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Abstract: There is an increasing prevalence of poor health behaviors during childhood, particularly
in terms of physical activity and nutrition. This trend has occurred alongside a growing body of
evidence linking these behaviors to cognitive function. B-vitamins are thought to be particularly
important in the neural development that occurs during pregnancy, as well as in healthy cognitive
aging. However, much less is known regarding the role of B-vitamins during childhood. Given that
preadolescent childhood is a critical period for cognitive development, this study investigated the
relationship between specific aspects of nutrition, particularly B-vitamins, and related health factors
(e.g., body mass, fitness) on selective attention in children. Children (n = 85; 8–11 years) completed
a selective attention task to assess inhibition. Participant’s dietary intake was collected using the
Automated Self-Administered 24-h dietary assessment tool. Correlations between specific nutrients,
BMI, fitness, and task performance were investigated. After accounting for demographic variables
and total caloric intake, increased B-vitamin intake (i.e., thiamin and folic acid) was associated with
shorter reaction times (p’s < 0.05), fitness was associated with greater response accuracy (p < 0.05), and
increased BMI was related to increased variability in reaction times (p < 0.05). Together, these findings
suggest that aspects of health may have unique contributions on cognitive performance. Proper
physical health and nutrition are imperative for effective cognitive functioning in preadolescent
children. Targeted efforts aimed at health education amongst this population could ensure proper
cognitive development during school-age years, providing a strong foundation throughout life.

Keywords: cognition; childhood; obesity; fitness; nutrition

1. Introduction

Numerous factors are important for optimal child development, in particular proper
nutrition and physical activity. Childhood is a critical period for the development of lifelong
habits and healthy behaviors [1]. Recently, dietary trends have shifted towards high-density
processed foods, with the majority of calories now consumed from calorically dense but
nutritionally poor foods [2,3]. In the U.S., less than one in ten children consume the recom-
mended daily amounts of vegetables and only four in ten children eat enough fruit [4]. Poor
nutrition quality during childhood is associated with long term adverse health outcomes,
including some cancers and high blood pressure among others. In addition to the physical
consequences of an unhealthy diet, students with lower diet quality also performed more
poorly academically in terms of language and mathematics performance [5]. In addition,
many children are already affected by a serious public health concern, as 19.3% of the
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pediatric population in the U.S. has obesity, including 6.1% with severe obesity and an
additional 16.1% with overweight [6,7]. This trend presents complications to physical
health and cognition, including scholastic performance [8–17]. Children with obesity have
decreased cognitive performance [18], including poorer attention [8,9], increased impul-
sivity [10,11], decreased inhibition [12–14], decreased cognitive flexibility [15] and worse
academic achievement [16,17]. Physical health complications associated with obesity en-
compass various systems such as: cardiovascular, endocrine, gastrointestinal, respiratory,
musculoskeletal, and psychological [19–21]. Children with obesity also exhibit different
lifestyle behaviors, for example they engage in less physical activity than their normal
weight peers [22]. It is currently recommended that children achieve 60 min of moderate
to-vigorous physical activity each day to optimize health benefits [23]. Unfortunately, only
a quarter of all U.S. children meet the recommended activity guidelines [24,25]. This is
concerning because physical activity is associated with a number of positive outcomes
including reduced risk of chronic diseases and some cancers [23,26], as well as significant
reductions in cardiometabolic disease risks, such as healthy weight maintenance [27], waist
circumference, blood pressure, triglycerides, cholesterol, and insulin [26].

Related to physical activity, higher aerobic fitness is also inversely related to cardiovas-
cular and metabolic risk factors [28,29]. Higher fitness during childhood is associated with
advantageous cognitive function, with greater benefits observed for aspects of cognitive
control. Cognitive control refers to goal-directed behavior involved in perception, memory,
and action [30,31]. One of the core cognitive control processes is inhibition [32–34]. Inhi-
bition refers to the ability to suppress task irrelevant information in the environment and
withhold a prepotent or impulsive response [35]. Previous research indicates that higher
fit children outperform their lower fit peers on inhibitory control tasks, with the largest
differences in performance observed in the most difficult task conditions [36,37].

Inhibitory control is also implicated in childhood nutrition. After accounting for
important variables such as age and IQ, increased dietary fiber intake is associated with
greater accuracy on an attentional inhibition task. These findings suggest that during
childhood, diet quality influences performance on challenging cognitive tasks [38]. In
contrast, children who consume a diet high in saturated fats exhibit slower reaction times,
as well as impaired cognitive flexibility [39], a cognitive process used in shifting, selecting
attention, and modifying response. Relational memory performance is also poorer with
increased consumption of saturated fatty acids and refined sugar during childhood. In
contrast, greater intake of omega-3 fatty acids is related to improved relational memory
performance [40]. In addition to macronutrients, the role of micronutrients such as vitamins
on physical and cognitive health is of growing interest.

