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Abstract: The focus of this study was to investigate the influence of prebiotics, such as fructooligosac-
charides (FOS), on laying performance, egg quality, apparent fecal amino acid digestibility, jejunal
morphology, hematological indices, immunological response, and antioxidant capacity in laying hens.
A total of 216 healthy Hy-Line Brown laying hens aged 30 weeks were randomly assigned to one of
three dietary treatments: basal diet, basal diet supplemented with 0.3 percent FOS, or 0.6 percent FOS.
For 84 days, each treatment was fed the corresponding experimental diet. According to the findings,
dietary supplementation with FOS enhanced laying performance and egg mass while lowering
mortality rate. Albumen height, thick albumen content, Haugh unit, and eggshell thickness were
also improved by the prebiotics. Prebiotics also boosted antioxidant status by increasing the activity
of antioxidant enzymes, improved morphological development of the jejunum as demonstrated
by significant increases in villi height, villi width, ratio of villi height to crypt depth, and reduced
crypt depth. The prebiotics group showed a considerable increase in immunoglobulin M, G, and A
(IgM, IgG, and IgA) levels, as well as a similar effect on complement proteins (C3). Furthermore,
the apparent fecal amino acid digestibility of most essential amino acids was significantly enhanced.
Conclusively, fructooligosaccharides at inclusion level of 0.6% efficiently enhanced laying perfor-
mance and production of high-quality eggs while positively modulating amino acid digestibility,
jejunal morphology, antioxidant status, and immune functions of the laying hens.

Keywords: prebiotics; fructooligosaccharides; laying performance; albumen quality

1. Introduction

Eggs are a vital part of human diets; thus, contribute to human nutrition due to
their nutritive content, better bioavailability, and protein digestibility [1]. Not only are
whole eggs consumed as food but the use of liquid egg products such as albumen, owing
to its technological properties as functional food, raw materials for health and the food
processing industry has gained research interest in recent times. Bioactive peptides of
albumen proteins have gained attention due to their application for human drugs [2,3],
controlling astringency in wines [4], improvement in food texture [5], and as antimicrobial
agents for food safety [6,7]. Additionally, albumen of strong elasticity and thick albumen
content extends shelf life of eggs [8]. All these highlight the crucial need to produce eggs of
high-albumen quality for human benefit.

Production of high-quality eggs may reflect the capacity of laying hens to absorb and
utilize nutrients in response to a change in feeding strategies. Laying hens are prone to ox-
idative stress and immunity challenges due to the environment and high metabolic demand
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owing to egg production [9]. In order to meet up with the challenging task of improving
egg production, egg quality, and animal health, farmers often adopt the application of
synthetic antimicrobials and growth enhancers [10]. However, eggs are one of the most
commonly consumed animal proteins; thus, use of antibiotics may produce eggs that are
not healthy or safe due to contamination with antibiotic residues [11]. Hence, production of
high-quality eggs that are safe is achieved with adoption of nutritional strategies because
diets contain various nutrients for maintenance and production in laying hens. This has
harnessed the exploration of other growth-enhancing and immune-strengthening alterna-
tives, as natural safe feed additives and total replacement for antibiotics [12]. The use of
prebiotics as a safe feed additives and replacement for antibiotics in poultry production
has gained attention [13].

Prebiotics as feed additives are considered as non-digestible oligosaccharides, which
serve as a fermentable substrate to enhance the growth of beneficial microflora and probably
function as competitive adhesion sites for pathogenic bacteria [14]. Therefore, prebiotics can
be utilized in the livestock sector as safe feed additive to improve animal health and perfor-
mance [15]. Most commonly used prebiotics in poultry industry are: xylooligosaccharides
(XOS), mananoligosaccharides (MOS), chitooligosaccharides (COS), and fructooligosaccha-
rides (FOS). Fructooligosaccharides are resistant to enzymatic degradation, while being
absorbed in the upper gut and they enters into the caecum where most of the fermentation
process occurs in avian species, probably due to their possession of β-linkages [16]. The
fermentation of most prebiotics in the gut and their capacity to create a favorable microeco-
logical environment in the gut may account for their effect on laying performance [17].

Eggs are the main output in the laying hen industry; egg production rate and quality
determine production efficiency and economic returns. Various reports have shown that
prebiotics improve egg production and performance [14,18,19], although some studies
reported no effect of prebiotics on egg production [20,21]. In same line, egg quality reflects
the internal (albumen and yolk) and external components (shell) of eggs which must be
maintained to enhance the availability of functional food ingredients for the food industry.
Previous studies reported that dietary prebiotics improved shell quality [19,20] and albu-
men quality [18,22,23] in laying hens, but some showed no effect on shell thickness [24]
and Haugh unit [20].

Furthermore, production of high-quality eggs, a reflection of both external and internal
components of the egg, is orchestrated by physiological processes which hinges on nutrient
utilization and animal health. Disruptions in animal health and metabolic status often
result in: alteration in the quaternary and secondary structure of the albumen protein [25],
cause gut dysfunction and render the animal vulnerable to pathogen invasion [17], and
may impair the oviduct health [26] leading to poor laying performance and egg quality.
Prebiotics have the potential to protect host immunity, mitigate oxidative stress, improve
intestinal health and, consequently, egg production and egg quality [14,19,27,28]. Therefore,
improving the physiological status of the birds as a boost to nutrient utilization in laying
hens is essential for production of high-quality eggs.

It becomes expedient to investigate the possible role of prebiotics in improving al-
bumen quality. The evidence remains rather limited with respect to the dosage and the
underlying mechanism for effect on egg quality in laying hens. For this reason, the present
study sought to investigate the beneficial potential of FOS as feed additives at different
inclusion levels on performance, egg quality, intestine health, amino acid digestibility,
blood and serum parameters of laying hens.

2. Materials and Methods
2.1. Ethics Statement

All the experimental procedures were approved by the Animal Care and Use Com-
mittee of Feed Research Institute of the Chinese Academy of Agricultural Sciences, Beijing.
The approval number of animal ethics is CAAS.No20200507S0600103.
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2.2. Experimental Design and Bird Management

A total of 216 Hy-Line Brown laying hens (30 weeks old, egg production rate = 89.0
± 1.5%) were randomly assigned to one of three treatment groups, each consisting of 6
replicates and 72 hens. In total, 12 birds in four neighboring cages were considered as a
replicate with three birds housed in one cage (40 40 35 cm) fitted with a nipple drinker and
a trough feeder. The hens were given ad libitum feed and water, and they were vaccinated
and handled according to the Hy-line International Online Management Guide (Hy-Line
International, West Des Moines, IA, USA, 2011). The laying hens were fed corn-soybean
laying hen diets in a mash form (basal diet) prior to the experiment and the diet was
of standard and adequate in all nutrients. The basal diet was formulated to meet the
nutrient requirements of the National Research Council (NRC, 1994) and Chinese Feeding
Standard of Chicken (NY/T, 33-2004), and its ingredient composition and nutrient levels
are presented in Table 1. The control group was provided a basal diet without prebiotics
supplementation. The two treatment groups were offered the basal diet supplemented
with either 0.3% or 0.6% FOS, respectively. The fructooligosaccharides were provided by
Cofco Nutrition and Health Research Institute, China. The experiment was performed over
14 weeks (30–44 weeks of age) consisting of 2 weeks of an acclimation or feed transition
period and 12 weeks of experimentation.

