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Abstract

Background: The accurate determination of the genomic coordinates for a given gene – its gene model – is of vital
importance to the utility of its annotation, and the accuracy of bioinformatic analyses derived from it. Currently-
available methods of computational gene prediction, while on the whole successful, frequently disagree on the
model for a given predicted gene, with some or all of the variant gene models often failing to match the
biologically observed structure. Many prediction methods can be bolstered by using experimental data such as
RNA-seq. However, these resources are not always available, and rarely give a comprehensive portrait of an
organism’s transcriptome due to temporal and tissue-specific expression profiles.

Results: Orthology between genes provides evolutionary evidence to guide the construction of gene models.
OMGene (Optimise My Gene) aims to improve gene model accuracy in the absence of experimental data by
optimising the consistency of multiple sequence alignments of orthologous genes from multiple species. Using
RNA-seq data sets from plants, mammals, and fungi, considering intron/exon junction representation and exon
coverage, and assessing the intra-orthogroup consistency of subcellular localisation predictions, we demonstrate
the utility of OMGene for improving gene models in annotated genomes.

Conclusions: We show that significant improvements in the accuracy of gene model annotations can be made,
both in established and in de novo annotated genomes, by leveraging information from multiple species.
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Background
The utility of any given genome is dependent on the
comprehensiveness and accuracy of its gene model -
annotations. Inaccuracies in the annotated locations and
structures of protein coding genes can lead to myriad
downstream errors. These include misinformed conclu-
sions about the biological properties of an organism, as
well as errors in transcript quantification, phylogenetic
tree inference, protein localisation, and protein structure
predictions. It is therefore vital to downstream analysis,
both computational and experimental, to ensure that
gene annotations are as accurate as possible.
The absolute quantity of publicly available genomic data

has grown exponentially over the past two decades, as has

the number of taxa represented [1–3], owing to the
consistently decreasing costs of acquiring whole genome
sequences [4, 5]. Accordingly, the feasibility of manual
gene model annotation has diminished progressively, with
a corresponding increase in reliance on computational
gene prediction software. As such there are numerous
tools available for the de novo and data-assisted prediction
of genes [6]. These tools typically rely on genetic signa-
tures such as GC content, codon bias, feature length
distributions, and various conserved DNA sequence
motifs. Though many of these tools are highly proficient
at gene prediction, mistakes are common. Gene prediction
tools often disagree on the quantity of genes that they pre-
dict [7–9]. Furthermore, even when gene predictors agree
on the location of a gene, the predicted intron-exon struc-
ture for that gene can vary considerably between the dif-
ferent methods [10]. Common errors include erroneous
exon/intron retention/omission, inaccurate exon/intron
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boundaries, frame errors, misplaced start codons, and
fragmentation/fusion of gene models.
When available, the use of extrinsic empirical data,

most notably RNA-seq, is the most reliable currently
available method for procuring gene models. For ex-
ample, single contiguous RNA-seq reads obtained from
mRNA sequencing can be split across multiple loci when
mapped to the genome, providing evidence for the loca-
tions of splice junctions. Unfortunately, empirical data is
generally not available for all genes in a given species:
many genes are expressed in a cell-type or cell-cycle
specific manner and for organisms with many disparate
tissue types it can be difficult to obtain RNA-seq data
that cover the full breadth of the transcriptome [11, 12].
In addition, not all gene sequences are amenable to
reliable and accurate alignment, in particular identical
duplicate genes and genes that contain repetitive regions
found in multiple other genes [13]. Furthermore library
preparation protocols and other statistical factors can
make reliable gene model inferences difficult [14–16].
Finally, there are some aspects of gene models that are
simply not revealed by RNA-seq analysis: for example
the presence of 5’UTR sequences or internal methionine
residues mean that there can often be multiple plausible
start codons locations for a given open reading frame
(ORF), and so start codon location cannot be inferred
from RNA-seq data.
Feature locations (splice sites, exons, transcription

start sites) have been shown to be highly conserved
across evolutionary timescales, often more so than the
constituent amino acid sequences they encapsulate
[17, 18], despite alternative splicing being a driver of
divergence [19]. Given various gene model predictions, if
multiple highly similar (in sequence and structure) gene
models exist for a gene across multiple taxa, they are more
likely to be biologically correct than disparate alternatives.
Several de novo gene prediction algorithms have utilised
this concept to constrain gene searches by predicting
genes in multiple genomes simultaneously: notably SLAM
[20], SGP-1 [21], TWINSCAN/N-SCAN/CONTRAST
[22, 23], and the most recent version of Augustus [24].
However, no tool currently exists that can systematically
and automatically improve the annotations of already
predicted genes by leveraging annotated gene models
from other species.
By considering orthogroups of related genes, one can

optimise the similarity of gene models across species by
seeking conserved structure across the various taxa. In
the absence of extrinsic data, it is parsimonious to
choose gene models that maximise intra-orthogroup
amino acid alignment agreement. OMGene (Optimise
My Gene) aims to improve genome annotations by opti-
mising the agreement between gene models for ortholo-
gous genes in multiple species. It is designed to function

without the need for additional empirical data, utilising
only the local genome sequences for the genes in
question, and works on existing predicted gene models.
A standalone implementation of the algorithm is avail-
able under the GPLv3 licence at https://github.com/
mpdunne/omgene. The algorithm is available as a py-
thon script, instructions for which, along with example
data sets, are included in the git repository.

Implementation
Algorithm description
The input for OMGene is a set of gene model files in
general transfer format (GTF) and a set of correspond-
ing FASTA genome files. GTF is a variant of GFF3 with
a more standardised structure. As many public gene
datasets use GFF3 format, a tool for extracting well-
formed gene entries from GFF3 files is included in the
GitHub repository. Each GTF file should contain coordi-
nates for one gene only. The FASTA file can contain one
or multiple sequences but must contain the nucleotide
sequence referenced by the GTF file. The set of GTF
files and their corresponding genome files are inputted
to OMGene using a tab-delimited CSV file: each line in
the input should contain first the file path to a gene
model’s GTF file, followed by the path to the genome for
that species. If the GTF contains multiple transcript vari-
ants then these are considered together as variants of a
single gene. Further information regarding input formats
can be found in the OMGene GitHub repository.
For each inputted gene, the algorithm defines its gene

