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Abstract
The distribution of health care payments to insurance plans has substantial conse-

quences for social policy. Risk adjustment formulas predict spending in health insur-

ance markets in order to provide fair benefits and health care coverage for all enrollees,

regardless of their health status. Unfortunately, current risk adjustment formulas are

known to underpredict spending for specific groups of enrollees leading to under-

compensated payments to health insurers. This incentivizes insurers to design their

plans such that individuals in undercompensated groups will be less likely to enroll,

impacting access to health care for these groups. To improve risk adjustment formulas

for undercompensated groups, we expand on concepts from the statistics, computer

science, and health economics literature to develop new fair regression methods for

continuous outcomes by building fairness considerations directly into the objective

function. We additionally propose a novel measure of fairness while asserting that

a suite of metrics is necessary in order to evaluate risk adjustment formulas more

fully. Our data application using the IBM MarketScan Research Databases and simu-

lation studies demonstrates that these new fair regression methods may lead to mas-

sive improvements in group fairness (eg, 98%) with only small reductions in overall fit

(eg, 4%).
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1 INTRODUCTION

Risk adjustment is a method for correcting payments to health

insurers such that they reflect the cost of their enrollees rela-

tive to enrollee health. It is implemented by most federally reg-

ulated health insurance markets in the United States, includ-

ing Medicare Advantage and the individual health insurance

Marketplaces created by the Affordable Care Act, to prevent

losses to insurers who take on sicker enrollees (Pope et al.,
2004; McGuire et al., 2013; Kautter et al., 2014). Current risk

adjustment formulas use ordinary least squares (OLS) linear

regression to predict health plan payments with select demo-

graphic information and diagnosis codes from medical claims.
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These OLS-based formulas are then typically evaluated with

overall measures of statistical fit, such as 𝑅2.

While 𝑅2 is an important benchmark for evaluating global

fit, it lacks information on other dimensions. As a result, risk

adjustment has been criticized for not incentivizing efficient

payment systems, spending, or population health management

(Ash and Ellis, 2012; Layton et al., 2017), and for poorly

estimating health costs for some groups by underpredicting

their spending relative to average observed spending in the

group. Underpredicting spending leads to undercompensation

to the insurer, and there is evidence that insurers adjust the

prescription drugs, services, and providers they cover (ie, ben-

efit design) to make health plans less attractive for enrollees
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in undercompensated groups (Shepard, 2016; Carey, 2017;

Geruso et al., 2017). Examples of undercompensated groups

include enrollees with specific medical conditions, high-cost

enrollees, and partial-year enrollees (van Kleef et al., 2013;

Montz et al., 2016; Ericson et al., 2017). Recent research has

also shown that health plan insurers have the ability to iden-

tify undercompensated groups (Jacobs and Sommers, 2015;

Geruso et al., 2017; Rose et al., 2017).

What constitutes a fair or unfair algorithm depends heavily

on the context. These fairness concepts and methods have

been largely developed in the computer science literature

(Chouldechova and Roth, 2018). We will consider risk

adjustment formulas unfair if they underpredict spending for

a prespecified group of enrollees, which then incentivizes

differential treatment for the group via benefit design due to

this undercompensation. For example, if average observed

spending for individuals with mental health and substance

use disorders (MHSUD) is $10 000, but average predicted

spending in this group is $8000, the risk adjustment formula

may be unfair for the MHSUD group by “substantially”

underpredicting their spending. We define formal metrics for

evaluating fairness in risk adjustment formulas using group

residual errors in the next section.

Methods for addressing fairness are often divided into

three categories based on the point in the learning process

at which fairness is addressed: the preprocessing, fitting,

or postprocessing phase. If the data are inherently biased,

then preprocessing techniques are a possible solution. These

methods create fair datasets by transforming or changing the

data so that it is no longer biased (eg, Kamiran and Calders,

2009; Zemel et al., 2013). It has been shown that current

spending patterns among various groups may be undesirable,

and using observed spending data, we reinforce these unfair

patterns. A recent study explored this concept by transferring

funds to undercompensated groups in the raw data in order to

promote more ideal spending patterns (Bergquist et al., 2019).