Table 1. The composition and nutrient levels of the basal and prebiotics-supplemented diets.

Ingredients T1 T2 T3

Corn 63.4 62.79 62.15
Soybean meal 25.46 25.58 25.71

Oil 0.00 0.19 0.40
Stone powder 8.76 8.76 8.76

DL-methionine 0.18 0.18 0.18
Dicalcium phosphate 1.6 1.6 1.6

Salt 0.16 0.16 0.16
Premix (choline chloride) 0.25 0.25 0.25

FOS 0.0 0.3 0.6
Sodium sulfate 0.17 0.17 0.17

Phytase 0.02 0.02 0.02
Total 100 100 100

Nutrient Content %

Crude protein 16.50 16.50 16.50
Calcium 3.50 3.50 3.50

Total phosphorus 0.60 0.60 0.60
Available phosphorus 0.39 0.39 0.39
Metabolizable energy 11.23 11.23 11.23

SID methionine 0.434 0.434 0.433
SID lysine 0.796 0.796 0.798

SID tryptophan 0.176 0.176 0.176
SID threonine 0.560 0.560 0.561

SID methionine+ cysteine 0.653 0.652 0.651
SID isoleucine 0.666 0.666 0.667
SID cysteine 0.240 0.239 0.239
SID valine 0.746 0.746 0.746

SID arginine 1.030 1.031 1.033
SID leucine 1.414 1.412 1.410
SID serine 0.776 0.776 0.776

SID glycine 0.616 0.616 0.616
The values are calculated values. AME: apparent metabolizable energy. Vitamin and mineral premix provided the
following per kg of diets: VA: 12,500 IU; VD3: 4125 IU; VE: 15 IU; VK: 2 mg; VB1: 1 mg; VB2: 8.5 mg; VB6: 8 mg;
VB12: 5 mg; calcium pantothenate: 50 mg; niacin: 32.5 mg; biotin: 2 mg; folic acid: 5 mg; choline: 500 mg; Mn: 65
mg; I: 1 mg; Fe: 60 mg; Cu: 8 mg; Zn: 66 mg. SID—standard ileal digestibility; T1—basal diet; T2—basal diet +
0.3% FOS-fructooligosaccharides; T3—basal diet + 0.6% FOS-fructooligosaccharides.
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On a daily basis, the controlled pen house environment comprised 16 h of light,
a temperature of 24 ◦C, and a humidity of 50–80%. Throughout the trial, the animals’
health was stable, and there was no outbreak of disease of any kind. During the 12-week
feeding trial, daily records of egg number and weight, as well as the mortality rate per
replicate, were kept, whereas feed intake was reported biweekly. From the recorded data,
we estimated average feed intake (ADFI), hen day production (HDP), average egg weight
(AEG), egg mass, and feed conversion ratio (FCR) for the entire study period.

2.3. Sample Collection

On the last day of each of the four weeks (4, 8, and 12), 18 eggs were retrieved from each
treatment group (three eggs from each replicate with a weight that was near to the replicate
range). After a 12 h fast, 24 birds (six from each group, one per replication) were chosen for
sample collection at the end of the study period (12th week). BD Vacutainer® Plus Plastic
Serum Tubes (Becton Dickinson, NJ, USA) and BD Vacutainer® Plus Plastic K2EDTA Tubes
(Becton Dickinson, NJ, USA) were used to collect about 5 mL of blood from the jugular veins
for determination of serum and whole blood parameters, respectively. To obtain serum,
blood samples collected in vacutainer tubes were placed in a slanting posture for 30 min
before being centrifuged at 300× g for 10 min at 4 ◦C and stored in 1.5 mL Eppendorf tubes
at −20 ◦C. Pentobarbital sodium (100 mg/kg BW) was used to euthanize the birds, which
were then cut up under aseptic conditions. The small intestine of each bird was removed
and placed on ice, while the heart, liver, magnum, and spleen were removed, weighed,
and their relative weight computed as weight of organ (g)/body weight (g) × 100%. Their
mesentery was also cleaned and flattened, and about three centimeters of jejunum (medial
portion posterior to the bile ducts and anterior to Meckel’s diverticulum) were collected,
washed in physiological saline solution, fixed in 10% buffered formalin, and stored at 4 ◦C
for histology examination.

2.4. Egg Quality Assessment

The 18 eggs collected from each group were kept under normal room temperature
and analyzed within 1 h of collection. The eggs were broken, and the albumen and yolk
were divided using an egg separator and respectively weighed. The eggshells were washed
of albumen residues and naturally air-dried for 48 h before being weighed. The ratio
of albumen, yolk, and shell was calculated as their weight/egg weight × 100. Eggshell
thickness was measured using an Eggshell Thickness Gauge (average of three sites around
the eggshell: air cell, equator, and sharp edge) (ESTG-1, ORKA Technology Ltd., Ramat
HaSharon, Israel). An Egg Force Reader was used to measure the breaking strength of
eggshells (ORKA Technology Ltd., Ramat HaSharon, Israel). An automated Egg Analyzer
was used to detect albumen height, Haugh unit, and yolk color readings (ORKA Food
Technology Ltd., Ramat HaSharon, Israel). Further egg quality testing was undertaken by
putting the weighed albumen through a 60-mesh sieve and allowing it to pass for 30 s. The
thick component of the albumen remained stuck to the sieve and was weighed as thick
albumen, whilst the filtrate was weighed as thin albumen.

2.5. Histology and Jejunal Morphometric Analysis

The fixed jejunal samples were cleaned, dehydrated, clarified, and paraffin embedded.
Then, they were cut into 6-mm-thick pieces, mounted on glass slides, dewaxed using
xylene, hydrated, and stained with hematoxylin and eosin. Images were examined and
taken using a microscope (an Olympus BX43 microscope; Olympus Corp., Tokyo, Japan).
All regents utilized in the histology evaluation were of analytical quality (Sinopharm
Chemical Reagent Co., Ltd., Beijing, China). In terms of morphometric indices, intact villi
(n = 10) and corresponding crypts were chosen to measure villus height (VH: measured
from the top of the villus to the villus–crypt junction), crypt depth (CD: measured from the
base up to the crypt–villus transition region), and villus width (VW—at the middle point
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of the villus). Data from villi height and crypt depth was used to obtain VH:CD ratio and
villi surface area (VSA) was calculated using 2π × (VW/2) × VH [29].