region to be the region spanning the first and last base
of any of its corresponding gene models, with a user-
selected number of buffer bases either side (default value
is 600 bp). The initial step of OMGene is to cross-align
the amino acid sequences from each gene with the gene
regions of the other genes using Exonerate [25]. The
rationale behind this step is to find exonic regions that
are present in one or more gene models but absent from
one or more annotated gene model. This is performed
three times: first by cross-aligning the input protein
sequences against all gene regions, second by cross-
aligning the protein sequences that have been found in
the first step against all gene regions, and finally by
cross-aligning all individual exon sequences from the
first step. This three-step process mitigates against lack
of detection due to gene model errors in one or more of
the input genes. This, together with the exons from the
original gene sequences, comprises a set of potential
gene parts, which may overlap and which may be incom-
patible in reading frame. Compatible combinations of
gene parts (i.e. without frame-shift errors) are strung
together to form a putative gene model. Many such
putative gene models may exist: the set of putative gene
models with the highest alignment score (see Alignment
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score calculation below) is carried forward to the next
step. If multiple alternatives have the same alignment
score, the choice is made randomly.
The set of putative gene models from the previous step

are aligned, and the set of putative exons from all genes is
divided into adjacency groups: sets of exons that overlap
each other in the alignment (see below). Exons are added
in sequentially in these adjacency groups, and at each
stage a valid gene model is sought on the left hand side of
the gene (i.e. starting at the start codon and seeking to ad-
join exons in valid donor-acceptor pairs). Multiple options
for each gene are produced at each new junction, by
recursively seeking out, or “wiggling” splice junctions (or
start codons) in each frame either side of the existing
exons start and end points. This produces a set of junction
options for each pair of exon ends. A multipartite choice
function is then used to choose the optimal set of
exons across all secies, as described below. In the event
that a particular exon is very small (< 40 bp), or does not
yield any valid junction sites, both that exon and the one
before it are probed for removal, and the variant with the
removed exon is compared against the other partial gene
models in the evaluation step. Once this recursive step
ceases to produce new gene modes, the gene model set
with the highest alignment score is declared the winner,
and the next putative exon from the next adjacency group
is added. If multiple alternatives have the same alignment
score, the choice is made randomly. This is repeated until
there are no further exons to add.
To ensure that the optimisation process did not

overlook potentially better variants in the user-supplied
gene models, the process above is repeated. This time,
instead of varying exons start and end sites, the set of
newly created junctions are compared against the ori-
ginal junctions, aiming to find the optimal combination
of new and old junctions.
The final step involves filtering the changes based on a

selection of categories that have been observed to over-fix
gene models. Firstly, we require the alignment score α of a
10 amino acid region each side of the change to have
either remained the same or improved. This is a basic re-
quirement which should be met in most cases due to the
way in which sequence variants are chosen. Secondly,
changes that have opened gaps in the alignment in three
or more of the sequences are not allowed: this is a
common occurrence due to sequences proximal to exon
termini that by chance feature valid splice junction
sequences that are in frame with the adjacent exons and
are evolutionarily conserved. These tend not to be correct.
Thirdly, very small changes are forbidden: changes that
have resulted in two or fewer amino acids being changed
in a gapless region of the alignment, such that the new
alignment is also gapless, are ignored. Similar changes to
larger regions require an α (see Alignment score below)

increase of 4 or more. This is to avoid changes that reflect
multiple choices of donor-acceptor pairs for essentially
identical sequences. Finally, the alignment in the region of
the change must be of reasonable quality: for unchanged 5
amino acid regions either side of the region under consid-
eration, the adjusted alignment score α must be 3 or higher
(or all gaps) for some subset of three sequences containing
the sequence of interest. Similarly the resulting score for
the changed region must also be higher than 3 or all gaps.
Exon boundaries that do not pass the filters are discarded
and the genes are reconstructed a final time, allowing only
the surviving boundaries and those that were present in
the original gene. The resultant genes are outputted in
GTF, amino acid FASTA and CDS FASTA format.

Data sources
For algorithm development and evaluation, three species
sets were selected (Table 1): a set of five fungal genomes,
a set of five plant genomes, and a set of five mammal ge-
nomes. Each species set contained at least one well-
annotated model organism. Orthogroups were inferred
using OrthoFinder [26]. For the plant data set, where
multiple transcript variants were available, the primary
transcript was used as listed in Phytozome [27]. For the
mammal data set, no primary transcripts were marked,
and so for each gene the longest available transcript was
used. RNA-seq data sources are listed in Table 2. and
were downloaded from the Sequence Read Archive [28].

De novo gene prediction
De novo gene predictions were made using Augustus
[24] version 3.2.2. Training was performed using all
well-formed gene models from each species, and using
the autoAugTrain.pl script included with the software.
Augustus was run individually on each genome with the
default settings.

Alignment score
An amino acid alignment can be considered as an ordered

sequence A ¼ ðCnÞn¼l
n¼1 of columns Cn ¼ ðcn1;…; cnl Þ . The

column score γ for a column Cn is defined as the average
pairwise Blosum62 score for amino acids in that column:

γ Cnð Þ ¼
P

1≤ i< j≤ lBlos cni ; c
n
j

� �
l

The Blosum62 matrix was used as it is the most widely
used amino acid substitution matrix. The alignment score
α for an alignment A is constructed column-wise as:

α Að Þ ¼
Xl

n¼1

γ Cnð Þ

The adjusted alignment score α is defined as α ¼ α
l ,

where l is the alignment length.
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Table 1 Species sets used for algorithm validation

Species Name Source Version/Strain Taxonomy ID References

Plant species Arabidopsis thaliana JGI1 TAIR10 3702 [39, 40]

Brassica rapa JGI v1.3 3711 [27]

Carica papaya JGI ASGPBv0.4 3649 [39, 41]

Capsella rubella JGI v1.0 81,985 [39, 42]

Theobroma cacao JGI v1.1 3641 [39, 43]

Mammalian species Canis lupus familiaris NCBI CanFam3.1/AR105 6915 [44, 45]

Homo sapiens CCDS3 GRCh38.p7/CCDS20 9606 [46]

Monodelphis domestica NCBI MonDom5 / AR103 13,616 [45, 47]

Mus musculus CCDS GRCm38.p4/CCDS21 10,090 [46]

Oryctolagus cuniculus NCBI OryCun2.0/AR102 568,996 [45, 48]

Fungal species Eremothecium gossypii JG ATCC10895 284,811 [49]

Debaryomyces hansenii JGI CBS767 284,592 [50, 51]

Kluyveromyces lactis JGI CLIB210 284,590 [50]

Saccharomyces cerevisiae SGD4 S288C 559,292 [52]

Yarrowia lipolytica JGI CLIB122 284,591 [50]
1Joint Genome Institute; 2National Centre for Biotechnology Information; 3Consensus Coding Sequence Project; 4Saccharomyces Genome Database

