the setup for the granular pile used in 
our MD simulations. Specifically, Fig. 1A presents a series of snap-
shots of the pile describing the dynamic process during a single tap, 
after the perturbation has been exerted at t = 0 (leftmost panel). The 
following panels of Fig.  1A show the kinetic energy (color coded 
from blue for v = 0 over white to red for high speeds v) provided by 
the tap “spreading” through the pile and lastly getting fully dissipated. 
The dimensionless acceleration  is used to represent the tap 
intensity.

As can be seen from Fig. 1A, the energy imparted by the tap travels 
along the height of the pile neither in an instantaneous nor homo-
geneous fashion. Instead, a complex process of energy transfer and 
dissipation ensues under the influence of gravity that we intend to 
study in more detail below. It is therefore not unexpected that the 
granular density of static configurations is often measured over 
narrow layers of constant height (23, 28, 29). To measure the pack-
ing fraction , we divide the entire system into 15 cylindrical sub-
regions (“layers”), as schematized in Fig.  1B, stacked along the 
height of the pile.

In our simulations, we start from a high tap intensity and imple-
ment two distinct annealing protocols of decreasing intensity, one 
continuous and the other stepwise. For the first protocol, three 
different continuous rates of change were used. The packing fraction 
 of each layer is measured after each tap. To measure also the 
density fluctuations , corresponding to the “stationary state” at a 
given tap intensity, a stepped protocol inspired by (23) is performed. 
In this protocol, we apply a series of taps at each intensity  before 
decreasing it by decrementing the tap amplitude by an amount 
A. Last, to verify the stationarity and reversibility of the produced 
states, we repeated the stepwise protocol in the reversed direction, 
i.e., for increasing intensities.

RESULTS AND DISCUSSION
Local density and its fluctuations
Figure 2 (A to C) shows  as a function of  for three ​​ ̇ ​​ under con-
tinuous annealing for each one of the three layers located at the low, 
middle, and top of the pile marked in Fig. 1B. As previously reported 
(3), within each fixed layer, it can be seen that the data obtained at 
higher intensities  vary together, irrespective of ​​ ̇ ​​, consistent with 
equilibrium behavior. However, for lower intensities, they split off 
into separate branches for different ​​ ̇ ​​. As a consequence, the final 
density achieved for  → 0 becomes a function of the protocol. Re-
markably, the regime of  where this split occurs itself depends on 
the layer, suggesting that each strata in the pile transitions into a 
glassy state at a different tap intensity. Variations in the state 
between different parts of the pile due to gravity under the same 
perturbation have been noted previously (29). As we will show below, 

Fig. 1. Evolution of a single tap. (A) Snapshots of the cylindrical silo illustrating the pile dynamics during a single tap. At time t = 0, the tap is applied (left). The purple 
line below the snapshots shows the schematic of the corresponding perturbation. The kinetic energy injected traverses the pile (from left to right) until it is fully dissipated 
through collisions and friction. The color scale reflects the instantaneous speed of each particle, increasing from blue over white to red. (B) A schematic of the 15 disk-like 
subregions (layers) used to measure the local packing fraction, with three representative layers (for low, middle, and top) highlighted for future reference.
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these variations can be accounted for by the difference in the effec-
tive energy acting in each region.

Also shown in Fig. 2 (A to C) is the density as a function of  
obtained in the stepwise protocol. As many taps are spent at fixed 
values of  (and many more overall compared to any of the contin-
uous protocols), the densities for this protocol are well converged 
and provide an upper bound on the faster-moving, continuous pro-
tocols. Starting at high , crosses mark the decreasing protocol, 
while open circles correspond to the same protocol but reversed 
after the decreasing protocol is completed at  ≈ 0.37. Both set of 
data demonstrate that there is only a minute aging effect on its 
reversibility that can be ignored for our purposes here.

Focusing on the corresponding density fluctuations  obtained 
in the stepwise protocol, as shown in Fig. 2 (D to F), we find that 
irrespective of the direction of the protocol, the fluctuations exhibit 
identical features as a function of the tap intensity (with small quan-
titative differences in strength). It can be observed that  as a 
function of  remains almost constant for high intensities until it 
sharply peaks for lower  values, before vanishing as the intensity 
further decreases. This single-peaked behavior for each layer is con-
sistent with previously reported results (18, 28). However, we note 
that the right slope of each peak can be associated with the density 
transitioning into a glassy state, as it corresponds to the regime of 
intensities (highlighted by a blue stripe) where the splitting takes 
place in Fig. 2 (A to C) for the respective layer. This behavior is 
independent of the direction of the protocol, showing that it is a 
function of the tap intensity and not a results of a residual transient. 