One of the most common fitting phase approaches in

risk adjustment attempts to fix group undercompensation by

adding new variables representative of the groups in the risk

adjustment formula (van Kleef et al., 2013). While this is

a straightforward idea, it can be problematic if those vari-

ables are unavailable, incentivize over- or underutilization

of health services, or the risk adjustment formula does not

recognize the improvement (Rose and McGuire, 2019). Fit-

ting techniques in fairness include separate formulas for pro-

tected classes as well as fairness penalty terms or constraints

(Kamishima et al., 2012; Dwork et al., 2018). We see inter-

sections of these areas in the risk adjustment literature with

separate formulas for enrollees with MHSUD (Shrestha et al.,
2018) and constrained regression to reduce undercompensa-

tion for specific groups (van Kleef et al., 2017). Notably, sep-

arate risk adjustment formulas are already used in practice

for infants and adults due to known differences in spending

patterns. Nonparametric statistical machine learning methods

to enhance estimation accuracy in risk adjustment have also

been explored for the fitting stage (Rose, 2016; Shrestha et al.,
2018; Park and Basu, 2018), but none of these tools are cur-

rently deployed in the US health care system.

Postprocessing techniques modify the results after fitting

by, for example, creating specific classification thresholds for

different groups (Hardt et al., 2016; Kleinberg et al., 2018).

These methods separate fit from fairness objectives and allow

using the same prediction function for multiple fairness objec-

tives. Reinsurance, paying insurers for a portion of the costs of

high-cost enrollees, can be considered postprocessing for risk

adjustment in that it reduces undercompensation for high-risk

enrollees (McGuire and van Kleef, 2018).

In this paper, we focus on the fitting phase and expand

on concepts from statistics, computer science, and health

economics, proposing new estimation methods and mea-

sures to improve risk adjustment formulas for undercompen-

sated groups. We develop two new fair regression estimators

for continuous outcomes that reduce residual errors for an

undercompensated group by building fairness considerations

directly into the objective function. We also extend a defini-

tion of fairness from the computer science and statistics lit-

erature for the risk adjustment setting while additionally con-

sidering existing measures.

Our application features the IBM MarketScan Research

Databases. This set of databases contains enrollee-level

claims, demographic information, and health plan spending

for a sample of individuals (and their dependents) insured

by private health plans and large employers across the coun-

try. In 2014, the IBM MarketScan Research Databases were

used by the federal government to develop the risk adjust-

ment formulas for the individual health insurance Market-

places. Thus, this data source is particularly policy relevant.

The undercompensated group we focus on for this data appli-

cation is enrollees with MHSUD. We select this group for two

major reasons. First, individuals with MHSUD are known to

have substantially undercompensated payments in current risk

adjustment formulas (Montz et al., 2016). Second, about 20%

of people in the United States have MHSUD, thus it is a pri-

ority area for policy change. Although the data are represen-

tative of only a subset of the US health insurance market, our

methods are appropriate for other markets and different appli-

cation settings with continuous outcomes. The methods and

metrics we present are compared in this data analysis as well

as simulation studies.

2 STATISTICAL FRAMEWORK

This section describes our approach to fair regression. It

involves a suite of fairness measures for evaluating new

and existing regression tools in an effort to improve risk
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adjustment formulas for undercompensated groups. A typi-

cal algorithmic fairness problem has an outcome 𝑌 and input

vector 𝑿 that includes a protected group 𝐴 ⊂ 𝑿. The goal is

to create an estimator for the function 𝑓 (𝑿) = 𝑌 that maps

𝑿 to 𝑌 , while aiming to ensure that the function is fair for

protected group 𝐴. Although our main goal is to understand

whether estimation methods beyond OLS, including those

we newly propose, improve fairness for risk adjustment, we

also wish to focus on interpretability for stakeholders, such

as government agencies, insurers, providers, and enrollees.

Therefore, constrained and penalized regressions were natural

choices to enforce fairness in risk adjustment for undercom-

pensated groups.

2.1 Measures

The most commonly used measures of fairness are based on

the notion of group fairness, striving for similarity in predicted

outcomes or errors for groups. Let 𝑔 be the set containing all

𝑛𝑔 enrollees with MHSUD (ie, the undercompensated group),

indexed by 𝑖. The complement group, all 𝑛𝑐 enrollees without

MHSUD, is denoted by 𝑔𝑐 and indexed by 𝑗. Overall sample

size,𝑁 = 𝑛𝑔 + 𝑛𝑐 , is indexed by 𝑘. Group undercompensation

is a result of large average group residuals in the risk adjust-

ment formula. We define fairness as a function of these resid-

ual errors given that many undercompensated groups have

substantially higher average health care costs. Thus, enforc-

ing similar predicted outcomes 𝑌 between 𝑔 and 𝑔𝑐 would be

unfair to both. In this subsection, we present three relevant

existing measures of group fairness, a new extension of fair

covariance modified for group fairness with continuous out-

comes, and 𝑅2 as a metric of overall global fit.