Table 2 SRA RNA-seq data sources

Species SRA ID Instrument/details

Plants A. thaliana SRR3932355 Illumina HiSeq 2500, paired end. Wild type Columbia

B. rapa SRR2984945 Illumina HiSeq 2000, paired end. ga-deficient dwarf (gad1–2) + GA rep2

C. papaya SRR3509576 Illumina HiSeq 2500, paired end. SunUp/Sunset cultivar, young hermaphrodite leaf

C. rubella SRR3993756 Illumina HiSeq 2000, paired end. Leaf sample

T. cacao SRR3217315 Illumina HiSeq 2000, paired end. Flower/leaf sample

Mammals C. lupus ERR266386 Illumina Genome Analyzer II, paired end, brain frontal cortex, male

ERR266355 Illumina Genome Analyzer II, paired end, brain frontal cortex, female

ERR266382 Illumina Genome Analyzer II, paired end, brain frontal cortex, male

H. sapiens SRR5938455 Illumina HiSeq 2000, paired end, dorsolateral prefrontal cortex, male

M. domestica SRR500906 Illumina HiSeq 2000, paired end, brain

SRR500925 Illumina HiSeq 2000, paired end, brain

M. musculus SRR5441717 Illumina HiSeq 2000, paired end, brain (striatum)

SRR6269591 Illumina NovaSeq 6000, paired end, cerebellum

O. cuniculus ERR266399 Illumina Genome Analyzer II, paired end, brain frontal cortex, female

SRR400990 Illumina Genome Analyzer II, paired end, brain frontal cortex

SRR401040 Illumina Genome Analyzer II, paired end, brain frontal cortex

SRR401041 Illumina Genome Analyzer II, paired end, brain frontal cortex

SRR401042 Illumina Genome Analyzer II, paired end, brain frontal cortex

Fungi K. lactis SRR1200528 Illumina Genome Analyzer II, single

S. cerevisiae SRR539284 Illumina HiSeq 2000, paired end

Y. lipolytica SRR868669 Illumina HiSeq 2000, single

Dunne and Kelly BMC Genomics  (2018) 19:307 Page 4 of 18



Multipartite choice function
The multipartite choice function (Fig. 1) aims, for a set
of k gene regions and a set of lk gene model variants for
each gene region, to choose an optimal set containing
one gene model variant from each gene region such that
the alignment score is maximised. This problem is
equivalent to finding the heaviest maximal clique in an
edge-weighted complete multipartite graph. This func-
tion replaces the naïve approach of calculating pairwise
alignment scores between all options and choosing an
optimal subset, which, while optimal, is computationally
infeasible.
To reduce the complexity of the problem, options are

chosen by comparison with a reference consensus align-
ment, produced by taking the most consistent set of
amino acids for each column in a global alignment indi-
vidually (Fig. 1a-b). This column-wise optimisation is
fast, and provides a basis for the sequence-wide
optimisation. To produce the consensus, The set of ∑lk
options is aligned to the reference (the original align-
ment) using MAFFT –add [29]. The inconsistent regions
are then isolated and re-aligned using the more accurate
but more computationally intensive MAFFT L-INS-i.
For each column in the alignment, the set of amino acid
choices (one for each gene region) that optimises the
alignment score for that column is chosen.

For each option i a binary string Hi ¼ fhi1;…; hing is
produced describing for each position in the alignment
whether or not that option matches the consensus
(Fig. 1c). The chosen subset will be the set of options
that globally maximises agreement with the consensus. If
the strings {Hi}i are stacked vertically, such that they can
be read as columns fV jgnj¼1 then the task is equivalent to

finding a columnar binary string V with one nonzero entry
for each gene region such that |Vi :V Vi| is maximised.
Given the set A0 ¼ fV jgnj¼1 , an optimal subset is

deduced by sequential random sampling. Ignoring all-1
strings, an initial W0 = Vk is chosen at random from A0.
For sets S1, S2 and a set of “checkpoints” R, the set S1 is
compatible with S2with respect to R = {Ri}i if the binary
intersection S1 ∩ S2 ∩ Ri is nonzero for all i. Define
An = {a ∩Wn − 1 : a,Wn − 1 compatible w. r. t G}, where
G is the set of binary strings which are zero for all
but one gene region, at each stage choosing Wn at
random from An. The process A0, A1, A2, … eventually
converges on a single binary string. This reduction is per-
formed a user-selected number of times, the default being
1000. The result that is a subset of the largest number of
Vi is declared the winner. In the event that the result still
contains more than one option for each gene region, sub-
sets of options are calculated and their multiple alignment
score α is calculated, the winner being the subset with the

Fig. 1 Multipartite Choice Function. The choice function aims to find optimal variants from a set of protein sequences. a) Sequences are aligned;
b) A consensus alignment is produced: on a column-by-column basis the choice of amino acid for each sequence that optimises the alignment
score for that column is chosen as a representative; c) A binary representation is produced from the original alignment: for each position in alignment,
a 1 is assigned if the amino acid matches the consensus, and a 0 is assigned if it does not. This leaves a sequence of vertical binary strings. The aim is
to find a single vertical binary string that agrees with (i.e. is a bitwise subset of) as many as possible of these, and that is also compatible with the
category constraints. The best such string in this case is shown to the right in green. d) The result
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highest α. In the event that multiple subsets exhibit the
same maximal α, a subset is chosen arbitrarily from them.

Adjacency group calculation
OMGene builds genes sequentially by iteratively adding
in putative exons to multiple genes simultaneously. Care
must be taken to ensure the gene parts (which in turn
become exons once gene models are constructed) are
added in a way conducive to vertical comparison of rele-
vant regions (see Fig. 2). In OMGene, gene parts are
considered in sequential adjacency groups based on their
coordinates in a multiple sequence alignment. Prototype
gene models are formed by stringing together amino
acid sequences for individual putative exons for each
gene region: these are then aligned, and a graph is
formed from this alignment. Each putative exon is a
node on the graph, and two exons are connected by an
edge if and only if one of the exons overlaps the other
by a third or more of its length. The adjacency groups
are then defined to be cliques in this graph. Cliques are
determined using the python implementation of the
NetworkX package [30].

Junction F-score
The junction F-score for a gene is a measure of how well
the splice junctions observed in mapped RNA-seq data
are represented in the gene model. For a gene model G
and corresponding gene region R, define JG to be the set
of individual intron beginning and end coordinates in

the gene model, and define JR to be the set of mapping
junction beginning and end coordinates in the mapped
RNA-seq data. A minimum of 10 reads is required for a
given RNA-seq junction to be counted. We may then
define the junction F-score as:

jF JG; JRð Þ ¼ 2∙jP JG; JRð Þ∙jR JG; JRð Þ
jR JG; JRð Þ þ jP JG; JRð Þ

where

jP JG; JRð Þ ¼ JG∩ JRj j
JRj j ; jR JG; JRð Þ ¼ JG∩ JRj j

JGj j
The direction of each junction site (start or end of a

junction) is taken into account when considering the
intersection of the two sets.