2.6. Determination of Hematological and Serum Indices

Within 1 h of collection, blood was drawn in an EDTA tube and transported to the
laboratory for hematology testing. An Auto Haematology Analyzer was used to examine
hematological indices (Model: BC-2800 Vet). MCH, MCV, and mean cell hemoglobin
concentration (MCHC) were calculated as red blood cell indices. For the determination
of serum parameters, the serum was thawed at 4 ◦C before analysis and kept at a low
temperature throughout the experiment to avoid enzyme activation. The activities of
glutathione transferase (GST), glutathione peroxidase (GSH-Px), superoxide dismutase
(T-SOD), catalase (CAT), total antioxidant capacity (T-AOC), and MDA content in the
serum were measured spectrophotometrically and assayed using chicken enzyme-linked
immunosorbent assay (ELISA) kits with catalogue numbers: (ml023160, ml061730, A001-
1-1, A007-1-1, ml063644 and A003-1). ML Bio and Nanjing Jiancheng Bioengineering
Institute, (Nanjing, China) was the source for all kits. The concentrations were expressed
in micromoles per milliliter of serum (CAT, T-SOD, T-AOC), nanograms per milliliter of
serum (GST, GSH-Px), and nanomoles per milliliter of serum (MDA). Using a microplate
reader and the appropriate ELISA kit, the contents of immunoglobulins IgA, IgG, IgM, and
complement proteins C3 and C4 in the serum were determined (WLB-091301, WLB-050501,
WLB-09120, E032-1-1 and E033-1-1). Immunity index concentrations were measured in
micrograms per milliliter of serum (IgG, IgM), nanograms per milliliter of serum (IgA), and
milligrams per milliliter of serum (IgA) (C3 and C4). The study’s ELISA assays all have
great sensitivity and specificity for hens and were used according to the manufacturer’s
instructions.

2.7. Apparent Fecal Amino Acid Digestibility

After 12 weeks, 3 birds from each replicate were chosen and placed in a metabolic
cage with a feces sample collection tray. For three days, fecal samples were collected at
12 h intervals and stored in sealed bags at −20 ◦C. Feed, feathers, and other extraneous
components in the feces samples were meticulously removed during collection to guarantee
that the fecal sample was not contaminated. Fecal samples were thawed and dried at 70 ◦C
for 72 h before being pulverized to a fine powder that could pass through a 0.05 mm
mesh. The feed intake and feces weight (dry matter basis) from each metabolic cage were
computed for apparent fecal amino acid digestibility. Amino acid analysis was performed
on the fecal and feed samples using HPLC and adopting the established method by [30]. The
HPLC system Finnigan Surveyor Plus and HyperSil BDS C18 column, size 250 × 4.6 mm,
5 µm (Thermo-Electron Corporation, Waltham, MA, USA) was used. Apparent fecal amino
acid digestibility % was calculated as: 1 − (amino acid concentration in feces ÷ amino acid
concentration in feed) ×100.

2.8. Statistical Analysis

SPSS for Windows version 19.0 was used to conduct all statistical analyses (SPSS Inc.,
Chicago, IL, USA). The one-way Analysis of Variance (ANOVA) was applied to all data.
Replicates were used as experimental units in this study. The variation in the data was
expressed as pooled standard error of the mean, while the data were expressed as means.
Tukey’s test was used to compare the means of dietary regimens, and results with a p value
of 0.05 were considered statistically significant. The Principal Component Analysis (PCA)
was performed to unearth the correlation structure between the analyzed samples using a
Principal Component Analysis (PCA) on centered log-ratio transformed sequence counts
with the zCompositions R package v1.34.
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3. Results
3.1. Performance

Table 2 summarizes the performance of the laying hens. Throughout the feeding
period, dietary FOS average had no effect (p ≥ 0.05) on egg weight and FCR. Diets had
no effect (p ≥ 0.05) on egg mass at the end of weeks 4 and 8 but had a significant effect
(p ≤ 0.05) at the end of weeks 12 and 1–12. Additionally, while dietary FOS had no effect
(p ≥ 0.05) on egg production rate at the end of week 4, there were significant increases
(p ≤ 0.05) in the diet group compared to the control group at weeks 8, 12, and 1–12. After
week 12, the egg production rates of the supplemented groups were only substantially
different (p ≤ 0.05). In the control group, the number of damaged eggs was higher than in
the experimental group but not statistically different (p ≥ 0.05) while zero mortality was
recorded in the diet group throughout the study. Diets had no effect (p ≥ 0.05) on bird feed
consumption at weeks 4 and 8, but substantial increases (p ≤ 0.05) in the treatment group
compared to the control group were detected at weeks 12 and 1–12. Additionally, only at
week 12 did significant differences (p ≤ 0.05) between the supplemented groups emerge.

Table 2. Effect of dietary fructooligosaccharides on performance of laying hens.

Items Weeks T1 T2 T3 SEM p-Value

AEG (g)

1–4 61.42 60.58 60.89 0.89 0.359
5–8 61.85 61.66 61.45 0.61 0.625

9–12 59.98 60.10 60.51 0.68 0.489
1–12 61.08 60.78 60.95 0.60 0.747

Egg mass (g)

1–4 58.33 58.09 59.20 0.98 0.213
5–8 57.63 58.36 59.30 1.66 0.340

9–12 58.83 b 55.42 ab 58.16 a 1.91 0.017
1–12 56.59 b 57.29 ab 58.90 a 1.18 0.026

HDP %

1–4 93.33 94.39 94.89 1.33 0.730
5–8 95.11 b 95.93 ab 97.22 a 3.12 0.710

9–12 89.75 b 92.06 b 96.13 a 2.42 0.006
1–12 92.73 b 94.13 ab 96.08 a 1.51 0.014

Damaged eggs %

1–4 0.09 0.08 0.02 0.05 0.139
5–8 0.10 0.05 0.10 0.06 0.355

9–12 0.08 0.02 0.10 0.06 0.172
1–12 0.09 0.03 0.02 0.05 0.139

Mortality rate %

1–4 0.01 0.00 0.00 0.00 0.391
5–8 0.02 0.00 0.00 0.01 0.116

9–12 0.01 0.00 0.00 0.00 0.391
1–12 0.01 0.00 0.00 0.00 0.116

Feed intake (g)

1–4 116.58 119.80 119.18 3.30 0.435
5–8 112.82 113.79 113.74 3.28 0.905

9–12 121.18 c 126.26 b 132.41 a 3.47 0.001
1–12 116.86 b 119.95 ab 121.78 a 2.09 0.013

FCR 1–4 2.00 2.06 2.01 0.06 0.364
5–8 1.96 1.95 1.92 0.06 0.604

9–12 2.25 2.28 2.28 0.11 0.911
1–12 2.09 2.07 2.05 0.06 0.541

AEG—average egg weight; HDP—hen day-production; FCR—feed conversion ratio. Data represent the mean of
six replicates of three hens each. Means within a row with different superscripts differ significantly (p < 0.05).
SEM: Standard Error of Mean, T1—basal diet; T2—basal diet + 0.3% FOS-fructooligosaccharides; T3—basal diet +
0.6% FOS-fructooligosaccharides.