B-vitamins are water soluble, perform essential roles in cellular functioning, and are
critical for brain and psychological functions [41]. Much of the work examining the role of
vitamins and cognition has taken place at the extremes of the lifespan. Specifically, folate
(vitamin B-9) is implicated in brain development through its role in closing the neural
tube during fetal development [42]. A deficiency in vitamin B-12 during pregnancy has
also been associated with an increased risk of neural tube defects [43,44]. Within the last
25 years, folic acid has been added to enrich foods such as breads, flours, rice, and other
grain products [45]. Deficiencies in specific vitamins may impact brain functions, with
important implications for cognitive function.

There is limited and mixed research regarding B-vitamins and cognitive function in
children. In Kenya, results from 554 seven-year-old children demonstrate a significant
positive relationship between vitamin B-12 and riboflavin with cognitive test scores (digit
span), even after controlling for important variables such as energy intake and socio-
economic status [46]. Additionally, after 37 days of supplementation with B-vitamins,
101 children in China showed increased performance on a letter selection task [47]. Further,
in a large study of U.S. children, higher amounts of folate measured in blood were associated
with higher reading and block design scores, while no such association was observed for
vitamin B-12 [48]. In contrast, vitamin B-12 concentrations were significantly inversely
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associated with short-term memory, retrieval ability, and mental processing after controlling
for hemoglobin, folate status, and height-for-age Z scores in 598 school children in India [49].

One laboratory-based cognitive task that has been used to examine obesity, physical
activity, and nutrition on cognition is an inhibitory control task known as the flanker task.
This task allows for interference manipulation in order to modulate inhibitory control
demands [50]. The flanker task requires selective attention, or the ability to focus on certain
features of the stimulus environment while ignoring others [51–53].

Current epidemiological evidence indicates that childhood obesity rates have tripled
in the last 40 years [54], physical activity levels have dropped, with approximately 75%
of children failing to meet the recommended guidelines of at least 60 min of moderate-
to-vigorous PA every day [23,55], and consumption of poor dietary patterns is on the
rise, such that children consume more ultra processed foods now than 20 years ago [2].
Therefore, research is critically needed to understand the cognitive health implications
related to each of these health factors. Thus, the current study examined the independent
roles of fitness, obesity, and B-vitamins in a well characterized group of children to better
understand the specific role of each factor on inhibitory control. It was hypothesized that
healthier behaviors, including increased fitness, decreased BMI, and increased B-vitamins,
would relate to better performance on a task of inhibitory control, specifically in the most
challenging task conditions.

2. Materials and Methods
2.1. Participants

Participants in the study were between 8–11 years old. Exclusionary criteria included
a medical diagnosis of attention deficit disorder or attention deficit hyperactivity disorder,
currently taking medications for neurological disorders, specialized education due to
educational or attentional disorders, or inability to complete a maximal exercise test. All
participants provided written assent and their legal guardians provided written informed
consent in accordance with the Institutional Review Board at Northeastern University.

Demographic information for the sample can be found in Table 1. Demographic vari-
ables included age, sex, pubertal status, parent education, household income, relative VO2
max (kg/mL/min), VO2 percentile, BMI (kg/m2), and BMI percentile. Parents/guardians
completed a measure of pubertal status to ensure prepubescence of participants [56].
Parental education for each participant was bifurcated into two groups, one group had less
than an advanced degree and the other group had an advanced degree or greater. House-
hold income was also bifurcated into two groups, greater than or less than $100,000 annual
income. The Kaufman Brief Intelligence Test Second Edition (KBIT-2; Kaufman and Kauf-
man, 2004) is a standardized test (with a mean = 100 ± 15) used to measure generalized
intelligence (IQ) [57]. The KBIT-2 is a commercially available paper and pencil-based
assessment of cognitive abilities that has been age normed. In the present study, the initial
sample consisted of 88 children; however, three children were removed with IQ < 85. Thus,
the final sample consisted of 85 children.

2.2. ASA24

The Automated Self-Administered 24-h (ASA24) nutrition recall software was used to
measure participants’ dietary intake. One 24-h food recall was completed by parents with
input from the child when needed. Prior research has found the ASA24 to be a feasible
method for parent-proxy reporting of children’s dietary intake [58]. The ASA24 is a dietary
assessment tool developed by the National Cancer Institute (NCI) to collect data regarding
dietary intake. An adaptation of the United States Department of Agriculture’s (USDA)
Automated Multiple-Pass Method (AMPM) and the Food Intake Recording Software
System (FIRSSt), these “food-diaries” include a web-based tool, which records a single day
food record and automatically codes the data for use in epidemiological, interventional,
behavioral, or clinical research, and education. Key nutrient variables extracted for the
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present analyses included total energy(kcal) and B-vitamins (i.e., thiamin, riboflavin, niacin,
pyridoxine, folate, folic acid, and cobalamin).