Coverage score
The coverage score is a measure of how well RNA-seq
data represents a given gene. Given that gene expression
levels can vary considerably and irregularly across the
length of a transcript [13–16], care must be taken to
ensure the expression profile for a gene region is prop-
erly interpreted. For example, sample preparation
methods can bias coverage towards the centre and 3′
ends of the transcript; furthermore, jagged read profiles
and transcription of antisense regions [31] and other in-
tronic ncRNAs can cause expression profiles to be highly
non-binary. To mitigate this, a rolling threshold

Fig. 2 Calculation of adjacency groups. a) Amino acid sequences for individual putative exons are strung together and aligned. b) A graph is formed
with vertices formed by gene parts (or exons), and edges drawn when the overlap between two parts is greater than or equal to one third the length
of one of them. c) Cliques are extracted and then ordered lexicographically to form the adjacency groups
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approach is used. For a gene region R, and a genomic
coordinate x ∈ R, the expression characteristic χ is
defined as:

χ xð Þ ¼ minð max ρ yð Þ : y∈R; y < xf gð Þ;
max ρ yð Þ : y∈R; y > xf gð ÞÞ

Where ρ(y) is the read count at genomic coordinate y.
Bases in the gene region to which the RNA-seq data has
been mapped are categorised based on whether they are
likely to correspond to exonic or non-exonic regions: a
base x is considered to be exonic or on (i.e. likely in-

cluded in the mature mRNA) if ρðxÞ > χðxÞ
5 , and intronic

or off (i.e. likely not included in the mature mRNA) if ρð
xÞ < χðxÞ

5 . The coverage score for a gene model G = {G1,
…,Gn}, where the Gi are alternately exons and introns, is
defined as:

C Gð Þ ¼ 1
n

X
Gi exonic

x∈Gi : x onf gj j
Gij j þ

X
G j intronic

x∈Gi : x offf gj j
Gj

�� ��
0
@

1
A

that is, the average length-adjusted coverage score for
each individual feature (exon or intron) in the gene
model.

RNA-seq data
RNA-seq data were downloaded from the Sequence
Read Archive, assessed using FastQC [32], trimmed
using SeqTK [33] and aligned to the genome with Hi-
SAT2 [34, 35] using default parameters and single or
paired-end methods as appropriate. Per-base coverage
was calculated using SAMtools mpileup [36].

Subcellular localisation analysis
Subcellular localisation predictions for all datasets were
obtained using TargetP [37]. For the plant dataset only,
TargetP was run with the –P option to predict chloro-
plast targeting sequences. The localisation consistency
for an orthogroup O was calculated as an entropy score
across the categories for each gene:

H Oð Þ ¼ −
1
Oj j

X
CϵC Oð Þ

Cj j
Oj j ∙ log

Cj j
Oj j

� �

where CðOÞ ¼ fC1;…;Cng is the partition of genes in O
into their localisation categories.

Results
Problem definition, algorithm overview and evaluation
criteria
An overview of the OMGene algorithm is provided in
Fig. 3. OMGene aims to find the most consistent set of
representative gene models for a set of inputted genes
by seeking to maximise the agreement of their aligned

amino acid sequences, returning the single best gene
model for each gene. The algorithm constructs gene
models based on relatively simple constraints: AUG for
start codons; GU or GC for splice donor sites, AG for
splice acceptor sites, and UAA, UGA, or UAG for stop
codons. Other features such as codon bias or poly-
pyrimidine tracts are not considered. OMGene can also
use non-canonical translation initiation and splice sites
if inputted by the user as a command-line option.
The input for OMGene is a user-selected set of gene

models, in general transfer format (GTF), which are as-
sumed to belong to a single orthogroup. For a given set
of species, an orthogroup is the set of genes descended
from a single ancestral gene in the last common ances-
tor of those species [26]: this set may contain paralogous
as well as orthologous genes. The suggested pipeline for
using OMGene is to determine orthogroups using Ortho-
Finder [26], and to apply OMGene to each or a chosen sub-
set of these orthogroups.
OMGene uses Exonerate [25] as an initial step to

cross-align amino acid sequences from all user-supplied
genes to the genomic regions of the genes from all spe-
cies in question, in order to find conserved translatable
features. It then combines this information with the ori-
ginal gene models to produce an initial set of prototype
exonic regions, or gene parts, for optimisation. The
amino acid sequences for these prototype gene models
are then aligned, and the constituent gene parts are split
into adjacency groups based on overlaps in the align-
ment (see Implementation). Adjacency groups are se-
quentially appended to the gene models, and the genetic
coordinates are recursively adjusted and assessed to op-
timise the agreement of the amino acid sequences be-
tween species. The resultant gene models are then
subject to stringent filtering criteria before the finalised
set of gene models are presented as sets of GTF coordi-
nates, amino acid FASTA and coding sequence (CDS)
FASTA sequences.
To demonstrate the utility of OMGene, it was applied

to orthogroups formed from three sets of test species: a
set of five plant species, a set of five mammal species
and a set of five fungal species (Table 1). Prokaryotes
were not considered, as their protein coding genes lack
introns and intergenic regions are either very small or
absent and thus gene prediction is comparatively trivial.
For plants and fungi, 600 buffer bases either side of each
gene model were included, for mammals, which have
larger introns, 2000 buffer bases were used. OMGene
was applied to orthogroups that contained exactly one
gene from each species, referred to as single-copy ubi-
quitous (SCU) orthogroups. In addition, OMGene was
run on the same set but with all genes from three repre-
sentative species – A. thaliana, H. sapiens and S. cerevi-
siae – replaced with de novo predicted genes, obtained
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by running the Augustus [24] gene finder on those ge-
nomes. These species were chosen as they have the best
annotated genomes and thus the existing gene models
will provide the best possible training set for Augustus
de novo prediction. This de novo prediction analysis was
done to simulate a typical genome-sequencing project
where a user has generated a well-trained set of gene
models solely using computational prediction.
OMGene was assessed in three ways: RNA-seq data

were used to compare the accuracy of gene models before
and after application of OMGene, from both coverage (i.e.
the proportion of the predicted gene that is encompassed
by reads mapped from RNA-seq data) and splice junction
perspectives. To assess the accuracy of start codon predic-
tion, OMGene-modified gene models were subject subcel-
lular localisation prediction and the results were evaluated
for consistency across the orthogroup. The RNA-seq data
used to assess the success of OMGene were downloaded
from the NCBI Sequence Read Archive [28] and are listed
in Table 2.