3.2. Egg Quality

Table 3 shows the egg quality metrics of laying hens fed with prebiotics. Dietary FOS
had a significant (p ≤ 0.05) impact on the relative albumen weight of the eggs at weeks 8,
12, and 1–12. Only toward the end of week 8 did significant differences (p ≤ 0.05) between
the supplemented groups emerge, but not at subsequent evaluation points. Throughout
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the feeding trial, the relative yolk weight of the control group was considerably higher
(p ≤ 0.05) than the supplemented group. Relative shell weight of the diet group was
significantly higher (p ≤ 0.05) relative to the control group at week 8 but no significant
changes (p ≥ 0.05) were identified at weeks 4, 12, and 1–12. Diets influenced (p ≤ 0.05) shell
thickness at weeks 4 and 1–12, but no differences (p ≥ 0.05) were identified at weeks 8 and
12. Only at week 12 did dietary interventions have a significant effect (p ≤ 0.05) on yolk
color. Dietary treatments significantly increased (p ≤ 0.05) albumen height, Haugh unit,
and thick-to-thin albumen ratio at weeks 12 and 1–12 with significant variations (p ≤ 0.05)
between the diet groups but no differences (p ≥ 0.05) were found at weeks 4 and 8, except
for albumen height at week 8.

Table 3. Effect of dietary fructooligosaccharides on egg quality of laying hens.

Items Weeks T1 T2 T3 SEM p-Value

Relative albumen weight %

1–4 60.15 59.08 60.59 1.28 0.29
5–8 59.58 b 60.75 b 62.70 a 1.26 0.01

9–12 58.24 b 63.50 a 62.71 a 1.26 0.01
1–12 59.32 b 61.11 a 61.99 a 0.36 0.02

Relative yolk weight %

1–4 29.01 a 27.49 b 28.21 ab 0.69 0.02
5–8 28.48 a 28.10 a 26.30 b 0.72 0.01

9–12 31.48 a 27.54 b 26.95 b 0.61 0.01
1–12 29.66 a 27.71 b 27.15 c 0.27 0.01

Relative shell weight %

1–4 10.74 10.71 10.60 0.44 0.86
5–8 10.82 a 10.21 b 10.12 b 0.31 0.01

9–12 10.31 10.29 10.24 0.53 0.98
1–12 10.63 10.40 10.32 0.06 0.17

Shell thickness (mm)

1–4 44.88 b 45.15 b 47.03 a 1.17 0.02
5–8 46.88 47.05 46.94 0.70 0.93

9–12 44.33 b 45.80 ab 46.13 a 1.20 0.09
1–12 45.37 b 45.99 ab 46.70 a 0.21 0.03

Shell strength (N)

1–4 40.61 42.76 41.00 3.85 0.68
5–8 45.40 45.71 47.53 3.40 0.63

9–12 39.05 39.20 38.25 2.57 0.83
1–12 41.69 42.55 42.25 0.44 0.74

Yolk color

1–4 5.72 5.61 6.11 0.68 0.56
5–8 7.11 6.72 6.61 0.39 0.14

9–12 5.72 b 6.22 ab 6.72 a 0.47 0.02
1–12 6.18 6.18 6.48 0.09 0.32

Albumen height (mm) 1–4 6.81 6.73 6.77 0.49 0.98
5–8 7.80 b 8.64 a 8.66 a 0.49 0.03

9–12 6.19 c 7.89 b 8.58 a 0.36 0.01
1–12 6.93 b 7.75 a 8.00 a 0.08 0.01

Haugh units 1–4 80.23 77.92 78.83 3.55 0.62
5–8 86.95 91.69 81.84 3.20 0.10

9–12 76.16 c 88.62 b 95.16 a 2.53 0.01
1–12 81.11 c 86.07 b 88.60 a 0.83 0.01

Thick-to-thin albumen ratio 1–4 1.00 1.20 1.13 0.14 0.13
5–8 1.08 1.10 1.24 0.17 0.39

9–12 1.14 1.49 1.75 0.14 0.01
1–12 1.07 1.26 1.37 0.03 0.01

Data represent mean of six replicates of three hen each. Means within a row with different superscripts differ signif-
icantly (p < 0.05). SEM-Standard Error of Mean, T1—basal diet; T2—basal diet + 0.3% FOS-fructooligosaccharides;
T3—basal diet + 0.6% FOS-fructooligosaccharides.

3.3. Antioxidant Capacity and Immune Indices of Serum

Table 4 shows the dietary effects of FOS on the antioxidant and immunological capac-
ities of laying hens. Dietary treatments substantially influenced (p ≤ 0.05) the activities
of GSH-Px, GST, T-SOD, CAT, and MDA content in the serum, with antioxidant enzyme
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activities higher in the treated group and MDA content higher in the control group. On
T-AOC, there was no treatment effect (p ≥ 0.05). Between the supplemented groups, there
were significant differences (p ≤ 0.05) in CAT, T-SOD, GSH-Px, and GST activities, but no
difference (p ≥ 0.05) in MDA content. Furthermore, the dietary treatment had a substantial
(p ≤ 0.05) impact on the contents of IgA, IgG, and IgM. There were no significant variations
(p ≥ 0.05) in IgA and IgM between the supplemented groups but variation in IgG was
found. Additionally, complement protein (C3 and C4) C3 was influenced (p ≤ 0.05) by
diets but no effect on C4 was found.

Table 4. Effects of fructooligosaccharides on antioxidant and immune response of laying hens.

Items T1 T2 T3 SEM p-Value

MDA (nmol/mL) 8.54 a 3.5 b 2.56 b 0.83 0.01
CAT (U/mL) 9.67 c 12.06 b 15.295 a 0.31 0.01

T-SOD (U/mL) 107.41 c 130.89 b 148.79 a 5.88 0.01
T-AOC (U/mL) 11.50 12.20 14.32 2.27 0.17

GSH-Px (ng/mL) 53.45 b 56.53 b 78.61 a 5.34 0.01
GST (ng/mL) 16.57 c 17.45 b 19.56 a 0.59 0.01
IgG (ug/mL) 58.33 b 61.68 b 66.85 a 5.67 0.093
IgM (ng/mL) 2372.50 b 3935.00 a 4080.83 a 392.70 0.01
IgA (ng/mL) 4762.78 b 5471.11 a 5918.33 a 335.71 0.01
C3 (mg/mL) 0.073 b 0.081 ab 0.085 a 0.01 0.05
C4 (mg/mL) 0.044 0.045 0.045 0.00 0.86

MDA—malondialdehyde; CAT—catalase; T-SOD—total superoxide dismutase; T-AOC—total antioxidant
capacity; GSH-Px—glutathione peroxidase; GST—glutathione transferase; IgG—immunoglobulin G; IgM—
immunoglobulin M; IgA—immunoglobulin A; C3 and C4—complement proteins. Data represent mean of
six replicates of three hens each. Means within a row with different superscripts differ significantly (p < 0.05).
SEM-Standard Error of Mean, T1—basal diet; T2—basal diet + 0.3% FOS-fructooligosaccharides; T3—basal diet +
0.6% FOS-fructooligosaccharides.

3.4. Hematology Indices

Table 5 shows the dietary effects of FOS on laying hen blood parameters. In comparison
to the control, WBC, heterophils, and lymphocytes increased significantly (p ≤ 0.05) in
response to nutritional treatment. In response to nutritional treatment, no significant effect
(p ≥ 0.05) on other indicators was identified.

Table 5. Effects of fructooligosaccharides on hematology indices of laying hens.