Table 1. Participant demographic information (Mean ± SE).

Characteristic

N, % female 85, 44%

Age (years) 9.93 ± 0.08

Household Income Less than $100,000/year = 38%
$100,000 or more/year = 62%

Highest Level of Mother’s Education Less than advanced degree = 45%
Advanced degree or more = 55%

Highest Level of Father’s Education Less than advanced degree = 53%
Advanced degree or more = 47%

IQ 115.23 ± 1.47

Pubertal Status 1.46 ± 0.06

VO2 relative (kg/mL/min) 43.44 ± 0.77

VO2 percentile 31.81 ± 3.28

BMI (kg/m2) 17.94 ± 0.34

BMI% 56.34 ± 3.36 (27% overweight or obese)

Congruent Accuracy (% correct) 81.90 ± 1.41

Incongruent Accuracy (% correct) 66.28 ± 1.92

Accuracy Interference (% correct) 15.63 ± 1.54

Congruent RT (ms) 563.52 ± 9.47

Incongruent RT (ms) 627.11 ± 11.23

RT Interference (ms) 63.58 ± 5.25

Congruent SDRT 140.51 ± 4.49

Incongruent SDRT 158.05 ± 5.95

SDRT Interference 17.54 ± 4.01

Energy (kcal) 1774.47 ± 64.80

Thiamin (B-1) (mg) 1.49 ± 0.06

Riboflavin (B-2) (mg) 1.76 ± 0.09

Niacin (B-3) (mg) 19.32 ± 1.17

Pyridoxine (B-6) (mg) 1.64 ± 0.11

Folate (mcg) 378.96 ± 20.44

Folic Acid (mcg) 202.42 ± 17.81

Cobalamin (B-12) (mcg) 4.25 ± 0.29
Note: IQ = generalized intelligence; SES = socioeconomic status; VO2 = maximal oxygen volume.

2.3. Cardiorespiratory Fitness (VO2)

VO2max was used as the measure of cardiorespiratory fitness [59]. Prior to the start of
the cardiorespiratory fitness test, standing height and weight measurements were taken
with children wearing lightweight clothing and no shoes. Height and weight were mea-
sured using a Health o meter 500kl digital medical scale (Sunbeam Products, Boca Raton,
FL, USA). An indirect calorimetry system (COSMED Quark CPET OMNIA, Concord, Cali-
fornia) was used to measure children’s maximal oxygen consumption during a modified
Balke protocol [60]. After a brief warmup, children walked/ran at a constant speed on a
treadmill with incline increases of 2.5% every 2 min until volitional exhaustion. During the
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test, children wore a heart rate (HR) monitor across their chest to determine their maximal
heart rate. Every two minutes, ratings of perceived exertion (RPE) were assessed using the
children’s OMNI Scale [61], which uses a 0–10 pictorial scale to represent perceived physical
effort. In addition, children’s feelings were measured every two minutes on the Feeling
Scale (FS). Relative peak oxygen consumption was expressed in milliliters of oxygen con-
sumed per kilogram of bodyweight per minute. It was based upon maximal effort defined
by a plateau in oxygen uptake corresponding to an increase of less than 2 mL/kg/min
despite an increase in exercise workload; or a combination of the following: (1) a maximal
HR ≥ 185 beats-per-minute [60], (2) respiratory exchange ratio (RER) ≥ 1.0 [62], and/or
(3) RPE ≥ 8 [61]. Finally, based on the child’s age and sex, VO2max percentile (VO2max%)
was determined from normative data [63].

2.4. Weight Status Assessment

BMI was calculated as kg/m2, using each participant’s weight and height measured
in kilograms (kg) and meters (m), respectively. Height and weight were measured using
a Health o meter 500 kl digital medical scale (Sunbeam Products, Boca Raton, FL) while
participants were barefoot and wearing lightweight clothing. BMI percentile was calculated
based on CDC growth charts for children and teens (ages 2–19 years), accounting for age
and sex [64].