Application of OMGene to publicly available datasets
Quantities and nature of changes made
The full plant data set contained 3694 SCU orthogroups,
containing 18,470 genes. Application of OMGene to this
test set resulted in gene model changes to one or more
genes in 1543 (41.8%) of these orthogroups. In total,
2017 of the inputted genes (10.9%) were altered. Of these
altered versions, 154 genes (7.6% of 2017) were present in
the original genome annotations as alternative (non-pri-
mary) transcripts for the inputted gene. Figure 4 shows
examples of various types of gene model alteration for
genes in A. thaliana. A full breakdown of per-species

change quantities for all species sets can be found in Table
3, Figs. 5 and 6; Table 4 and Fig. 7 show the distribution of
the types of changes made. All gene models that were
changed by OMGene are included in the supplementary
material as a set of GTF files.
The plant species that experienced the highest number

of changes were C. papaya and T. cacao, which is con-
sistent with them being more recently published and less
well-studied genomes. For all species, more nucleotides
were removed than were added, indicating either that
gene models predictions tend to be over-cautious or that
OMGene is more proficient at removing material than
at adding it in. In terms of the types of changes made,
exon deletion was by far the most commonly seen
change, followed by moved start codon and exon bound-
ary adjustment (Fig. 7). It should be noted that exon dele-
tion events also encapsulate the separation of erroneously
fused gene models, which can contribute many exon dele-
tion events simultaneously.
For the mammal data set, 8771 SCU orthogroups were

considered, containing 43,855 genes. Of these, 2100
orthogroups (23.9%) saw some change, with 2686 genes
(6.1%) undergoing alterations. Most gene changes oc-
curred in C. lupus, M. domestica, and O. cuniculus,
which, compared to M. musculus and H. sapiens, are less
well studied and more recently annotated. By far the
most common alterations here were removed exons and
moved start codons, which is likely partially due to the
choice of representative gene model for input to
OMGene – the longest.
For the full fungal data set, 2710 SCU orthogroups

were considered, containing 13,550 genes. Of these, 100
orthogroups (3.7%) exhibited some change, and 109

Fig. 3 Simplified overview of OMGene workflow. a) Gene regions are extracted from around the gene model; b) Exonerate is used to cross-align
all constituent exons and full open reading frames to construct basic prototype gene models; c) The exonic regions from these prototype gene
models are sorted into adjacency groups, which are then sequentially optimised using the multipartite choice function;
d) Results are compared against the original gene models to incorporate potentially overlooked combinations, and filtered under various criteria
to produce results
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genes (0.8%) were altered. In this case, the genes in E.
gossypii were the most commonly altered, consistent
again with it being one of the lesser-studied species on
the list. By far the most common change type in the fun-
gal data set was a moved start codon, consistent with
the fact that splicing is a rare event in fungal genes (on
average 5.09 exons for plants, 11.23 exons for mammals,
1.08 exons for fungi).
To simulate a de novo genome annotation project,

OMGene was also applied to the same three data sets
with de novo predicted gene models for representative
species, A. thaliana, H. sapiens and S. cerevisiae. These
species were chosen as they have the most complete an-
notations of their respective data sets, and therefore
these genes are likely to be the most reliable for training
a gene finding algorithm. The genome annotation tool

used was Augustus (see Implementation) as it is one of
the best and most frequently used gene prediction
algorithms.
For the plants data set with Augustus predictions for

A. thaliana, 3694 SCU orthogroups were considered. Of
these, 598 (16.2%) saw some change in an A. thaliana
gene. Similarly, for the mammal data set, 7311 SCU
orthogroups were considered, of which 2907 saw
changes in a H. sapiens gene. For both A. thaliana and
H. sapiens most changed genes underwent several indi-
vidual changes. For the fungi data set, 2710 SCU
orthogroups were considered. Of these, 19 (0.7%) saw
some change in a S. cerevisiae gene. Tables 3 and 4 show
a full breakdown of the types and amounts of changes
made. As expected, in both cases, the total number
changes and the average size of change made is greater

Fig. 4 Examples of individual gene model changes for genes in A. thaliana. a) AT1G01320.1, orthogroup OG0010924, exon extension, splice
acceptor side; b) AT1G76280.3.TAIR10, orthogroup OG10336, exon contraction, splice acceptor side; c) AT1G22860.1, orthogroup OG0010738,
novel exon introduced; d) AT2G38720.1, orthogroup OG0009331, removed exon; e) AT3G01980.3, orthogroup OG0011814, novel intron
introduced; f) AT4G14590.1, orthogroup OG0010029, intron removed; g) AT3G01380.1, orthogroup OG0012127, moved start codon; h)
AT5G11490.2, orthogroup OG0013306, complex event: exon has been removed and the previous exon boundary has been extended to include
the stop codon
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for the de novo predicted gene models than the curated
gene models. However, the distribution of types of
changes made remained roughly the same.

Splice junction and feature coverage analysis
To assess the validity of changes made by OMGene,
both the original and the updated gene model sets were
compared using publicly available RNA-seq data from the
NCBI Sequence Read Archive [28] (see Implementation
and Table 2). Data were downloaded for all species except
E. gossypii and D. hansenii, for which no adequate data
were available. Each amended gene was assessed in two
ways relative to this data: firstly by comparing the exact
splice junction locations with RNA-seq derived splice
junctions; secondly by evaluating the coverage of exonic
regions with RNA-seq. To control for unreliable data,
some genic regions were omitted from this analysis. Gene
regions in which the RNA-seq data suggested there were
indels in the reference genome, or that were within
1000 bp of the end of a contig or scaffold, or that con-
tained 10 or more contiguous “N” nucleotide bases were
omitted from the analysis (see Implementation). Regions
with these characteristics prevent the creation of reliable
gene models, and so are deemed here “unassessable” and
not useful for determining gene model accuracy. Gene

regions with very low coverage were also omitted from the
junction score analysis: gene regions required at least one
base with a read depth of 10 or more.
Gene models outputted by OMGene were assessed on

whether or not their junction and coverage F-scores (see
Implementation) had improved or been reduced. The
full results can be seen in Table 5. For the plant data set,
OMGene improved the agreement of the gene model
with the splice junctions inferred from RNA-seq data for
729 assessable genes, while 125 assessable gene models
exhibited reduced agreement (85.3% improved). Simi-
larly, when assessing RNA-seq coverage of gene models
OMGene improved the agreement of the models with
the data for 1026 genes, while 167 genes exhibited
reduced agreement (86.0% improved). For the de novo
predicted A. thaliana genes, the success rates were
essentially the same as for the public data (87.3% and
91.1% improved by junction and coverage F-scores
respectively), but the absolute quantity of genes
exhibiting a changed score increased roughly four-fold.
This difference represents the considerable effort and
evidence-based curation that has been invested in the
A. thaliana genome annotation.
For the mammals, 948 assessable changed genes (79.2%)

had an improved junction score compared to the original

Table 3 Per-species gene change breakdown

Species No. changed
genes

Nucleotides added/removed (means per change) In original annotation as
alternative “non-primary”
gene model