Items T1 T2 T3 SEM p-Value

WBC (×109/L) 12.1 c 19.97 a 16.54 b 1.933 0.01
RBC (×1012/L) 2.26 2.31 2.42 0.138 0.22

Hb (g/L) 71 73.3 74.667 5.209 0.57
PCV (%) 35 35.5 37.65 2.26 0.24
MCV (fL) 155 154 155.72 4.923 0.82
MCH (Pg) 31.4 31.8 30.917 1.588 0.72

MCHC (g/L) 203 207 198.33 5.407 0.10
Platelets (×109/L) 11.7 12 12 2.49 0.97

Heterophil (×109/L) 6.25 b 9.9 a 8.555 ab 1.87 0.03
Lymphocytes (×109/L) 5.19 b 7.18 a 4.6367 b 1.338 0.02

H/L 1.34 1.45 1.97 0.35 0.25
Monocyte (×109/L) 0.16 1.15 0.80 0.517 0.12
Eosinophil (×109/L) 0.05 0.32 0.27 0.244 0.28
Basophil (×109/L) 0.98 1.42 2.25 0.927 0.17

WBC—white blood cells count; RBC—red blood cells count; Hb—hemoglobin count; PCV—packed cell volume;
MCV—mean corpuscular volume; MCH—mean corpuscular hemoglobin; MCHC—mean corpuscular hemoglobin
concentration; H/L—heterophil/lymphocyte. Data represent mean of six replicates of three hens each. Means
within a row with different superscripts differ significantly (p < 0.05). SEM-Standard Error of Mean, T1—basal
diet; T2—basal diet + 0.3% FOS-fructooligosaccharides; T3—basal diet + 0.6% FOS-fructooligosaccharides.
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3.5. Organ Indexes and Jejunum Morphology

The relative organ weight of the heart, magnum, spleen, and liver were not influenced
by treatments (data not shown). Table 6 presents the quantitative results of the jejunum villi
morphology in response to the dietary treatments. The VH, VW, VSA, and V/C increased
significantly (p ≤ 0.05) in response to dietary treatment while CD was significantly reduced
by the dietary treatment and higher in the control group.

Table 6. Effects of fructooligosaccharides on jejunal villi morphometrics of laying hens.

Items T1 T2 T3 SEM p-Value

VH 938.80 b 1199.45 a 1298.98 a 38.20 0.000
VW 141.20 b 165.08 a 155.91 ab 4.36 0.070
CD 155.60 a 118.65 b 117.18 b 5.74 0.002

VH:CD 6.35 b 10.36 a 8.55 a 0.53 0.002
VSA 0.43 b 0.62 a 0.65 a 0.02 0.001

VH—villi height (µm); VW—villi width (µm); CD—crypt depth (µm); VH:CD—villi height to crypt depth ratio;
VSA—villi surface area (mm2) = 2π × (VW/2) × VH. Means within a row with different superscripts differ signif-
icantly (p< 0.05) SEM-Standard Error of Mean, T1—basal diet; T2—basal diet + 0.3% FOS-fructooligosaccharides;
T3—basal diet + 0.6% FOS-fructooligosaccharides.

3.6. Apparent Fecal Amino Acid Digestibility

The apparent fecal amino acid digestibility coefficients of laying hens fed prebiotics-
based diets are presented in Table 7. The digestibility of crude protein was significantly
influenced (p ≤ 0.05) by dietary FOS and there were no variations (p ≥ 0.05) between the
treated groups. The digestibility coefficients of essential amino acids (threonine, methionine,
isoleucine, tryptophan, and lysine) and non-essential amino acids (asparagine, serine,
glutamine, and glycine) were significantly higher (p ≤ 0.05) in the dietary treatment group
compared to the control. There was no influence (p ≥ 0.05) of dietary treatments on the
digestibility coefficients of proline, alanine, cysteine, valine, phenylalanine, and histidine.
Additionally, no significant differences (p ≥ 0.05) in digestibility of asparagine, threonine,
serine, glutamine, glycine, and methionine-cysteine were observed between T2 and T3,
but only T2 differed from the control. There were also significant variations (p ≤ 0.05) in
digestibility of methionine among T1, T2, and T3. Further analysis revealed no variations
(p ≥ 0.05) in isoleucine, tyrosine, lysine, or tryptophan between T2 and T3; however, both
were significantly different (p ≤ 0.05) from the control.
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Table 7. Effects of fructooligosaccharides on apparent fecal amino acid digestibility of laying hens.

Items (%) T1 T2 T3 SEM p-Value

Crude protein 59.20 b 69.24 a 71.98 a 5.26 0.01
Asparagine 75.29 b 79.05 ab 81.23 a 3.05 0.03
Threonine 69.48 b 72.79 ab 76.73 a 3.83 0.03

Serine 77.63 b 79.45 ab 83.41 a 3.07 0.03
Glutamine 84.57 b 87.17 ab 88.62 a 2.08 0.03

Proline 80.42 81.93 86.43 4.30 0.11
Glycine −3.14 b 4.96 ab 23.71 a 15.48 0.05
Alanine 65.77 69.73 71.22 5.00 0.24
Cysteine 73.58 76.54 76.51 3.72 0.38

Valine 73.91 78.12 77.34 3.72 0.21
Methionine 83.01 c 90.12 a 85.96 b 2.09 0.01
Met + Cys 79.28 b 85.75 a 82.34 ab 2.62 0.01
Isoleucine 74.16 b 79.33 a 79.23 a 3.47 0.06
Leucine 80.21 83.28 83.43 2.71 0.14
Tyrosine 80.54 b 85.78 a 85.69 a 3.71 0.08

Phenylalanine 89.25 92.55 90.69 2.55 0.18
Histidine 51.02 62.59 52.71 10.76 0.26

Lysine 73.19 b 77.87 a 79.27 a 3.30 0.03
Arginine 83.97 85.65 86.89 1.98 0.10

Tryptophan 73.55 b 85.17 a 83.93 a 2.94 0.01
Met + Cys—methionine cysteine. Data represent mean of six replicates of three hens each. Means within a row
with different superscripts differ significantly (p < 0.05). SEM-Standard Error of Mean, T1—basal diet; T2—basal
diet + 0.3% FOS-fructooligosaccharides; T3—basal diet + 0.6% FOS-fructooligosaccharides.

3.7. Principal Component Analysis (PCA)

The application of PCA allows for better analysis and comparison of similarities
between groups by reducing the number of variables. We took into consideration a normal-
ized version of the data to obtain a PCA biplot presentation (Figure 1). The first component
covered 52.8% and the second component covered about 15.2% of the total variance.
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4. Discussion

Over the decades, functional oligosaccharides have been used as prebiotics in poultry
nutrition as an alternative replacement for synthetic antibiotics in enhancing performance
and health of laying hens. However, no studies to date have reported the supplementation
of fructooligosaccharides as prebiotics at 0.3 and 0.6% inclusion levels in laying hens;
thus, owing to limited literature, we compared our findings with other studies but with
same group of functional oligosaccharides. Our results showed that dietary FOS at 0.3
and 0.6% inclusion levels exerted beneficial influences on egg production and quality,
intestinal morphology, apparent fecal amino acid digestibility, immune and antioxidant
function. Therefore, natural additives such as fructooligosaccharides, a type of prebiotic,
are considered safe in poultry nutrition.