2.1.1 Mean residual difference

Comparing mean residual errors between a group 𝑔 and

its complement 𝑔𝑐 aims to assess fairness by evaluating

whether this difference is close to zero (Calders et al., 2013):

1∕𝑛𝑔
∑

𝑖∈𝑔(𝑌𝑖 − 𝑌𝑖) − 1∕𝑛𝑐
∑

𝑗∈𝑔𝑐 (𝑌𝑗 − 𝑌𝑗). To date, this met-

ric has not been applied in risk adjustment.

2.1.2 Net compensation

Net compensation is a related measure from the health eco-

nomics literature on the same scale as the mean residual dif-

ference (Layton et al., 2017): 1∕𝑛𝑔
∑

𝑖∈𝑔(𝑌𝑖 − 𝑌𝑖). It does not

contain a term for the mean residual in the complement group.

Therefore, this measure focuses on a reduction in the residuals

for 𝑔 rather than similarity in residuals between the groups. A

parallel net compensation measure can be calculated for 𝑔𝑐 .

We highlight that we intentionally take the difference 𝑌𝑖 −
𝑌𝑖 rather than 𝑌𝑖 − 𝑌𝑖 so that undercompensation for those in

𝑔 aligns with a negative value of net compensation, in line

with previous literature (eg, Bergquist et al., 2019). This is

reflected in the mean residual difference definition above as

well. We do not maintain this ordering for the corresponding

estimators in Section 2.2 as we wish to penalize large under-

compensation in net compensation penalized regression by

adding to the squared error, and the squared term for mean

residual difference penalized regression negates the ordering

distinction.

2.1.3 Predictive ratios

Predictive ratios are commonly used to quantify the underpay-

ment for specific groups in risk adjustment (Pope et al., 2004):∑
𝑖∈𝑔 𝑌𝑖∕

∑
𝑖∈𝑔 𝑌𝑖. Net compensation provides the absolute

magnitude of the loss in dollars, whereas predictive ratios pro-

vide the relative size of the loss. Predictive ratios can also be

created for 𝑔𝑐 .

2.1.4 Fair covariance

Other fairness work creates a measure based on the idea that to

be fair, the predicted outcome (or residual error) and protected

class must be independent. Using the covariance between the

predicted outcome (or residual error) and the protected class

as a proxy for independence, that work establishes a fairness

measure (Zafar et al., 2017a; 2017b). Because this prior met-

ric assumes that outcomes are classified into discrete cate-

gories, we extend the definition to define a new measure of fair

covariance for residual errors with continuous 𝑌 . Our measure

is given by Cov(𝐴, 𝑌 − 𝑌 ), where 𝐴 ∈ {0, 1} is the random

variable indicating membership in 𝑔. This measure is bounded

by the covariance of the undercompensated group and the

OLS residual, which we refer to as 𝑐∗. Our fair covariance

measure allows one to see the empirical signal for systematic

undercompensation through residual covariance and it can

also be scaled by 𝑐∗ such that it is bounded between 0 and 1.

2.1.5 Global fit

In addition to fairness measures, we also evaluate overall

fit with the traditional measure used in risk adjustment,

which is 𝑅2 ∶ 1 − {
∑

𝑘(𝑌𝑘 − 𝑌𝑘)2∕
∑

𝑘(𝑌𝑘 − 𝑌𝑘)2}, which

we present as a percent. Given current policymaker prioriti-

zation of global metrics, it is important to compare estimators

with both group and overall fit measures to understand the

impact on global fit when seeking fairness for undercompen-

sated groups.
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The measures we consider above assume that the data

include unbiased 𝑌 , which may not be the case in practice.

Additionally, fairness is frequently assessed for one or two

groups, as we also do here. In reality, we are often concerned

about fairness for many groups. This requires the ability to

define all meaningful groups, which is not always an objective

task. There are also trade-offs involved in selecting a fairness

metric, and ensuring that fairness based on one definition does

not necessarily guarantee a satisfying solution with respect to

other fairness measures or overall fit (Kleinberg et al., 2016;

Chouldechova, 2016; Berk et al., 2017). We return to these

issues in our discussion. In Web Appendix A, we present

a new extension of a fairness measure for comparing indi-

vidual residual errors rather than mean residual errors. This

group residual difference metric is not practical to implement

at scale in risk adjustment, thus we do not deploy it here, but

could be useful for small 𝑁 settings.