+ (mean) + (mean) + (mean)

Plants A. thaliana 175 1749 (43) −23,747 (−118) −22,139 (−92) 53 (30.3%)

B. rapa 97 1787 (58) −25,740 (−250) − 23,953 (− 179) 4 (4.1%)

C. papaya 540 23,820 (65) −72,053 (− 128) −48,233 (−52) 0 (0.0%)

C. rubella 298 6568 (71) −55,005 (− 170) − 48,437 (−117) 2 (0.7%)

T. cacao 556 3700 (45) −120,984 (−118) −117,284 (− 124) 95 (17.1%)

TOTAL 1666 37,624 (61) − 297,529 (−145) − 259,905 (−97) 154 (9.2%)

A. thaliana de novo 598 13,623 (42) −167,038 (−35) −51,177 (−57) N/A

Mammals C. lupus 698 8993 (64) −98,467 (−117) −89,474 (−91) 375 (53.7%)

H. sapiens 397 4429 (59) −41,401 (−101) −36,972 (−76) 218 (54.9%)

M. domestica 787 8637 (53) −100,256 (−101) −91,619 (−80) 349 (44.3%)

M. musculus 270 9685 (120) −19,236 (−79) − 9551 (−29) 81 (30.0%)

O. cuniculus 534 12,038 (61) −72,398 (− 112) −60,360 (−71) 243 (45.5%)

TOTAL 2686 43,782 (67) −331,758 (− 106) −287,976 (−76) 1266 (47.1%)

H. sapiens de novo 2907 251,344 (79) − 952,864 (−167) − 701,520 (−79) N/A

Fungi E. gossypii 46 0 (0) − 4338 (−93) −4338 (−93) N/A

D. hansenii 13 0 (0) − 2080 (−149) −2080 (−149) N/A

K. lactis 11 0 (0) − 1314 (− 110) −1314 (−110) N/A

S. cerevisiae 11 93 (93) − 2483 (− 191) − 2390 (−170) N/A

Y. lipolytica 23 117 (29) − 4186 (− 199) − 4069 (− 163) N/A

TOTAL 104 210 (42) −14,401 (− 135) − 14,191 (−127) N/A

S. cerevisiae de novo 19 601 (120) − 5561 (− 347) − 4960 (−236) N/A
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gene model. In addition, 82.83% of assessable genes had
improved RNA-seq coverage scores. For the de novo data,
89.4% of assessable predicted H. sapiens had an improved

splice junction score after application of OMGene,
and 88.74% had an improved coverage score. The
numbers of changed genes were again considerably
more for the de novo predicted H. sapiens data, again
indicating the high degree of attention that has been
afforded to the annotation of this species.

Fig. 5 Chart showing the number of changes made. a) C. papaya
and T. cacao experienced the most changes in the plant data set.
The de novo predicted gene models for the A. thaliana genome
underwent three times more changes than the publicly available
one. b) The number of changes in mammals was roughly the same
as in plants. As expected, M. musculus and H. sapiens experienced
the fewest changes. The de novo predicted gene models for H.
sapiens underwent considerably more changes than the curated
genome annotation. c) The number of changes made was
significantly less for the fungi data set. As for the plants and
mammals, the de novo predicted genes for S. cerevisiae underwent
more changes than the curated version

Fig. 6 The average number of nucleotides added or removed from
gene models as a result of changes made by OMGene. The units of
the y-axis are the number of nucleotides. a) Average magnitudes of
each change for plants; b) Average magnitudes for changes made
to mammal genes; c) Average magnitudes for changes made to fungal
genes. In all cases, predicted gene sequences were shortened to a
greater extent than they were lengthened.
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The results for the fungal data set (see Table 6) were
not as good. Notably very few gene models showed any
change in junction F-score, with only 8 genes exhibiting
a changed score. This is due to the relatively simple exon
structure of fungal genes, for which splicing is very rare,
and splicing events predicted by OMGene are much less
likely to be correct. In this case 3 genes had an improved
score, and 5 had a reduced score (37.5% success), with
all 5 of the losing genes coming from Y. lipolytica. The
most common change made to fungal genes was a
moved start codon, which, although not detectable in
the junction F-score, can be detectable in the coverage
F-score. This is reflected in the results, where 30 genes
showed an improved coverage F-score and 10 genes
showed a worse coverage F-score (75% improved). In the
de novo case, again the numbers increased while the per-
centage success remained roughly the same, with 4
(100%) genes improving by junction for S. cerevisiae and
11 (64.7%) improving by coverage score. The highly
compact nature of fungal genomes, with few exons and
limited space between genes means that the accuracy of
de novo predicted genes is higher than in plants and
mammals. Thus the utility of OMGene on these com-
paratively simpler genomes is limited.

Many of the cases for which OMGene results differ
from RNA-seq evidence are attributable to real bio-
logical variability that confounds the evaluation criteria
of the algorithm. For example, there are some instances
where the most evolutionary conserved splice site was
not the splice site observed in the RNA-seq data. Such
events, by definition, cannot be detected by OMGene.
Furthermore, RNA-seq mapping errors also contributed
to reduced scores, as did artefacts resulting from spliced
UTRs, and jagged read profiles, particularly in the fungal
data, that made some coverage scores difficult to calcu-
late reliably. Finally, the presence of multiple transcript
isoforms within the RNA-seq data can reduce the score
for a valid transcript even if it is the best choice for that
particular gene. While users of OMGene should be
aware of these confounding factors, the above data
demonstrates that, in general, OMGene is much more
likely to improve a given gene model than not even for
extensilvey curated genomes.