Thus, although the rise in fluctuations and the onset of glassy 
behavior are aligned for each layer, neither the intensity  of the 
macroscopic perturbation nor the respective densities, as would be 
expected from Edwards’ hypothesis, allow aligning the data for all 
layers simultaneously.

Effective energy of grains
To align the onset of glassy behavior between different layers, we 
now examine in more detail the dynamic process by which each tap 
distributes energy throughout the system. It permits us to identify 
an effective energy Eeff that quantitatively collapses the transition to 
glassy behavior for the different layers of the system. In particular, 
we find a specific threshold value Ec for which particles with Eeff < Ec 
always assume glassy arrangements, apparently. To this end, we 
now look at the grain-scale dynamics of the energy transmission 
and dissipation during the tap.

Figure 3A shows the kinetic energy ke per particle [in units of mgd] 
as a function of time during the dynamics. In this example, we used 
an intermediate tap intensity of  ≈ 3.65 and averaged over particles 
belonging to the three representative layers along the pile. Each ex-
hibits an initial peak, whose value is consistent with (A)2/(2gd) ≈ 3.65, 
the kinetic energy of a particle moving with the maximum speed 
reached by the perturbation. After this initial peak and a brief 
period of energy transfer between layers, each layers follows a 
“free-fall” behavior, decreasing its velocity until near zero before 
starting accelerating downward and reaching a last peak. It is the 
value of the last peak in ke that interests us, as this is the kinetic 
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Fig. 2. Packing fraction and density fluctuations in the pile. (A to C) Packing fraction  as a function of  for layers 2, 8, and 14, respectively, located at different heights 
of the pile, marked in Fig. 1B. For the continuous protocol it is ​​​ ̇ ​​ 1​​ =  0.00002 m(​​​ 2​ / g)​ per tap (red circle), while ​​​ ̇ ​​ 2​​ = ​​  ̇ ​​ 1​​ / 4​ (blue triangle-up) and ​​​ ̇ ​​ 3​​ = ​​  ̇ ​​ 1​​ / 8​ (green squares). 
For the stepwise protocol, crosses correspond to the decreasing protocol and open circles to its reverse, i.e., increasing protocol. Insets merely enlarge main plot 
for  < 4. (D to F) Density fluctuations  as a function of  for the same three layers displayed in (A) to (C), respectively, as obtained by the stepwise protocol. For each 
protocol, 16 independent realizations were performed, and error bars in all the figures correspond to the SEM. Shaded areas mark the  range corresponding to the right 
slope of each peak in  versus .
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energy that particles dissipate when they settle. Marked by a black 
star, we will call this energy the effective energy Eeff that the perturba-
tion imparts to each specific layer. It is easy to see that Eeff is an in-
creasing function of the layer height z.

This behavior is corroborated by the transfer, gain or loss, in the 
total (kinetic and potential) energy per unit time, shown in Fig. 3B. Here, 

as enlarged in the inset, we note the initial upward acceleration of 
particles due to the tap, followed by a coherent transfer of energy 
between layers from the bottom to the top, an effect similar to the 
“stacked balls demonstration” in introductory physics. The ballistic 
free-fall behavior leaves the total energy unchanged, which ends 
with a sequence of layer-by-layer crashes, progressively shorter and 
more intense, which dissipates the remaining kinetic energy we 
marked above as Eeff.

Figure 3C shows Eeff as a function of  for the same three layers 
represented in Fig. 3A. Open symbols correspond to the continuous 
protocol following ​​​ ̇ ​​ 3​​​, while full symbols correspond to the Eeff 
obtained through the stepwise protocol. It can be seen that Eeff is 
largely independent on the protocol followed. A black dashed line 
represents (A)2/(2gd), corresponding to the kinetic energy (in units 
of million gallons per day) that a particle would acquire by moving 
with the maximum speed reached by the perturbation. The inset in 
the same figure shows a close-up of the main figure for lower values 
of . The “kink” corresponds to the intensity at which particles in a 
given layer stop separating and the system moves as a solid. For 
example, for the bottom layers, this happens at  ≈ 1, as expected 
for a solid without elastic interactions.

Data collapse as a function of Eeff
In the following, we use Eeff to collapse our data. To this end, we first 
consider the stepwise protocol. Figure 4 (A and B) shows  and , 
respectively, for this protocol as a function of , as in Fig. 2 but for 
all layers simultaneously. Layers 2, 3, 8, and 14 are highlighted by 
color. From Fig. 4B, we notice that the sharply peaked form of  as 
a function of  is present in all the individual layers but occurs, 
however, at different  values, as pointed out in Fig. 2. Hence, when 
measured for the entire pile, these individual peaks in  add up to 
form a “trough” as a function of , as shown in the inset of Fig. 4B. This 
behavior is consistent with previously reported results (17, 31).