2.2 Estimation methods

We present five methods that incorporate a fairness objec-

tive with a constraint or penalty to improve risk adjustment

formulas for undercompensated groups. Two of these meth-

ods, covariance constrained regression and net compensa-

tion penalized regression, are new contributions, and all five

methods will also be compared to the OLS estimator. We

have a continuous spending outcome 𝑌 , a vector of binary

health variables 𝑯 = (𝐻1,… ,𝐻𝑇 ), an input vector 𝑿 =
{female, age,𝑯}, and a coefficient vector 𝜽 indexed by 𝑝.

For OLS, we aim to solve the following regression problem:

minimize𝜃{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2}.

2.2.1 Average constrained regression

A previously proposed constrained regression method for risk

adjustment requires that the estimated average spending for

the undercompensated group is equal to the average spend-

ing, which means that net compensation for the undercompen-

sated group is zero (van Kleef et al., 2017). This is achieved

by including a constraint: minimize𝜃{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2},

subject to 1∕𝑛𝑔
∑

𝑖∈𝑔 𝑌𝑖 = 1∕𝑛𝑔
∑

𝑖∈𝑔(
∑

𝑝 𝜃𝑝𝑋𝑖𝑝). The given

constraint has been applied in the risk adjustment literature to

reduce undercompensation for select groups (van Kleef et al.,
2017; Bergquist et al., 2019).

2.2.2 Weighted average constrained
regression

The next existing method relaxes the previous constraint,

allowing the estimated spending to be a weighted

average of the average spending of the undercom-

pensated group and the estimated spending under

unconstrained OLS: minimize𝜃{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2},

subject to 1∕𝑛𝑔
∑

𝑖∈𝑔(
∑

𝑝 𝜃𝑝𝑋𝑖𝑝) = (1 − 𝛼)∕𝑛𝑔
∑

𝑖∈𝑔 𝑌𝑖 +
𝛼∕𝑛𝑔

∑
𝑖∈𝑔(

∑
𝑝 𝜃

𝑂𝐿𝑆
𝑝

𝑋𝑖𝑝), where 𝜽𝑂𝐿𝑆 is the coefficient

vector from the OLS. The hyperparameter 𝛼 ∈ [0, 1] is a

weighting factor. When 𝛼 = 0, this method is equivalent

to average constrained regression, and when 𝛼 = 1 it is

equivalent to OLS. Weighted average constrained regression

has been shown to reduce undercompensation for select

groups in the Netherlands risk adjustment formula (van Kleef

et al., 2017).

2.2.3 Covariance constrained regression

The class of covariance methods we consider impose a

constraint on the residual by requiring that the covariance

between the residual and the protected class is close to zero

(Zafar et al., 2017a; 2017b). We extend these techniques to

propose a new method for our risk adjustment setting where

we have a continuous residual, which has not been previously

explored. In order to solve the optimization problem, we con-

vert it into a convex problem. We simplify the covariance as

follows:

Cov(𝐴, 𝑌 − 𝜽𝑿)

= 𝐸[{𝐴 − 𝐸(𝐴)}{𝑌 − 𝜽𝑿 − 𝐸(𝑌 − 𝜽𝑿)}]

= 𝐸[{𝐴 − 𝐸(𝐴)}(𝑌 − 𝜽𝑿)]

≈ 1
𝑁

∑
𝑘

[
{𝐴𝑘 − 𝑃 (𝐴 = 1)}

(
𝑌𝑘 −

∑
𝑝

𝜃𝑝𝑋𝑘𝑝

)]

≈ 1
𝑁

[
{1 − 𝑃 (𝐴 = 1)}

∑
𝑖∈𝑔

(
𝑌𝑖 −

∑
𝑝

𝜃𝑝𝑋𝑖𝑝

)

−𝑃 (𝐴 = 1)
∑
𝑗∈𝑔𝑐

(
𝑌𝑗 −

∑
𝑝

𝜃𝑝𝑋𝑗𝑝

)]
.