2.5. Inhibition Task

A modified version of an Eriksen flanker task was used to assess inhibitory con-
trol [50]. Participants were presented with a central target amid an array of four irrelevant
flanker stimuli, which were congruent or incongruent to the central target stimulus, and
asked to distinguish the centrally presented target stimulus from interfering flanking
stimuli. Congruent trials consisted of an array of five stimuli facing the same direction
(e.g., >>>>>, <<<<<), while incongruent trials consisted of the four flanking stimuli facing
the opposite direction of the target (middle) stimulus (e.g., >><>>, <<><<). The incongru-
ent trials require a greater amount of interference control due to perceptual interference
raised by the flanking arrows pointing in the opposite direction of the central target arrow,
which triggers multiple response mappings. Interference is created by manipulating the
congruency of the target and flanking stimuli, such that in the congruent condition, all
stimuli engender the same response mapping, whereas in the incongruent condition, the
target and flanking stimuli engender alternative response mapping. Since target and flank-
ing stimuli activate opposing action schemas, responses to congruent trials are typically
faster and more accurate than incongruent trials [65]. Furthermore, incongruent trials
require greater amounts of inhibitory control since target and flanking stimuli activate
multiple action schemas [66]. Prior to beginning the task, participants were provided with
practice trials to ensure that they understood the task and could perform at a level above
50%. Participants viewed the stimuli on a computer screen positioned focally at a distance
of 1 m using E-Prime3 software. Children completed 156 trials, with stimuli presented
for a duration of 150 ms and a variable inter-stimulus interval of 1300, 1500 and 1700 ms.
The congruent and incongruent trials were equiprobable and were presented in a random
sequence. Participants were instructed to respond using a response pad as quickly and
accurately as possible with a button press on the side corresponding to the directionality
of the central target stimuli amid either congruent or incongruent flanking stimuli. Per-
formance variables were collected for congruent and incongruent trials. Accuracy was
calculated as the percentage of correct responses. Mean reaction time (RT) was calculated
for correct responses as the time in milliseconds (ms) from stimulus onset until response
execution. Standard deviation of reaction time (SDRT) was calculated based on the RT
dispersion from the mean.
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2.6. Statistical Analysis

Initial Pearson product–moment correlations were conducted between dependent
variables from performance on the flanker task and all demographic variables (e.g., age, sex,
pubertal status, income, parental education, IQ). Any variable that significantly correlated
with the dependent variable was included as a covariate in the first step of the multiple
linear regression analyses. Next, separate multiple hierarchical linear regression analyses
were conducted for each performance variable on the flanker task. In Step 1, the dependent
variables were regressed on all significantly correlated demographic variables (e.g., pubertal
status, income, parental education, IQ). If no demographic variable was significantly
correlated with the outcome, this step was skipped. To determine the unique contribution
of each independent variable, the final step included nutrient variables, fitness and BMI,
which were independently entered into Step 2. The change in R2 values between the two
steps was used to judge the independent contribution of these measures for explaining the
variance in the dependent variables of interest beyond that of demographic variables.

To adjust for overall energy intake, vitamin intake was normalized to intake per
1000 kcal within participants before analyses. Statistics were performed using SPSS 27
(IBM, Somers, NY, USA).

3. Results

Demographic information for the sample can be found in Table 1.

3.1. Correlations

Correlations between flanker variables and demographics are presented in Table 2.
Age was most frequently correlated with flanker performance variables, such that older
children exhibited superior flanker performance (see Table 2).

Table 2. Pearson correlations between flanker performance and demographic variables.

Age Sex Pubertal
Timing IQ Mother

Education
Father

Education
Household

Income

Congruent
Accuracy 0.22 * 0.10 −0.03 0.20 0.13 0.17 0.01

Incongruent
Accuracy 0.26 * 0.17 −0.13 0.22 * 0.09 0.17 0.02

Accuracy
Interference −0.12 −0.12 0.13 −0.10 0.02 −0.05 −0.01

Congruent
RT −0.32 ** −0.17 −0.17 −0.02 0.05 −0.10 0.01

Incongruent
RT −0.25 * −0.21 −0.13 0.02 0.06 −0.07 −0.03

RT
Interference 0.04 −0.16 0.03 0.09 0.04 0.02 −0.09

Congruent
SDRT −0.43 ** 0.001 −0.01 −0.08 −0.10 −0.18 −0.12

Incongruent
SDRT −0.43 ** −0.05 −0.004 0.05 0.03 −0.16 0.02

SDRT
Interference −0.16 −0.07 0.01 0.016 0.15 −0.03 0.16

** Correlation is significant at the 0.01 level; * Correlation is significant at the 0.05 level.
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3.2. Accuracy
3.2.1. Congruent Accuracy

For congruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.05,
F(1, 83) = 4.37, p = 0.04. In Step 2, the addition of BMI, fitness, or B-vitamins did not account
for an incremental amount of variance in accuracy beyond associated descriptive variables
(see Table 3).

Table 3. Congruent Accuracy Regressions.

Congruent
Accuracy ANOVA F ANOVA P ∆R2 t β

Step1 Age 4.37 0.04 0.05 * 2.09 0.224

Step 2 BMI 2.31 0.11 0.003 0.54 0.06

Step 2 VO2 max 2.44 0.09 0.01 0.73 0.08

Step 2 Thiamin (B-1) 2.47 0.09 0.01 0.77 0.08

Step 2 Riboflavin (B-2) 2.70 0.07 0.01 1.02 0.11

Step 2 Niacin (B-3) 2.65 0.08 0.01 −0.97 −0.10

Step 2 Pyridoxine (B-6) 2.53 0.09 0.01 −0.84 −0.09

Step 2 Folate 2.64 0.08 0.01 0.96 0.10

Step 2 Folic Acid 2.24 0.11 0.002 0.40 0.04

Step 2 Cobalamin (B-12) 2.16 0.12 0.00 0.10 0.01

* ∆R2 is significant at p < 0.05 level.