4.1. Effects of Fructooligosaccharides on Laying Performance

Previous reports have demonstrated the positive effect of dietary prebiotics including
FOS on egg production rate in laying hens [19,24,27,28,31]. Additionally, there is others
evidence of increased egg mass due to dietary prebiotics [19,28]. The improvements in
egg production and egg mass may be associated with enhancement effects of prebiotics
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on nutrient utilization [32]. Our findings are in agreement with other functional oligosac-
charides; egg production and egg mass were improved due to dietary FOS. Previous
research has shown that egg production is often affected by animals’ health status while
enhanced immune response and antioxidant capacity may aid to protect the animal from
tissue oxidative damage and pathogen invasion [14,19]. Therefore, the improvement in egg
production could be that animal health was boosted as evidenced by the increased activity
of antioxidant enzymes and immunoglobulin secretion observed in this study. This may
have protected the animal from tissue oxidative damage and supported better health status
with consequent improvement in the egg formation process occurring in body of the animal.
Additionally, prebiotic fermentation in the gut promotes growth of beneficial microbes
and suppresses pathogens, leading to the development of improved villi structures [16,33].
The positive effect on egg production could be attributable to the increased villi structures
observed in this study: the favorable gut environment due to FOS fermentation may have
stimulated development of jejunal villi structures which acted as a driver for efficient
nutrient utilization. Furthermore, egg production is sensitive to amino acid nutrition imbal-
ance [34]. There is evidence that essential amino acids (methionine, threonine, isoleucine,
and lysine) exerted a positive influence on egg production [35–37], probably because amino
acids provide support for high protein synthesis which is often a prerequisite for improved
egg production. Thus, the improved digestibility of these essential amino acids in this study
suggests their utilization for egg production. Meanwhile, there are studies that reported
no significant effect of prebiotics on egg production [20,21,38]. The inconsistent results
could be due to the age of laying hens, dosage of the supplement, and components of the
prebiotics used. All these findings highlight that the improvement in laying performance is
adducible to the protective effect on gut integrity, marked villi structures, and improved
health status which all act as a boost for amino acid digestibility and efficient nutrient
utilization.

Furthermore, feed intake and feed conversion ratios are often used to depict the extent
of nutrient utilization by the animals. The study of [28] reported that FOS decreased feed
intake and improved FCR, whereas oligofructosaccharides enhanced feed efficiency but
had no effect on feed consumption [39], in laying hens. The improved feed utilization
may be linked to the capacity of prebiotics to stimulate activities of digestive enzymes
such as aminopeptidase, protease, and amylase [40]. The current findings showed that
dietary FOS improved feed intake but had no significant effect on FCR. FOS are often
considered as sweeteners [41] and enhancers for intestinal protease activities [16]. Addi-
tionally, tryptophan acts as a precursor of serotonin, a neurotransmitter that controls feed
intake [42]. Therefore, we could infer that the increased appetite may be due to enhanced
enzymatic activities triggered by favorable gut environment, improved taste of the feed,
and better digestibility of tryptophan. On the contrary, prebiotics had no significant effect
on feed intake of birds [16,20,43]. The variations among these studies may be due to type
of prebiotics and dosage level used. In addition, we observed a reduction in percentage
of cracked eggs and zero-mortality rate in the feed additives group, which is similar to
the findings of [20]. Respectively, these could be attributable to the beneficial effect of FOS
on eggshell thickness and the improved health status of the birds evidenced by enhanced
immune capacity. Thus, FOS could be used as a safe additive to improve feed intake and
reduce mortality rate with consequent improvement in egg production and egg quality.

4.2. Effects of Fructooligosaccharides on Egg Quality of Laying Hens

Egg components, both external (shell quality) and internal (albumen and yolk), must
be maintained to meet consumer demands for functional eggs. Previous reports have
shown that COS and XOS fed to laying hens enhanced eggshell thickness [19,20]; the
improvement may be related to the positive influence of prebiotics on mineral absorption
rate of calcium and magnesium [20,44] which enhances eggshell integrity. In the current
study, there was a beneficial effect of FOS on eggshell thickness but no dietary influence on
eggshell strength was found. The positive effect may be linked to FOS fermentation which
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stimulates proliferation of enterocytes and lowers intestinal pH which catalyzes ionization
of minerals [38]. Thus, the enhanced intestinal villi structures observed in this study could
improve intestinal calcium absorption and bioavailability with consequent improvement in
eggshell quality. Contrary to our findings, dietary FOS, MOS, and inulin [24,28,45] had no
effect on eggshell thickness. The lack of influence on eggshell quality may be due to the
dosage of supplements and age of hens. Additionally, egg yolk color, which is associated
with consumer preference and acceptance [46], is influenced by dietary prebiotics. We
observed an increased yolk color due to dietary FOS, similar to other reports on dietary
prebiotics in laying hens [18,21,22], whereas [20] reported no effect of XOS on egg yolk
color. The improved yolk color and the variations may be due to prebiotic composition
but were not very clear in this study. The increased yolk weight in the control group may
be linked with the lower albumen proportion observed when compared to the treatment
group.

Further, improved albumen quality would sustain the increased demand for liquid egg
products. Dietary oligosaccharides fed to laying hens improved HU values [18,21–23]. The
study of [22] showed that dietary COS enhanced albumen height but was not statistically
different from control. The improvement in albumen quality may be linked to improved
nutrient utilization resulting in better protein synthesis. Our findings are in affirmation
with previous reports that prebiotics improve albumen quality. In this study, there were
significant improvements in albumen quality (increased Haugh unit, albumen height,
and thick-to-thin albumen ratio), in response to dietary FOS. The influence of prebiotics
on thick-to-thin albumen ratio has not been previously reported. The enhanced albumen
synthesis may be attributable to the health status of the animals. Prebiotics have been found
to enhance ovary health by suppressing pathogens [14,17]. On the other hand, reproductive
performance may decline in animals due to accumulation of free radicals which often
culminates in damage of tissues and alteration of functional proteins [47]. Therefore, the
enhanced immune function and antioxidant capacity observed in the study may suggest a
protective effect on the reproductive tract from pathogen invasion and oxidative damage,
leading to healthy tubular glands of the magnum and consequently increased synthesis of
ovomucin. The β-subunit of the ovomucin contains an increased proportion of O-linked
oligosaccharides on a repeated domain abundant in threonine and serine [48]. Additionally,
it has been reported that isoleucine [49] and total sulphur amino acids (TSAA) [35] enhance
albumen quality. The improvement in apparent fecal digestibility of total sulphur amino
acids and isoleucine in this study may contribute to the enhanced albumen quality. It
could be inferred that the improved health status and villi structures may have positively
stimulated the digestibility and absorption of the amino acids; thus, high bioavailability
of amino acids needed for albumen synthesis. However, XOS [20] and marine-derived
prebiotics [18] had no effect on HU value and thick albumen height, respectively, while COS
had no effect on both albumen indices [19]. The inconsistencies among these studies could
probably be due to dosage of supplements, duration of feeding, and type of prebiotics
used. Taken together, dietary FOS could be used as feed supplements in the diet of laying
hens to enhance eggshell quality and content of thick albumen, which would respectively
reduce the rate of cracked eggs during transportation and provide liquid egg products
for consumers, food processing, and the pharmaceutical industry. Improvements in egg
production rate and egg quality are often pre-determined by the physiological status of the
birds.