Assessment of subcellular localisation predictions for
5′ end analysis
Given that genes from the same orthogroup are, by
definition, descended from a single ancestral gene, it is

Table 4 Summary of gene model change categories

Species No.
changes

Exon boundary Exon Intron Moved start

contraction extension add del add del

Plants A. thaliana 242 47 23 4 117 5 13 33

B. rapa 134 11 14 9 56 3 8 33

C. papaya 928 148 205 95 345 18 42 74

C. rubella 415 32 32 39 101 1 19 191

T. cacao 949 117 59 9 624 10 13 117

TOTAL 2668 355 333 156 1243 37 95 448

A. thaliana de novo 1344 151 255 49 780 2 10 97

Mammals C. lupus 980 116 72 38 418 9 4 323

H. sapiens 485 31 43 29 223 0 0 159

M. domestica 1148 122 89 56 472 19 3 387

M. musculus 324 20 29 42 111 6 6 110

O. cuniculus 834 139 122 43 245 18 9 258

TOTAL 3771 428 355 208 1469 52 22 1237

H. sapiens de novo 8883 606 1128 1866 4217 16 17 1033

Fungi E. gossypii 46 0 0 0 1 0 0 45

D. hansenii 13 0 0 0 1 0 0 12

K. lactis 11 0 0 0 0 0 0 11

S. cerevisiae 13 1 0 0 0 1 1 10

Y. lipolytica 24 0 0 0 4 5 0 15

TOTAL 107 1 0 0 6 6 1 93

S. cerevisiae de novo 20 0 2 0 4 0 2 12
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reasonable to assume that they should be consistent in
their predicted subcellular localisation. Several sub-
cellular targeting sequences are located at the N-termini
of genes [38], thus one expects genes with inaccurately
predicted start codons to yield inaccurate results when
assessing their targeting signals. Genes belonging to
orthogroups changed by OMGene were assessed to
determine whether the changes resulted in increased
consistency of the predicted subcellular localisation of
all genes in the orthogroup. Targeting predictions were
made using TargetP [37], and Shannon entropy was cal-
culated to assess the consistency of the predictions within
the orthogroups (see Implementation). Entropy scores
were compared only for orthogroups in which at least one
gene model was altered by OMGene. An entropy score of
0 indicates that all members of the orthogroup are pre-
dicted to localise to the same sub-cellular compartment;
the worst possible entropy score given five genes and four
possible localisations identified by TargetP (chloroplast,
mitochondrion, secreted, cytoplasmic) is − 2

5 log2ð15Þ− 3
5

log2ð15Þ ≈ 1:92 , indicating that only two of the genes
agree. An example orthogroup whose prediction entropy
score has been improved by start codon adjustment can
be seen in Fig. 8.
The 1543 plant orthogroups in which one or more

genes were altered were subjected to subcellular predic-
tion analysis (Table 6). Of these, gene model changes
made by OMGene resulted in changes in predicted sub-
cellular localisation for one or more constituent mem-
bers of 55 orthogroups. In total, 74 improved agreement
between gene models (74%), 13 remained the same
(13%), and 13% increased disagreement between pre-
dicted subcellular localisation of gene models. The effect
was more profound for the mammal data: 509
orthogroups showed a change in localisation predictions
for one or more of their genes, 444 of which (87.2%) re-
sulted in improved predicted localisation consistency. The
data for fungi were sparser: only 7 out of 95 changed
orthogroups exhibited a change in subcellular localisation
prediction, with 6 of these changes improving the
consistency of localisation prediction (85.7%) and 1 in-
creasing disagreement (14.3%).
Similar results were obtained for the de novo annota-

tion analysis in plants, although again the data were
sparse here. Orthogroups containing the de novo pre-
dicted A. thaliana genes were considered together with
the four original genes for the other species. Here, 11 of
the A. thaliana genes experienced a change in subcellu-
lar localisation following application of OMGene. Of
the 11 orthogroups containing these, 9 improved
consistency (81.9%) and 2 reduced the consistency
(18.2%). For de novo H. sapiens predictions, 527 of
the start codon changes resulted in a change in subcellu-
lar localisation prediction change for H. sapiens. In 458
(86.9%) of these cases, this improved the consistency of

Fig. 7 Distribution of types of changes made in the three data sets.
a) The most common change in plants was exon deletion. b)
Moved start codons and removed exons were most common in
mammals. c) In fungi, the most common change was
overwhelmingly a moved start codon
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the orthogroup. For the fungal data set, the data were ex-
tremely sparse, with only one gene experiencing a change
in its targeting prediction, which reduced the consistency
for its orthogroup. Thus, although data were sparse for
the fungal dataset, in each of the plant, mammal, and fun-
gal datasets the consistency of gene models was on the
whole improved from a subcellular targeting perspective.

Discussion
Here we present OMGene, an automated method for
improving the consistency of gene model annotations
across species. OMGene is intended for use in computa-
tional de novo genome annotation projects where no
empirical data (such as RNA-seq data) is available to

train or correct gene model predictions, or to assist the
construction of gene models for genes that are not
expressed in the data available. OMGene is also designed
to help users who wish to leverage conservation informa-
tion to correct gene models of a single gene of interest
across a set of species. Thus OMGene is suitable for both
large and small scale analyses.
OMGene is run as a python script with a tab-

delimited input file, each line of which contains the path
to a GTF file, containing coordinates for a single gene,
and the path to its corresponding genome FASTA file.
Full instructions for running OMGene can be found at
the OMGene GitHub repository (https://github.com/
mpdunne/omgene).

Table 5 RNA-seq coverage and junction F-scores

Species Junction F-score Coverage F-score

Better Worse Better Worse

Plants A. thaliana 94 (87.8%) 13 (12.1%) 109 (91.5%) 10 (8.4%)

B. rapa 24 (63.1%) 14 (36.8%) 29 (56.8%) 22 (43.1%)

C. papaya 246 (82.2%) 53 (17.7%) 344 (83.9%) 66 (16.0%)

C. rubella 90 (89.1%) 11 (10.8%) 186 (91.6%) 17 (8.3%)

T. cacao 275 (88.9%) 34 (11.0%) 358 (87.3%) 52 (12.6%)

TOTAL 729 (85.3%) 125 (14.6%) 1026 (86.0%) 167 (13.9%)

A. thaliana de novo 422 (87.3%) 61 (12.6%) 475 (91.1%) 46 (8.8%)

Mammals C. lupus 323 (85.9%) 53 (14.1%) 478 (86.28%) 76 (13.72%)

H. sapiens 102 (82.9%) 21 (17.1%) 258 (87.46%) 37 (12.54%)

M. domestica 239 (72.2%) 92 (27.8%) 439 (76.48%) 135 (23.52%)

M. musculus 71 (62.3%) 43 (37.7%) 133 (71.12%) 54 (28.88%)

O. cuniculus 213 (84.2%) 40 (15.8%) 353 (86.10%) 57 (13.90%)

TOTAL 948 (79.2%) 249 (112.5%) 1661 (82.83%) 359 (17.77%)