3.2.2. Incongruent Accuracy

For incongruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.14,
F(2, 82) = 6.392, p = 0.003. With the addition of VO2max, Step 2 was also significant,
∆R2 = 0.05, F(3, 81) = 6.06, p = 0.001, such that greater fitness was associated with greater
incongruent accuracy, with VO2max accounting for an incremental amount of variance in
incongruent accuracy beyond the associated descriptive variables, β = 0.22, t(82) = 2.20,
p = 0.03. The addition of BMI and the B-vitamins did not account for an incremental amount
of variance in accuracy beyond the associated descriptive variables (see Table 4).

3.3. Mean RT
3.3.1. Congruent Mean RT

For congruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.10,
F(1, 83) = 9.14, p = 0.003. With the addition of folic acid, Step 2 was also significant,
∆R2 = 0.08, F(2, 82) = 8.71, p ≤ 0.001, such that greater dietary folic acid was associated with
shorter congruent RT, with dietary folic acid accounting for an incremental amount of vari-
ance in congruent RT beyond the associated descriptive variables, β = −0.28, t(82) = −2.75,
p = 0.007. Separately, the addition of thiamin in Step 2 was also significant, ∆R2=0.05,
F(2, 82) = 7.65, p = 0.001, such that greater dietary thiamin was associated with shorter
congruent RT, with dietary thiamin accounting for an incremental amount of variance in
congruent RT beyond the associated descriptive variables, β = −0.24, t(82) = −2.38, p = 0.02.
Finally, the addition of VO2max in Step 2 was also significant, ∆R2 = 0.05, F(2, 82) = 7.41,
p = 0.001, such that greater fitness was associated with longer congruent RT, with VO2max
accounting for an incremental amount of variance in congruent RT beyond the associated
descriptive variables, β = 0.22, t(82) = 2.28, p = 0.03. The addition of BMI and the remaining
B-vitamins did not account for an incremental amount of variance in accuracy beyond
associated descriptive variables (see Table 5).
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Table 4. Incongruent Accuracy Regressions.

Incongruent
Accuracy ANOVA F ANOVA P ∆R2 t β

Step1 Age 6.392 0.003 0.14 * 2.83 0.29

IQ 2.49 0.26

Step 2 BMI 4.24 0.008 0.001 −0.26 −0.03

Step 2 VO2 max 6.06 0.001 0.05 * 2.20 0.22

Step 2 Thiamin (B-1) 4.52 0.006 0.01 0.89 0.09

Step 2 Riboflavin (B-2) 4.34 0.007 0.004 0.59 0.06

Step 2 Niacin (B-3) 4.23 0.008 0.001 −0.25 −0.03

Step 2 Pyridoxine (B-6) 4.33 0.007 0.003 −0.56 −0.06

Step 2 Folate FOLA 4.33 0.005 0.01 0.92 0.10

Step 2 Folic Acid FA 4.21 0.008 0.000 −0.10 −0.01

Step 2 Cobalamin (B-12) 4.26 0.008 0.001 −0.36 −0.04

* ∆R2 is significant at p < 0.05.

Table 5. Congruent Reaction Time Regressions.

Congruent
RT ANOVA F ANOVA P ∆R2 t β

Step1 Age 9.14 0.003 0.10 * −3.02 −0.23

Step 2 BMI 5.21 0.007 0.01 −1.12 −0.12

Step 2 VO2 max 7.41 0.001 0.05 * 2.28 0.22

Step 2 Thiamin (B-1) 7.66 0.001 0.06 * −2.38 −0.30

Step 2 Riboflavin (B-2) 5.19 0.008 0.01 −1.10 −0.11

Step 2 Niacin (B-3) 5.24 0.007 0.01 −1.14 −0.12

Step 2 Pyridoxine (B-6) 4.75 0.01 0.005 −0.65 −0.07

Step 2 Folate 5.81 0.004 0.03 −1.53 −0.16

Step 2 Folic Acid 8.71 0.00 0.08 * −2.75 −0.28

Step 2 Cobalamin (B-12) 4.86 0.01 0.01 −0.79 −0.08

* ∆R2 is significant at p < 0.05.

3.3.2. Incongruent Mean RT

For incongruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.06,
F(1, 83) = 5.30, p = 0.02. With the addition of folic acid, Step 2 was significant, ∆R2 = 0.08,
F(2, 82) = 6.61, p = 0.002, such that greater dietary folic acid was associated with shorter
incongruent RT, with dietary folic acid accounting for an incremental amount of variance
in incongruent RT beyond the associated descriptive variables, β = −0.28, t(82) = −2.74,
p = 0.008. The addition of thiamin in Step 2 was also significant, ∆R2 = 0.08, F(2, 82) = 6.49,
p = 0.002, such that greater dietary thiamin was associated with shorter incongruent RT,
with dietary thiamin accounting for an incremental amount of variance in incongruent
RT beyond the associated descriptive variables, β = −0.28, t(82) = −2.67, p = 0.008. The
addition of VO2max, BMI and the remaining B-vitamins did not account for an incremental
amount of variance in accuracy beyond associated descriptive variables (see Table 6).
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Table 6. Incongruent Reaction Time Regressions.