4.3. Effect of Fructooligosaccharides on the Antioxidant and Immune Capacity, and Hematology of
Laying Hens

The health status of the animals is often assessed based on indicators including:
antioxidant capacity [50], hematological parameters [51], and serum concentrations of
immunoglobulins (IgA, IgM, and IgG). It has been established that activities of antioxidant
enzymes T-SOD, GSH-Px, GST, and CAT serve as the body’s first line of defense in response
to elimination of reactive oxygen species [52]. Oxidative stress is often measured using
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MDA content, which is an oxidative biomarker and often denotes the end product of lipid
peroxidation [13]. Previous reports have proven that prebiotics could cause an inverse
relationship between antioxidant enzymes and oxidative biomarkers in both serum [20]
and tissues [18,53] of laying hens; thus, enhancing the antioxidant capacity of the animal.
Increased serum activities of T-SOD and CAT, GSH-Px, and T-SOD [18,54] were observed
in birds fed marine-derived prebiotics and COS, respectively, with a consistent reduction
in MDA content. In this study, the increased activity of antioxidant enzymes and reduced
oxidative biomarker lend evidence once again to the inverse relationship between antioxi-
dant enzymes and oxidative biomarkers due to the prebiotic effect. This is suggestive that
FOS could improve the antioxidant capacity of laying hens by stimulating the enzymatic
component of the antioxidant system relative to the non-enzymatic antioxidant system.
Methionine acts as a glutathione (GSH) precursor which reduces reactive oxygen species,
protecting the cells from oxidative damage [55]; therefore, significant digestibility of me-
thionine may be a key factor for the activity of antioxidant enzymes. Thus, the antioxidant
property of FOS suggests its potential to be used in mitigating oxidative-induced diseases in
laying hens. Conversely, COS enhanced T-AOC and decreased MDA serum concentrations
with no effect on antioxidant enzymes (T-SOD, CAT and GSH-Px) [19]. The discrepancies
in the various studies may be attributable to physiological status, age, and duration of
supplement feeding.

The immunoglobulins (IgA, IgM, and IgY) are key immune indices denoting the
immunity of the host [56]. Previous reports revealed that dietary FOS stimulated systemic
responses in chickens by increasing the antibody titers of IgG and IgM [57]. Dietary XOS
increased serum concentrations of both IgA and IgM in laying hens [58]. The enhanced
immune response may be due to the capacity of prebiotics to stimulate immune response
in birds [16]. Our findings are in agreement with previous reports that prebiotics increase
secretion of immunoglobulins. In this study, the serum concentrations of the immunoglob-
ulins (IgA, IgM, and IgG) were significantly improved in the feed additives group. IgA
is produced by plasma cells in the lamina propria, secreted on the mucosal surface and
predominant in intestinal secretions [59]. We speculate that the beneficial effect of FOS
on mucosal integrity may have led to an increase in IgA secretion. The improvement in
immunity may be linked with adequate bioavailability of circulating amino acids which
is needed for immunocompetence [60] and dietary threonine and methionine enhances
immunoglobulins synthesis [61]. Therefore, the key factor for improved immunoglobulins
concentration could be the enhanced amino acid digestibility and utilization, facilitated by
improved intestinal villi structures as more nutrients are utilized for immunoglobulin syn-
thesis and not for gut cell renewal due to lower villi structures. Evidence has shown that the
growth-promoting effect of prebiotics on lactic-acid-producing bacteria exerts an indirect
influence on the immune system of the host [16,62]; thus, the prebiotic fermentation effect
could be the key factor for enhanced immune response of the host. Nevertheless, dietary
COS had no significant effect on serum immunoglobulin concentration of laying hens [19].
The variations may be due to age and environmental hygiene during the feeding trial. Fur-
thermore, immune response compounds such as globulins and complement proteins which
are capable of stimulating the immune system can be activated by immunostimulants [63].
Similar to our findings, COS increased the concentration of C3 proteins but had no effect
on C4 [19]. The aforementioned findings provide enthralling evidence that the prebiotic
FOS had immune-enhancing effects which provided an immune-stimulating response with
significantly elevated plasma concentrations of IgA, IgG, and IgM.

Further analysis on the immunity of laying hens fed prebiotics using blood indices
showed increased WBC and heterophils while no effect was observed on the H/L ra-
tio. Similar to our findings, WBC was significantly higher than the control in birds fed
COS [21,22]. The variations may be linked to environmental conditions employed during
the study. The increased heterophils and reduced lymphocytes in birds fed 0.6% FOS may
suggest that the birds are under stress, but the significant WBC may have reduced this
effect and improved cellular immunity. The lack of an effect on H/L ratio may suggest
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better adaptation of the birds to the feed supplement. Improved animal health effectively
promotes the development of various cells, tissues, and organs in the body of an animal.

4.4. Effect of Fructooligosaccharides on the Jejunal Villi Morphology of Laying Hens

Intestinal health often reflects the histomorphological structures which are mainly
involved in modulating the capacity of animals to utilize nutrients. For example, broader
villi surface area [64], lower epithelial thickness [65], increase in villi height and villi height
to crypt depth [16] enhances nutrient absorption, whereas the decreased villi and deeper
crypts reduce nutrient absorption [66]. Therefore, gut integrity provides allowance for
efficient nutrient utilization which often results in improved egg production and egg quality.
There is evidence that prebiotics enhanced intestinal morphology of birds: dietary XOS and
inulin [31,58] and MDP [18] improved the jejunal villi heights, villi height to crypt depth
ratio, and decreased crypt depths in laying hens. The enhanced intestinal villi structure
could be linked to the competitive exclusion mechanism of prebiotics which will inhibit
pathogenic microflora; thus, promoting intestinal epithelium nutrition [67]. Our findings
affirm similar positive effects of prebiotics including FOS on jejunal villi development,
evidenced by increased villi height, villi width, villi height to crypt depth ratio, and reduced
crypt depth. The improved villi structure exerted a resultant positive effect on nutrient
utilization, which accounts for most significant improvements in egg production and egg
quality in this study. The improvement in villi structure may probably be due to the fact that
butyric acid, which may result from gut fermentation of FOS, exerts a suppressive effect
on intestinal pathogen invasion and inflammation; thus, improving the gut morphological
structures. This claim is supported by the study of [68], which reported a positive effect of
butyrate glyceride on epithelium integrity and structure of intestinal mucosa, leading to
improved villi structures. Additionally, IgA is most abundant in the body, mainly involved
in maintaining intestinal mucosal immunity and inhibition of intestinal infection [69]; thus,
high synthesis of IgA in the study may have exerted a beneficial effect. Threonine, which is
a component of intestinal mucin, controls the expression of biomarkers that are involved in
intestinal development and GIT functioning [70,71], so high digestibility of threonine in this
study may have facilitated high bioavailability of threonine. Additionally, prebiotics have
been found to enhance synthesis of mucin, thereby improving the expression of jejunal
mucin mRNA and the protective effect on epithelial cells of the intestine in broiler birds [72].
We infer that FOS may act in a like-manner in laying hens. However, there is contrary
evidence that FOS had no effect on the ileal morphology of aged laying hens [14]. The
discrepancies among studies may be due to the physiological status of the birds and age.
We, therefore, deduce that the prebiotic fermentation effect, enhanced antioxidant capacity,
and immune function, which culminated in protection of gut integrity from pathogens
and oxidative stress, improved nutrient utilization in the gut and development of mucosal
structures.