Figure 4 (C and D) shows  and  as a function of Eeff, respec-
tively. Figure 4D shows an almost perfect alignment of the peaks of 
 as a function of Eeff, supporting the hypothesis that Eeff is a physi-
cally relevant parameter to characterize the state of the system. In 
particular, we mark Eeff = Ec ≈ 2 as the effective energy where all 
fluctuations are simultaneously peaked as the “transition energy.” 
From Fig. 4C, it can be seen that this new parameter (Eeff) also aligns 
the inflection points for the densities  in each layer in the same 
energy regime as the right slopes of .

However, a better collapse for the density in Fig. 4C is hindered 
by behavior resembling a “finite-size” effect for higher energies, 
where the data splay out systematically with the height of the layer. 
Although this residual effect is minor, we attempt to collapse 
these data further by rescaling with height z, defining the new 
scaling variable

	​​  ~ E ​ =  (​E​ eff​​ − ​E​ c​​ ) / z​	 (1)

This approach is entirely speculative and violates our desire to 
avoid system-specific parameters to unify the description. Figure 4 
(E and F) shows  and  as a function of ​​ ~ E ​​, respectively. While the 
collapse of the density  in Fig.  4E improves somewhat, the 
density fluctuations  become progressively distorted in width for 
z → 0, see Fig. 4F.

While this result appears to support the existence of a geometric 
constraint on the dynamics depending on the column height, 

Fig. 3. Energy transfer and dissipation during a tap. (A) Average kinetic energy 
⟨ke⟩ (in units of million gallons per day) for particles during the dynamic process 
(corresponding to a perturbation of amplitude A = 0.002) as a function of time [in 
color for layers 2 (red), 8 (blue), and 14 (green), as indicated by the stylized height 
chart in the inset, all other layers indicated in gray]. Initially, for t = 0, the tap (almost 
instantaneously but slightly delayed through the compression of layers below) 
accelerates particles in each layer upward to the first peak in the kinetic energy, 
consistent with (A)2/(2gd) (marked by arrow). Black stars record the effective 
energy Eeff of the last peak that is dissipated by crashing into the layer below. 
(B) Same as in (A) but plotting the corresponding power P in the transfer, gain, or 
loss, of the total mechanical energy for each layer. (C) Relation between Eeff and the 
tap intensity , as experienced by each layer for continuous and stepwise protocols 
(open and full symbols, respectively). The dashed line marks the relation for the 
entire pile to behave as a homogeneous solid. The inset shows the enlargement of 
the low-energy regime most relevant to the glassy behavior, where departure from 
plain solid behavior is most evident.
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following the proposal in (28, 32), this dependence could be explained 
using arguments based on the local expansion between particles 
mid-flight: From a configuration that would expand homogeneously, 
particles acquire a speed proportional to their relative height in the 
pile. Alternatively, this effect could also be associated with the contact 
network that particles form during flight, as has been discussed 
before (20). There it is shown that the existence of persistent con-
tacts (i.e., contacts that are never broken) during a perturbation is a 
source of memory in the system. These possible dependencies will 
be investigated in more detail in future work.

Instead, we summarize all of our data for  in Fig. 5. It demon-
strates that there is a common transition into a glassy state occurring 
in the region of energies corresponding to the right slope of the 
peak in  versus Eeff (highlighted in light red). Above it, the scaling 
in Eq. 1 collapses the data for the stepwise and all continuous proto-
cols in all layers simultaneously, whereas for Eeff < Ec, the data are 
splitting into separate branches for different annealing rates ​​ ̇ ​​ and 
between layers. Thus, the critical value Ec provides a good predic-
tion for the effective energy of particles at the glass transition. In 
contrast, the inset in Fig. 5 illustrates the breadth over which these 
transitions spread out for  as the controlling parameter, reinforcing 
the value of our new approach.

In summary, we have shown that the density fluctuations, on 
approaching the glass transition from higher energies, rise to a sharp 
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peak for each layer of the pile, before vanishing as the perturbation 
intensity decreases. By analyzing the grain-scale dynamics of the 
kinetic energy transfer and dissipation during the perturbation 
process, we have been able to define an effective kinetic energy that 
allows quantifying the energy of the transition in a unified manner 
for all layers and intensities. This is a groundbreaking statement, 
further justified by our ongoing studies on alternate settings dis-
cussed elsewhere, as prior experiments and simulations on granular 
piles were able to agree on qualitative results but struggle to achieve 
any quantitative comparison within the geometries and parameters 
they used.