Now that we have the covariance in the form of a convex

problem, we can define what we need to solve: minimize𝜃
{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2}, subject to {1 − 𝑃 (𝐴 = 1)}
∑

𝑖∈𝑔
(𝑌𝑖 −

∑
𝑝 𝜃𝑝𝑋𝑖𝑝) − 𝑃 (𝐴 = 1)

∑
𝑗∈𝑔𝑐 (𝑌𝑗 −

∑
𝑝 𝜃𝑝𝑋𝑗𝑝) < 𝑐 and

{1 − 𝑃 (𝐴 = 1)}
∑

𝑖∈𝑔(𝑌𝑖 −
∑

𝑝 𝜃𝑝𝑋𝑖𝑝) − 𝑃 (𝐴 = 1)
∑

𝑗∈𝑔𝑐 (𝑌𝑗
−
∑

𝑝 𝜃𝑝𝑋𝑗𝑝) ≥ −𝑐. Parallel to the literature for discrete

categories (Zafar et al., 2017b), we set 𝑐 = 𝑚 × 𝑐∗, where 𝑚

is a multiplicative factor 𝑚 ∈ [0, 1] and 𝑐∗ is the covariance

of the undercompensated group and the OLS residual. The

upper bound for 𝑐 occurs at 𝑚 = 1, which is 𝑐∗.

As we are primarily concerned with the residual of

the undercompensated group being too large, we choose

to instead bind the covariance on one side in our imple-

mentation of this method. In other words, we constrain
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the covariance to be less than some percentage of the OLS

covariance (as defined by the hyperparameter 𝑚). A one-sided

constraint also yields faster optimization. The updated opti-

mization problem is: minimize𝜃{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2},

subject to {1 − 𝑃 (𝐴 = 1)}
∑

𝑖∈𝑔(𝑌𝑖 −
∑

𝑝 𝜃𝑝𝑋𝑖𝑝) − 𝑃 (𝐴 =
1)
∑

𝑗∈𝑔𝑐 (𝑌𝑗 −
∑

𝑝 𝜃𝑝𝑋𝑗𝑝) < 𝑐.

2.2.4 Mean residual difference penalized
regression

The relationship between penalized and constrained regres-

sions is well recognized in statistics (Hastie et al., 2009), and

one could equivalently reformulate the above constraints as

penalties. Penalized regression has also been explored in the

fairness literature. Calders et al. (2013) consider constrained

formulations of their approaches, but propose the flexibility of

penalization as an alternative due to the possibility of degen-

erate solutions with a high number of constraints. In their

mean residual difference regression technique, one penalizes

with large mean residual differences between the undercom-

pensated group and the complement group. The coefficients

minimize:
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2 + 𝜆{1∕𝑛𝑔
∑

𝑖∈𝑔(𝑌𝑖 −∑
𝑝 𝜃𝑝𝑋𝑖𝑝) − 1∕𝑛𝑐

∑
𝑗∈𝑔𝑐 (𝑌𝑗 −

∑
𝑝 𝜃𝑝𝑋𝑗𝑝)}2, where hyperpa-

rameter 𝜆 can be user-specified or chosen via cross-validation,

and its magnitude will be on the same scale as 𝑌 .

2.2.5 Net compensation penalized regression

In our second new method, rather than imposing a constraint,

we also formulate a penalized regression. Our regression

involves the inclusion of a custom net compensation penalty

term in the minimization problem:
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2 +
𝜆{1∕𝑛𝑔

∑
𝑖∈𝑔(𝑌𝑖 −

∑
𝑝 𝜃𝑝𝑋𝑖𝑝)}. This penalty punishes estima-

tors where the net compensation, or difference between the

average spending and predicted spending for the undercom-

pensated group, is large. We can alternatively present our new

method as a constraint: minimize𝜃{
∑

𝑘(𝑌𝑘 −
∑

𝑝 𝜃𝑝𝑋𝑘𝑝)2},

subject to 1∕𝑛𝑔
∑

𝑖∈𝑔(𝑌𝑖 −
∑

𝑝 𝜃𝑝𝑋𝑖𝑝) ≤ 𝑧, where the hyper-

parameter 𝑧 is positive and has a one-to-one correspondence

with, but is not equal to, 𝜆 when the constraint is binding.

We choose to primarily implement this method as a penal-

ized regression to explore differences in performance with the

mean residual difference penalized regression for the same

values of 𝜆. However, simulation studies in Web Appendix

B of the Supporting Information examine the performance of

the constrained formulation.

2.3 Computational implementation

These six methods were evaluated to assess both overall

fit and fairness goals with fivefold cross-validation in our

data analysis and simulations using the suite of five mea-

sures defined in Section 2.1. OLS was implemented in the R
programming language with the lm() function. All other esti-

mators were optimized using the CVXR package. This package

uses disciplined convex programming to solve optimization

problems and allows users to specify novel constraints and

penalties (Fu et al., 2019).