Incongruent
RT ANOVA F ANOVA P ∆R2 t β

Step1 Age 5.30 0.02 0.06 * −2.30 −0.24

Step 2 BMI 2.71 0.07 0.002 −0.42 −0.05

Step 2 VO2 max 4.09 0.02 0.03 1.66 0.18

Step 2 Thiamin (B-1) 6.50 0.002 0.08 * −2.70 −0.28

Step 2 Riboflavin (B-2) 3.42 0.04 0.02 −1.22 −0.13

Step 2 Niacin (B-3) 4.36 0.02 0.04 −1.81 −0.19

Step 2 Pyridoxine (B-6) 4.25 0.02 0.03 −1.75 −0.18

Step 2 Folate 3.71 0.03 0.02 −1.43 −0.15

Step 2 Folic Acid 6.61 0.002 0.08 * −2.74 −0.28

Step 2 Cobalamin (B-12) 3.49 0.04 0.2 −1.28 −0.14

* ∆R2 is significant at p < 0.05.

3.4. SDRT
3.4.1. Congruent SDRT

For congruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.11,
F(1, 83) = 19.05, p ≤ 0.001. With the addition of BMI, Step 2 was also significant, ∆R2 = 0.07,
F(2, 82) = 14.29, p ≤ 0.001, such that greater BMI was associated with greater variability
in RT, with BMI accounting for an incremental amount of variance in congruent SDRT
beyond the associated descriptive variables, β = 0.28, t(82) = 2.87, p = 0.005. The addition
of VO2max and the B-vitamins did not account for an incremental amount of variance in
accuracy beyond the associated descriptive variables (see Table 7).

3.4.2. Incongruent SDRT

For incongruent trials, the Step 1 regression analysis was significant, adjusted R2 = 0.19,
F(1, 83) = 19.38, p ≤ 0.001. With the addition of BMI, Step 2 was marginally significant,
∆R2 = 0.04, F(2, 82) = 11.88, p ≤ 0.06, such that greater BMI was associated with greater
SDRT, with BMI accounting for a marginal incremental amount of variance in incongruent
RT variability beyond the associated descriptive variables, β = 0.19, t(82) = 1.93, p = 0.006.
The addition of VO2max and the B-vitamins did not account for an incremental amount of
variance in accuracy beyond associated descriptive variables (see Table 8).

Table 7. Congruent Standard Deviation of Reaction Time Regressions.

Congruent
SDRT ANOVA F ANOVA P ∆R2 t β

Step1 Age 19.05 0.000 0.19 * −4.36 −0.43

Step 2 BMI 14.49 0.000 0.07 * 2.87 0.28

Step 2 VO2 max 10.77 0.000 0.021 −1.48 −0.15

Step 2 Thiamin (B-1) 9.88 0.000 0.007 0.87 −0.09

Step 2 Riboflavin (B-2) 9.73 0.000 0.005 0.72 0.07

Step 2 Niacin (B-3) 9.49 0.000 0.001 0.35 0.04

Step 2 Pyridoxine (B-6) 10.29 0.000 0.01 1.20 0.12

Step 2 Folate 10.09 0.000 0.01 −1.05 −0.10

Step 2 Folic Acid 9.84 0.000 0.007 −0.84 −0.08

Step 2 Cobalamin (B-12) 10.17 0.000 0.01 1.11 0.11

* ∆R2 is significant at p < 0.05.
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Table 8. Incongruent Standard Deviation of Reaction Time Regressions.

Incongruent
SDRT ANOVA F ANOVA P ∆R2 t β

Step 1 Age 19.38 0.000 0.19 * −4.40 −0.44

Step 2 BMI 11.88 0.000 0.035 † 1.93 0.19

Step 2 VO2 max 11.61 0.000 0.03 −1.82 −0.18

Step 2 Thiamin (B-1) 9.67 0.000 0.001 −0.38 −0.04

Step 2 Riboflavin (B-2) 9.56 0.000 0.000 0.14 0.01

Step 2 Niacin (B-3) 9.58 0.000 0.000 0.09 0.01

Step 2 Pyridoxine (B-6) 9.58 0.000 0.000 −0.02 −0.002

Step 2 Folate 11.35 0.000 0.03 −1.69 −0.17

Step 2 Folic Acid 10.45 0.000 0.014 −1.19 −0.12

Step 2 Cobalamin (B-12) 9.66 0.000 0.001 0.37 0.04

* ∆R2 is significant at p < 0.05; † ∆R2 is marginally significant at p = 0.06.