H. sapiens de novo 832 (89.4%) 99 (10.6%) 2017 (88.74%) 256 (11.26%)

Fungi K. lactis 0 (N/A) 0 (N/A) 9 (100.0%) 0 (0%)

S. cerevisiae 0 (N/A) 0 (N/A) 6 (75.0%) 2 (25.0%)

Y. lipolytica 2 (28.5%) 5 (71.4%) 11 (64.7%) 6 (35.2%)

TOTAL 3 (37.5%) 5 (62.5%) 30 (75.0%) 10 (25.0%)

S. cerevisiae de novo 4 (100%) 0 (0%) 11 (64.7%) 6 (35.2%)

Table 6 Subcellular localisation predictions

Category No. orthogroups with
changed localisation
predictions

Entropy score

Better Same Worse

Plants Public data 55 42 (76.4%) 5 (7.7%) 8 (14.5%)

A. thaliana de novo 11 9 (81.9%) 0 (0%) 2 (18.2%)

Mammals Public data 509 444 (87.2%) 19 (3.7%) 46 (9.0%)

H. sapiens de novo 527 458 (86.9%) 23 (4.4%) 46 (8.7%)

Fungi Public data 7 6 (85.7%) 0 (0%) 1 (14.3%)

S. cerevisiae de novo 1 0 (0%) 0 (0%) 1 (100%)
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OMGene results reflect differences in gene model
complexity between species sets
To demonstrate the utility and performance characteris-
tics of OMGene, it was applied to three separate datasets
of well-annotated plant, mammal and fungal genomes.
When applied to the plant data set, OMGene altered the
gene models of one or more genes in 41.8% of the
orthogroups that were evaluated; when applied to the
mammal data set, 23.9% of SCU orthogroups saw
some change. In contrast, only 3.7% of orthogroups
were subject to modification in the fungal data set.
This result reflects the differences in gene model
complexity between the three species groups. Specific-
ally, gene models in plants tend to have more exons
than fungi (mean = 5.09 exons for plants, 11.23 for
mammals, 1.08 exons for fungi) and thus there is
considerably more potential for gene model variation
in plants and mammals than in fungi. In light of this
it was unsurprising that the most frequently observed
change made in fungi was a change in choice of start
codon. This is also reflected in the high number of
removed exons from plant and mammal genes, which
is contributed to partly by the separation of errone-
ously fused adjacent genes.

OMGene works well on complex gene models
The changes made by OMGene were assessed relative to
splice-mapped RNA-seq data to assess the level to which
it had improved the gene models. For the plant data set,
the results from OMGene clearly resembled the empir-
ical data more closely, with 85.4% and 86.0% of genes
improving in terms of their splice junctions and their
coverage respectively. The profiles were different for
different species, with many more changes being made
for C. papaya and T.cacao; in addition the number of
successes for B. rapa was slightly lower than for the
other species.
In mammals, the three non-model species, C. lupus,

M. domestica, and O. cuniculus faired well in terms of
their junction scores. H. sapiens genes also typically
scored highly, but M. musculus genes did not do so well.

The reason why mouse genes changes were less success-
ful than human gene changes is unknown. These two
species also saw considerably fewer gene model changes
than the other species. In all cases, mammal genes were
mostly contracted via the removal of exons or by moving
the start codon – this is at least partly due to biases in
the choice of longest gene model as representatives for
these genes.
The number of junction changes made for the fungal

data set was considerably lower: only 8 changed genes
had an altered junction F-score, 62.5% of which become
worse after OMGene. Though this is less than the plant
data set, it should be noted that the resolution of this
data set does not lend itself to accurate conclusions
about the general validity of changes made to fungal
genes. The resolution and success rate for fungal genes
from a coverage perspective was slightly higher, with
75% of the genes with changed scores improving. The
low resolution of junction data for fungal genes reflects
the rarity of complex gene models in these species, and
thus the low likelihood that deviations from simple,
single-exon gene models are correct. Thus, while
OMGene does not always produce gene models that
agree with transcriptome data, it does improve the over-
all quality of gene model annotations even for relatively
simple fungal genomes.
The improvements in gene model accuracy made by

OMGene for the de novo predicted gene models were
much the same as for the publicly available, curated gene
models. However, the number of changes made to the
de novo predicted set was much greater, indicating that
the considerable labour that has been applied to these
model organisms has successfully controlled for
potential errors. It should be noted that, although
OMGene managed to improve many of the gene
models outputted by Augustus, the two agreed in
most cases (86.1%, 60.3% and 98.6% for plants, mam-
mals and fungi respectively), indicating that the basic
implementation of a well-trained Augustus de novo
prediction produces genes that are highly consistent
between species.

Fig. 8 Example change in subcellular localisation prediction for a gene. Thecc1EG021604t1.CGDv1.1 from T. cacao has undergone a change in start
codon, revealing a signal peptide at its 5′ end. In this case, what was previously assumed to be cytosolic has been found to be targeted
to the secretory pathway, the same as the other members of the orthogroup (OG0009265). In this case, the Shannon entropy score for the
orthogroup has fallen from 0.72 to 0
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OMGene improves the consistency of subcellular
localisation predictions
In addition to assessment of coverage and splice junctions,
gene models were assessed by the consistency of their pre-
dicted subcellular localisation. Given that the orthogroups
used in this analysis comprise ubiquitously conserved
single copy genes, it is logical to assume that these genes
should generally have the same subcellular localisation.
For the full plant data set, of all orthogroups whose genes
had different subcellular targeting predictions after appli-
cation of OMGene, 76.4% had improved intra-orthogroup
consistency, with 85.5% either improving or remaining the
same. In mammals, 87.2% of orthogroups whose subcellu-
lar localisation predictions were changed by OMGene
showed improved consistency. For the full fungal data set,
although the data were sparse, 85.7% of the orthogroups
considered had improved consistency.
The results for the plant data set were similar for the

de novo annotated set (85.7% improvement), as was also
the case for mammals (86.9% improvement). For fungal
orthogroups containing de novo predicted S. cerevisiae
genes, the only gene whose localisation prediction changed
caused the consistency of its orthogroup to decrease, how-
ever the resolution of the data in this case is not sufficient
to draw any conclusions. Thus, application of OMGene
improves the accuracy of start codon specification in de
novo predicted gene models.

Conclusions
When applied to publicly available plant, mammal and
fungal data sets, OMGene demonstrates proficiency in
improving gene models from multiple perspectives. Due
to stringent filtering criteria, it does not fix all errant
gene models, however the gene models that it does fix
represent an improvement the majority of the time. The
overall improvement is larger for genomes with complex
gene models.
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