3 HEALTH CARE SPENDING
APPLICATION

We selected a random sample of 100 000 enrollees from the

IBM MarketScan Research Databases. Age, sex, and diag-

nosed health conditions, all from the year 2015, were used to

predict total annual expenditures in 2016. Diagnosed health

conditions took the form of the established Hierarchical Con-

dition Category (HCC) variables created for risk adjustment.

HCCs were developed by the Department of Health and

Human Services to group a selection of International Classi-

fication of Disease and Related Health Problems (ICD) codes

into indicators for various health conditions (Pope et al., 2004;

Kautter et al., 2014). We considered the 79 HCC variables

currently used in Medicare Advantage risk adjustment formu-

las and retained the 62 HCCs that had at least 30 enrollees with

the condition. See Web Appendix C for a list of the 62 HCCs

included in the regression formulas. Our sample of enrollees

was 52% females and between the ages of 21 and 63, with

median age 45. Mean and median annual expenditures per

enrollee were $6651 and $1511, respectively.

We defined enrollees with MHSUD, our protected group

𝐴, using Clinical Classification Software (CCS) categories.

This classification system maps each MHSUD-related ICD

code to a CCS category, unlike the HCCs, which only map

a subset of MHSUD-related ICD codes. Based on CCS cate-

gories, 13.8% of the sample had a diagnosis code for MHSUD

compared to 2.6% had we used HCCs. We note that we do

not capture enrollees with MHSUD who do not have an ICD

code for their condition(s). The mean annual expenditures

for MHSUD enrollees in our sample were $11 520 versus

$5880 for enrollees without MHSUD (and $3744 vs. $1274

for median annual expenditures).

We compared each method to determine which estima-

tors were best at reducing undercompensation for enrollees

with MHSUD, and at what cost to overall statistical fit. In

Table 1, we report the top estimators with respect to fairness

for each of the six methods, having selected the hyperparam-

eter value that optimizes the fairness measures (for those that

have these parameters). Hyperparameter values were user-

specified from the range of plausible values. For example,

in the covariance constrained regression, 𝑚 can range from 0

to 1, and we considered 𝑚 ∈ {0.2, 0.4, 0.6, 0.8}. Comparisons

of global fit versus group fairness for the three methods with
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T A B L E 1 Performance of constrained and penalized regression methods

Predictive ratio Net compensation
Method 𝑹𝟐 𝒈 𝒈𝒄 𝒈 𝒈𝒄

Mean residual
difference

Fair
covariance

Average 12.4% 0.996 1.001 −$46 $4 −$50 6

Covariance 12.4 0.996 1.001 −46 4 −50 6

Net compensation* 12.5 0.980 1.006 −232 34 −266 31

Weighted average† 12.6 0.964 1.011 −411 62 −473 56

Mean residual difference‡ 12.8 0.895 1.032 −1208 188 −1396 164

OLS 12.9 0.837 1.050 −1872 293 −2165 256

*𝜆 = 10 000.
†𝛼 = 0.2.
‡𝜆 = 30 000.

Note: Measures calculated based on cross-validated predicted values and sorted on net compensation. Best performing hyperparameters for each estimator (with respect

to fairness measures) are displayed. Performance for covariance method was same for all 𝑚. 𝑔𝑐 is the complement of 𝑔.

F I G U R E 1 Global fit versus group fairness

Note: Variation in cross-validated performance by hyperparameter is plotted for three estimators. Predictive ratios for mental health and substance

use disorders (MHSUD) are contrasted with overall 𝑅2 fit. Results for all hyperparameters in the covariance constrained regression,

𝑚 ∈ {0.2, 0.4, 0.6, 0.8}, were extremely similar and thus omitted.

variation in performance by hyperparameter can be found in

Figure 1.

OLS had a cross-validated 𝑅2 measure of 12.9%, a predic-

tive ratio of 0.837 for individuals with MHSUD, and underes-

timated average MHSUD spending by −$1,872, with a mean

residual difference of −$2,165. The fair covariance measure

was 256. Average spending for enrollees without MHSUD

was overestimated by $293 with a predictive ratio of 1.050.

OLS had the worst performance along all fairness metrics

while producing an 𝑅2 only trivially higher than the compet-

ing methods.

We found the best improvement in fairness for MHSUD

using the existing average constrained regression and our

new covariance constrained regression. These two methods

had similar performance, although not identical performance,

and reduced the average undercompensation for enrollees

with MHSUD to −$46 (vs. −$1,872 in the OLS), a relative

improvement of 98%. They also increased the predictive ratio

from 0.837 to 0.996. Enrollees without MHSUD were over-

estimated by only $4 and had a predictive ratio of 1.001. Both

methods reduced the fair covariance measure from 256 to 6.