4. Discussion

This investigation assessed the independent effects of B-vitamin intake, aerobic fitness,
and BMI using a cognitive task that manipulated inhibitory control demands. The findings
from the current study complement previous research within the field via examination
of behavioral outcomes in response to a selective attention task in preadolescent children
in relation to a variety of health factors, including nutrition, aerobic fitness, and body
composition. The merging of these health factors affords a unique opportunity to examine
the specific, nuanced roles of each. Collectively, these findings provide evidence that greater
intake of folic acid and thiamin, higher aerobic fitness, and lower BMI during childhood is
associated with greater response accuracy, shorter RT, and less response variability during
performance of an inhibitory control task that requires selective attention.

Novel to this investigation was the multifaceted analyses involving various measures
of health to better understand the specificity of each on task performance. In general,
higher fitness was associated with greater response accuracy in the task condition requiring
greater amounts of inhibitory control (i.e., incongruent task condition). Increased BMI was
associated with greater response variability. Finally, increased dietary thiamin and folic acid
were related to faster responses across both conditions of the task, suggesting generalized
benefits to tasks that modulate inhibitory control demand. These findings highlight the
specific relations that each measure of health may have on cognition in preadolescent
childhood. The results of this investigation are significant due to the nationwide increase
in levels of obesity [6], declines in PA among children [67], and a growing lack of adequate
sources of good nutrition [4]. Taken together, these findings suggest that future studies that
modify lifestyle behaviors may have the potential improve cognition, particularly selective
attention and inhibition.

One relevant lifestyle behavior is nutrition, specifically B-vitamins, as they are required
for essential brain metabolic pathways and are vital for brain development and mainte-
nance [68,69]. B-vitamins are important for methylation, particularly during cell repair.
Further, B-vitamins are closely linked to the physiological metabolism of homocysteine,
such that low levels of certain B-vitamins result in dysregulated and elevated homocysteine
levels, which increase the risk for cognitive impairment in older adults [70,71]. B-vitamins
appear beneficial for a variety of populations, such as adults over 40 years old and individu-
als with mild cognitive impairment, in terms of global cognitive function and especially for
tasks of episodic memory [72]. Previous studies in older adults have linked decreased folate
and thiamine with cognitive impairment and neurodegeneration [73,74]. Thiamine has an
important role in energy releasing reactions in the body and is necessary for proper nervous
system functioning. Food sources of thiamin include whole grains, meat, and fish [75].
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Thiamine deficiency produces selective cell death in the brain and a loss of neurons, which
have been linked to cognitive deficits. In institutionalized older adults, thiamine deficiency
is associated with higher levels of depression and Alzheimer’s disease [73]. Interestingly,
thiamine deficient rats have a longer response time to an electric stimulus [76] and impaired
cognition [77], as evidenced by impaired performance on learning, avoidance [78,79], and
water maze tasks [80,81]. The present findings are in agreement, such that increased dietary
thiamine was related to faster response times on a task of inhibition and selective attention.

Another important B-vitamin is B-9 (folate) and includes the various forms of the vita-
min including folic acid, dihydrofolate, tetrahydrofolate, 5, 10-methylenetetrahydrofolate
and 5-methyltetrahydrofolate [82]. Although the terms “folate” and “folic acid” are often
used interchangeably, folic acid is an oxidized synthetic form of folate and is used to fortify
foods and has been shown to prevent against neural tube defects [83,84]. Serum folate was
positively associated with verbal fluency, memory recall, and letter search performance,
which involves sustained attention and processing speed in a sample of 4,166 older adults
in the European HAPIEE study [85]. Over a five year monitoring period, women who
consumed folate levels below the recommended intake had an increased risk of mild cog-
nitive impairment and dementia [86]. In older adults with mild cognitive impairment,
supplementation with folic acid and other B-vitamins slowed the rate of brain atrophy [87].
Interestingly, our findings revealed a positive influence of consumption of folic acid, but not
folate, on reaction time during both congruent and incongruent trials. As mentioned earlier,
both folate and folic acid specifically have been shown to be beneficial for cognition and
brain in other studies. However, one of the implications of the findings from the present
work is that food sources that are fortified with folic acid, compared to foods with naturally
occurring folate, may have contributed to the greater attentional and inhibitory control
abilities in our sample. Alternatively, folic acid might be the largest constituent of folate
consumed in the diet in the current sample. Nevertheless, our findings add to this body of
literature and suggest that increased dietary folic acid is related to faster response times in
children during tasks that manipulate inhibitory control and selective attention demand.