According to Fig. 4, the effective energy merely allows aligning 
the data but does not achieve by itself a satisfactory collapse of , 
hinting at other relevant quantities affecting the transition internally, 
which we are currently investigating. Although the ad hoc rescaling 
with the height z reduces the apparent height dependence and 
produces a rather satisfactory collapse of the density data in Fig. 4E 
(see also Fig. 5), it unnaturally broadened the density fluctuations 
for z → 0 in Fig. 4F. Nevertheless, it provides a direction for further 
investigation into the role of other grain-scale, dynamic parameters, 
such as the network of granular contacts, or the dependence of the 
dissipated energy on the mean-free path (due to local expansion and 
frustration) among the grains. To conclude, we remark that it has 
been shown that  by itself is insufficient to completely characterize 
the (static, mechanically stable) configurations of a granular system 
(14, 18, 19, 28, 33, 34). For this reason, further work will also have to 
address the behavior under the scaling provided by Eeff for other 
macroscopic quantities, such as the stress tensor of the system.

MATERIALS AND METHODS
Figure 1 illustrates the setup for the granular pile used in our MD 
simulations. It consists of a cylindrical silo of diameter D = 2.4 cm 
with 60,000 spherical grains of slightly bi-dispersed diameters [(1 to 
1.02) mm in equal number], to reduce crystallization. The height of 
the granular pile is 12 cm, within a silo whose top (at 60 cm) was 
chosen high enough to ensure that the grains never interact with it. 
Within the LIGGGHTS (30) open-source software implementation, 
we also set a friction coefficient of  = 0.5, a young modulus of 
Y = 108 Pa, a restitution coefficient of ϵ = 0.5, a Poisson’s ratio of 
 = 0.3, and a density of  = 2500 kg/m3 for our grains. The initial 
condition for the pile is obtained by simply pouring the grains into 
the container.

The tap consists of a half sine-wave A sin (t) with constant 
frequency  = (2/0.047) Hz, with the amplitude A as the control 
parameter, applied to the silo by the movement of the entire container 
(both bottom and side walls). The dimensionless acceleration  = A2/g, 
with the gravity acceleration g, is used to represent the tap intensity. 
Numerically, we consider that the system is static when the kinetic 
energy of the whole pile drops below a threshold of 10−1 J.

Measuring local density of static configurations
To measure the packing fraction , we divide the entire system into 
15 cylindrical subregions (layers), as schematized in Fig. 1B, stacked 
along the height of the pile from z = 0.006875 to z = 0.11 m. To 
reduce boundary effects, particles closer than 2 mm from the silo 
lateral walls, ≈7mm from the silo bottom, and particles on the surface 
(z > 0.11 m) are disregarded. Each layer defined in this way con-
tains ≈2500 particles.

Three different continuous rates of change were used: ​​​ ̇ ​​ 1​​ = 
0.00002  m(​​​ 2​ / g)​ per tap, ​​​ ̇ ​​ 2​​ = ​​  ̇ ​​ 1​​ / 4​, and ​​​ ̇ ​​ 3​​ = ​​  ̇ ​​ 1​​ / 8​. The packing 
fraction  of each layer is measured after each tap. To this end, a 
Voronoi tessellation (35) of the whole system is performed, and the 
local density of each particle is obtained by dividing its volume by 
its corresponding Voronoi volume. The densities of those particles 
whose centers are in the subregion of interest are averaged to obtain 
the packing fraction  of the corresponding region.

For the stepwise protocol, we decrement the tap intensity by A = 
0.00004 m for the first seven steps and A = 0.00002 m for the 
remaining ones. For this protocol, the selection of the number of 
taps applied at each given A needed to satisfy the condition of the 
system reaching the stationary state at that A and to provide enough 
statistics for an accurate calculation of the density fluctuations. On 
the basis of preliminary inspection of our data, we found that 
500 taps were sufficient. To avoid the transient regime between 
consecutive intensities, the first 250 taps at each  are disregarded. 
Although this number is overly cautious at high tap intensities, it 
ensures that we only average over stationary states as the system 
evolves through its glassy phase. For the remaining 250 taps, we 
average over , and  is calculated as the SD of the mean.

Measuring internal energies during the dynamics
To measure the internal energy for each layer of the pile during the 
dynamics ensuing from the perturbation, we label particles with 
respect to the layers they reside in for the static configuration before 
the tap. We then track positions and velocities of all those particles 
during the dynamic process illustrated by Fig. 1A to calculate the 
average kinetic and gravitational potential energies per particle for 
each layer as a function of time. From the decrease in mechanical 
energy, we can deduce the dissipation particles from the given layer 
have experienced during the process.
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