Unsurprisingly, these two estimators were also the worst per-

formers on overall fit as measured by 𝑅2, although it was a

loss of only 4%, from 12.9% to 12.4%. This small 0.5 percent-

age point loss in 𝑅2 may be tolerable to policymakers.

Recall that the weighted average constrained regression is

a compromise estimator between the OLS and average con-

strained regression. As 𝛼 approached one in the first panel of

Figure 1, the metrics more closely resembled the OLS results.

As 𝛼 approached zero, we saw values closer to the average

constrained regression results, although 𝛼 = 0.2 was not only

dominated by the average constrained and covariance con-

strained regressions, but also the net compensation penalized

regression with 𝜆 = 10 000.

The remaining two methods were regressions with

customized penalty terms to punish unfair estimates. Our

proposed net compensation penalized regression varied

substantially by hyperparameter (see the second panel in

Figure 1), although was the third best performer overall

when 𝜆 =10 000. Large 𝜆 values yielded extremely poor
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performance on both overall fit and fairness. At 𝜆 = 20 000,

𝑅2 dropped by 12% to 11.9%, and when 𝜆 increased to

30 000, 𝑅2 dropped to 9%, a relative reduction of 29%. These

two 𝜆 values led to a large overcompensation for enrollees

with MHSUD. The covariance was also negative, indicating

that the residual value for MHSUD was systematically too

high. The mean residual difference penalized regression was

less sensitive to hyperparameters compared to the net com-

pensation penalized regression (see third panel in Figure 1).

The best performance for mean residual difference penalized

regression was at 𝜆 = 30 000; it improved on the MHSUD

predictive ratio for OLS by 7% (from 0.837 to 0.895) with

an 𝑅2 loss of less than 1%. However, the best performing net

compensation penalized regression had an 81% improvement

over the best performing mean residual difference penalized

regression when comparing MHSUD net compensation, as

well as large improvements in predictive ratios (0.895 vs.

0.980) and fair covariance (164 vs. 31).

We also examined the HCC variable coefficients for

the best performing estimators, the average constrained

and covariance constrained regressions, in comparison to

OLS. Risk adjustment coefficients communicate incentives

to insurers and providers related to prevention and care. For

example, coefficients that do not reflect costs can impact an

insurer’s incentives in creating their plan offerings. Coeffi-

cients for the average constrained and covariance constrained

regressions were nearly identical when rounded off to the

nearest whole dollar, thus we display OLS versus covariance

constrained regression in Figure 2. We considered the largest

five increases and largest five decreases from OLS to covari-

ance constrained regression, and observed sizable increases

in the estimated coefficients associated with MHSUD. The

largest relative increase was 180% for “Schizophrenia.” Rela-

tive decreases were much smaller.

4 SIMULATION STUDY

A set of simulation scenarios was developed to explore

how these regression methods perform in other settings. We

generated a population of 100 000 observations with two

continuous outcomes 𝑌1 and 𝑌2 that were each a function of

covariates in 𝑿 = (𝑋1, 𝑋2,… , 𝑋9) and two distinct yet par-

tially overlapping protected classes (𝐴1 and𝐴2) that depended

on variables in𝑿. Scenario 1 considered a complex functional

form for 𝑌1 and regression estimators that were misspecified,

including omitted 𝑿 variables. Scenario 2 examined a less

complex functional form in 𝑌2 and regression estimators

that were misspecified, including additional noise variables

but no omitted 𝑿 variables. A third scenario is discussed in

Web Appendix B of the Supporting Information, along with

complete details for the simulated population and first two

F I G U R E 2 Largest coefficient changes

Note: Increases in coefficient values from the OLS to covariance

constrained regression are represented by solid lines with decreases in

dashed lines. Largest five increases and largest five decreases were

considered; “Chronic kidney disease, severe (Stage 4)” and “Severe

hematological disorders” (both decreases) were suppressed due to large

magnitudes while having small relative percentage changes of <1%.

scenarios. For each scenario, we drew 500 samples of

𝑁 =1000 and 𝑁 =10 000 observations from the simulated

population of 100 000 observations. As in the data analysis,

hyperparameter values were user-specified from the range of

plausible values.