During preadolescent childhood, selective attention is crucial since it involves pro-
longed attention and control of one’s actions [21,22], which are germane to scholastic
success. Findings from the present study are in agreement with previously published data,
indicating that lower fitness may relate to general impairments in cognitive control and
overall brain health [88–91]. Specifically, increased aerobic fitness was related to improved
performance on the task conditions requiring an upregulation of inhibitory control (i.e., the
incongruent trials), suggesting that fitness may have a specific benefit to this aspect of
cognition. The associations between congruent RT and fitness oppose the previously pub-
lished literature, such that the present investigation found that higher fitness was related to
longer response times on trials with lower inhibitory demands. There are a few possible
reasons for this finding. For example, the sample was predominately lower fit and this
reduced fitness range may have impacted results by not accounting for the breadth of
childhood fitness. It should be further noted that data collection was impacted by the
COVID-19 pandemic, which may have related to several unmeasured physical and mental
health factors.

With increased BMI, children often display poorer inhibition [12]. That is, children
with obesity perform more poorly on tests of inhibitory control as evidenced by longer RT
across a variety of inhibitory control tasks, including the flanker [12] and Stroop [16] tasks.
Such findings suggest that with higher BMI, individuals become less able to modulate
inhibitory control to meet the increased task demands [15]. In the present study, these effects
extend to deficits in intraindividual response variability, as measured via SDRT. SDRT
reflects the within-person fluctuations in response time. These within person fluctuations
in behavioral performance are a useful tool for differentiating performance during tasks
requiring variable amounts of interference control. Previous research suggests that greater
variability in mean RT has been observed in children relative to young adults [92,93] and
in children with attention-deficit and hyperactivity disorder [94]. Prior research suggests
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that lower fit children exhibit more variable performance relative to their higher fit peers,
as indicated by greater SDRT [88,95,96].

In concert with the present study, previous research in children also found that greater
adiposity is related to greater with-in person variability, highlighting the negative influence
that excess adiposity may already exert during childhood. The current findings are in
agreement and suggest an association between higher BMI and increased SDRT, which
reflects more variable responses across trials. In contrast, decreases in SDRT are related to
white matter tract maturation and increased functional connectivity, suggesting a neural
substrate for observed differences in variability of task performance [97]. Thus, the present
findings suggest that greater BMI may be a marker of decreased or delayed neural matura-
tion during preadolescent development, including maturation of white matter integrity.
Increased BMI in preadolescent childhood is also associated with lower grey and white
matter volume in brain regions implicated in cognitive control and learning, suggesting an
association between increased BMI and reduced cognitive outcomes [98–101]. The causal
direction of the association between adiposity and cognition remains unknown; however,
it could be that poorer inhibition precedes increases in BMI and may predispose a child to
unhealthy behaviors that subsequently increase BMI, as research suggests that inhibitory
control ability can predict weight status two and a half years later [102].

While this study adds to a growing body of literature, it is not without limitations. For
example, there may be unmeasured or unobserved factors such as cognitive stimulation
or parenting that are important and could confound the associations between nutrition,
body composition, fitness, and cognition. These factors were not measured in the current
investigation, but are important to consider in future studies. The study was cross-sectional
and relies on dietary recall and, thus, does not represent long-term dietary status. How-
ever, the ASA24 is a widely used tool in nutrition research. Findings from prior studies
suggest that parents are able to accurately report what their children ate and drank the
day prior [103]. Since 2009, when the ASA24 was released, more than 6000 studies have
registered to use ASA24 and more than 521,000 recall or record days have been collected
as of January 2020 (National Cancer Institute). ASA24-2020 is the version used during the
collection of dietary data for this research. Future studies should include either long term
measures and/or interventions to confirm that increased dietary B-vitamins are related
to improved cognitive performance. Future studies should also investigate serum levels
of B-vitamins to determine if the consumed levels and the levels in the blood are both
related to cognitive performance. In addition, all of the children included in this study had
normal to above normal IQ and the education level of parents was high. Thus, additional
research with larger samples is needed to determine if these findings extend to other groups
of children.

Today’s children fail to meet the federal guidelines for healthy diets, with scores
nearly half of what is recommended. This puts individuals at risk of diet related adult
chronic diseases [104]. In addition, children are becoming increasingly unfit and inactive,
with lower fitness and higher BMI associated with increased cardiovascular risk [105],
as well as decreased brain health, which have implications for cognitive and scholastic
performance [36,37,88–90,106,107]. Accordingly, findings from this study add to a growing
body of research indicating the beneficial relation of health factors on cognitive control
and specifically selective attention and inhibitory control, in preadolescent children. Fur-
thermore, research suggests that changes in physical activity and diet are beneficial in
terms of preventing and treating childhood obesity [108] and the present findings add to
this benefit and suggest benefits also extend to cognition with healthy behaviors. Given
that physical inactivity, obesity, and poor nutrition are major public health concerns with
a myriad of health consequences [82,83], this investigation provides critical evidence for
the specific roles of different health factors on cognitive health in children. Such findings
have implications for the educational environment, physical health, and brain health of
today’s children.
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