4.5. Effects of Fructooligosaccharides on the Apparent Fecal Digestibility of Amino Acids

Until recently, the influence of FOS on digestibility have gained less attention. This
study is the first to report the effect of dietary FOS on apparent fecal amino acid digestibility
in laying hens. In the current study, the fecal digestibility of crude protein and amino acids
were significantly improved in the prebiotics group. Prebiotics possess antimicrobial
properties and, FOS inclusive, have been reported to control inhabitation of pathogenic and
beneficial bacteria species in the gut [73,74]. Thus, the reduced bacteria load in the feces
with consequent improvement in fecal digestibility of nutrients may provide an explanation
for the increased fecal CP and amino acid digestibility in birds. The higher digestibility of
essential AA may be due to better crude protein digestibility; thus, there is less conversion
of essential AA to non-essential purposes. The study of [75] reported that enhanced gut
morphology reduces degradation of amino acids in the gastrointestinal tract. Therefore, the
increased villi height, villi surface area, villi height to crypt depth ratio, and decreased crypt
depth may have reduced amino acid degradation, leading to improved digestibility and
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reduced loss of amino acids in the feces. The improved amino acid digestibility is attributed
to enhanced morphometric structure of the intestinal mucosa resulting from protective
effects of antioxidant enzymes, immunoglobulins, and gut fermentation products.

4.6. Principal Component Analysis

The Principal Component Analysis (PCA) was explored in order to examine the
relationship between the dietary treatments and determined parameters: amino acid di-
gestibility, antioxidant and immune capacity, egg production, and laying performance
(Figure 1). These plots showed distinct variations among the treatments with the parame-
ters. Most of the parameters are dominant in the feed additive groups distinctively, lending
more evidence that the improvements in egg quality and egg production are due to dietary
prebiotics supplemented in the diets of the laying hens. Only the MDA content appears in
the control, an implication that the treatments masked its effects in the feed additive group.
There is a strong correlation between the diets and the output observed in the study.

5. Conclusions

Dietary fructooligosaccharides (FOS) enhanced performance and egg quality: egg
mass, shell thickness, Haugh units, thick albumen content and height, while maintaining
the physiological status as evidenced by improved antioxidant capacity, immune function,
amino acid digestibility, and gut morphology. Furthermore, 0.6% of FOS had no adverse
effect on the laying hens. This provides evidence that dietary FOS could be used as safe
feed additives in poultry diets to produce high quality eggs. They could also serve as a
substitute for antibiotics in promoting egg production and the health status of the animals.
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38. Świątkiewicz, S.; Koreleski, J.; Arczewska, A. Laying performance and eggshell quality in laying hens fed diets supplemented
with prebiotics and organic acids. Czech J. Anim. Sci. 2010, 55, 294–306. [CrossRef]

39. Chen, Y.; Nakthong, C.; Chen, T. Improvement of laying hen performance by dietary prebiotic chicory oligofructose and inulin.
Int. J. Poult. Sci. 2005, 4, 103–108.

40. Kim, S.; Jang, M.J.; Kim, S.Y.; Yang, Y.; Pavlidis, H.O.; Ricke, S.C. Potential for prebiotics as feed additives to limit foodborne
Campylobacter establishment in the poultry gastrointestinal tract. Front. Microbiol. 2019, 10, 91. [CrossRef]

41. Kyu, M.T.; Dar, B.; San AYE, S.; MATSUDA, T. Prebiotic Oligosaccharides Prepared by Enzymatic Degradation of Dietary Fibers
in Rice Grains. J. Nutr. Sci. Vit. 2019, 65, S143–S147. [CrossRef] [PubMed]

42. Kerr, B.; Moran, E., Jr.; Kidd, M. Effect of supplementary tryptophan prior to marketing on carcass quality in broilers. J. Appl.
Poult. Res. 2005, 14, 306–314. [CrossRef]

43. Çabuk, M.; Bozkurt, M.; Alcicek, A.; Çatli, A.; Baser, K. Effect of a dietary essential oil mixture on performance of laying hens in
the summer season. S. Afr. J. Anim. Sci. 2006, 36, 215–221.

44. Roberfroid, M. Prebiotics: The concept revisited. J. Nutr. 2007, 137, 830S–837S. [CrossRef]
45. Shang, H.; Hu, T.; Lu, Y.; Wu, H. Effects of inulin on performance, egg quality, gut microflora and serum and yolk cholesterol in

laying hens. Br. Poult. Sci. 2010, 51, 791–796. [CrossRef]
46. Vlčková, J.; Tůmová, E.; Míková, K.; Englmaierová, M.; Okrouhlá, M.; Chodová, D. Changes in the quality of eggs during storage

depending on the housing system and the age of hens. Poult. Sci. 2019, 98, 6187–6193. [CrossRef]
47. Liu, W.-C.; Guo, Y.; Zhao, Z.-H.; Jha, R.; Balasubramanian, B. Algae-derived polysaccharides promote growth performance by

improving antioxidant capacity and intestinal barrier function in broiler chickens. Front. Vet. Sci. 2020, 7, 601336. [CrossRef]
48. Watanabe, K.; Shimoyamada, M.; Onizuka, T.; Akiyama, H.; Niwa, M.; Ido, T.; Tsuge, Y. Amino acid sequence of a-subunit in hen

egg white ovomucin deduced from cloned cDNA. DNA Seq. 2004, 15, 251–261. [CrossRef]
49. Parenteau, I.A.; Stevenson, M.; Kiarie, E.G. Egg production and quality responses to increasing isoleucine supplementation in

Shaver white hens fed a low crude protein corn-soybean meal diet fortified with synthetic amino acids between 20 and 46 weeks
of age. Poult. Sci. 2020, 99, 1444–1453. [CrossRef]

50. Surai, P.F. Antioxidant systems in poultry biology: Superoxide dismutase. J. Anim. Res. Nutr. 2016, 1, 8. [CrossRef]
51. Johnstone, C.P.; Lill, A.; Reina, R.D. Use of erythrocyte indicators of health and condition in vertebrate ecophysiology: A review

and appraisal. Biol. Rev. 2017, 92, 150–168. [CrossRef]
52. Yin, J.; Ren, W.; Liu, G.; Duan, J.; Yang, G.; Wu, L.; Li, T.; Yin, Y. Birth oxidative stress and the development of an antioxidant

system in newborn piglets. Free. Radic. Res. 2013, 47, 1027–1035. [CrossRef]
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