Selected results are presented in Figure 3, which includes

OLS and those methods that improved fairness measures for

protected class 𝐴1 with a relative 𝑅2 loss ≤10%. Notably,

average constrained and covariance constrained regressions,

the tied top estimators in our data analysis, do not appear. This

was common across settings; average constrained and covari-

ance constrained regressions often struggled with functional

form misspecification. However, net compensation penalized
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F I G U R E 3 Simulation results

Note: The plot includes OLS and estimation methods that improved fairness measures with a relative cross-validated 𝑅2 loss ≤10% for 𝑁 = 10 000.

Predictive ratios for protected class 𝐴1 are contrasted with overall 𝑅2 fit.

regression, which performed well in our data analysis, also

performed well in the simulations with respect to achieving

metric balance between global fit decreases and group fit

increases. Additional results are available in Web Appendix

B of the Supporting Information.

5 DISCUSSION

We proposed new fair regression methods aiming to improve

risk adjustment for undercompensated groups and asserted

that a broader set of metrics is needed. As expected, there

was no single method that performed the best across all the

measures. One of our newly proposed techniques, net com-

pensation penalized regression, had strong performance with

respect to fairness and global fit in both the data analysis

and simulations. Selecting the “best” method relies on sub-

jective decisions regarding how to balance group fairness ver-

sus overall fit trade-offs. Improvements in fairness resulted

in subsequent decreases in 𝑅2. However, for many estima-

tors, particularly in our data analysis, improvements in fair-

ness were larger than the subsequent decreases in overall fit.

This suggests that if we allow for a slight drop in overall fit,

we could greatly increase compensation for MHSUD. Poli-

cymakers need to consider whether they are willing to sacri-

fice small reductions in global fit for large improvements in

fairness.

We used a sample of enrollees in our demonstration.

At scale in a policy implementation, data from millions of

enrollees would be used to estimate health spending. Solu-

tions to group undercompensation must be scalable, and cur-

rent software may or may not yet be capable of handling the

sample sizes required. We tested the CVXR optimization pack-

age on larger samples and found that it was able to find solu-

tions on a sample of 1 000 000 observations over the span

of 3 days (vs. 7 h for the 100 000 enrollee sample). While

the optimization results were not within the ideal optimal

threshold, they still converged and the results were similar to

those presented in this paper, which is promising. Future work

includes additional studies regarding scalability. In our anal-

yses, we also selected among user-specified hyperparameter

values with cross-validation. A more thorough approach, with

possibly improved results, would explore the hyperparameter

space in an automated way to select values that optimize over

joint fairness and fit objectives. As a general guideline, we

found that 𝜆 = 𝑁∕10 yielded reasonable metric balance for

our newly proposed net compensation penalized regression.

We focused on one group that risk adjustment is known

to disadvantage, but it is important to extend such strategies

to multiple groups. Improvements for one group could result

in subsequent undercompensation for other groups, and bal-

ancing fairness across an increasing number of groups is an

as yet unsolved problem in risk adjustment. Our simulations

examined two protected classes, and we found that improv-

ing fairness for one group did not generally help or harm the

second group. Earlier research developing methods for the

preprocessing phase found that reducing undercompensation

for enrollees with MHSUD improved fairness measures for

other groups, including enrollees with multiple chronic con-

ditions but without MHSUD. Among the groups included in

their comparisons, only enrollees with heart disease had slight

reductions in fairness (Bergquist et al., 2019). But even the act

of defining the groups poses a problem, as this can be sub-

jective, potentially favoring larger groups with well-funded

advocacy organizations. Undercompensation could be unde-

tected in many other lesser-known groups. However, we can

only measure undercompensation for groups that are identi-

fied by available data, and socioeconomic information, such

as poverty and housing, are not available at the individual level

for risk adjustment (Ellis et al., 2018).



ZINK AND ROSE 981

Broadly, data-driven decisions have come under scrutiny

for perpetuating human biases, which certainly exists in risk

adjustment. Arguments for a more comprehensive view of

research results is increasing among scientific researchers

today (Gibney, 2018). Recent work argues that evaluating

methods from a purely statistical standpoint can lead to nega-

tive consequences, and that policy aims should be better incor-

porated into our research (Corbett-Davies and Goel, 2018).

Our paper follows in this spirit, and we presented additional

estimators and comparisons across multiple measures for the

numerous (sometimes competing) goals of risk adjustment.

While we worked within the specific context of risk adjust-

ment, the fairness methods and measures discussed here have

implications for other settings with continuous outcomes,

which have been understudied relative to binary outcomes.
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