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Infertility is a condition whereby pregnancy does not occur despite having unprotected sexual intercourse for at least one year.
The main reason could originate from either the male or the female, and sometimes, both contribute to the fertility disorder.
For the male, sperm disorder was found to be the most common reason for infertility. In this paper, we proposed male
infertility analysis based on automated sperm motility tracking. The proposed method worked in multistages, where the first
stage focused on the sperm detection process using an improved Gaussian Mixture Model. A new optimization protocol was
proposed to accurately detect the motile sperms prior to the sperm tracking process. Since the optimization protocol was
imposed in the proposed system, the sperm tracking and velocity estimation processes are improved. The proposed method
attained the highest average accuracy, sensitivity, and specificity of 92.3%, 96.3%, and 72.4%, respectively, when tested on 10
different samples. Our proposed method depicted better sperm detection quality when qualitatively observed as compared to
other state-of-the-art techniques.

1. Introduction

Infertility is a medical condition that is represented by the
failure of the reproduction system to produce children. Sev-
eral factors lead to this condition such as genetic disorder,
HIV, diabetes, cancer, or overexposure to certain environ-
mental factors [1]. Globally, there are approximately
between 48.5 and 52 million reported cases with infertility
cases which is estimated to be around 15% of the total cou-
ples around the world [2]. In Malaysia, the Government

Department of Statistics reported a fertility rate drop from
4.9 to 1.8 babies per woman between 1970 and 2018. The
infertility issue originates from either the man or the woman
or in some cases; both couples contribute to the problems [3,
4]. In most male infertility cases, sperm disorder is considered
to be the most common cause of the infertility [4]. Males alone
are responsible for 20-30% of the infertility disorder, and they
contribute around 50% of the overall causes [5].

There are several ways to diagnose the infertility issue
among men such as constant measurement of blood and
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TaBLE 1: WHO standard for normal sperm characteristics.

Sperm property WHO standard for normal sperm property

Sperm count 10 million sperms per milliliter.

Head: oval in shape, 3-5 ym long and
2-3 um wide
Middle piece: less than 1 ym in width,
5-7.5 long, and must be uniform and visible
Tail: 45 ym in length, uniform, and visible

Sperm morphology

Fast progressive: velocity more than 25 ym/s
Slow progressive: velocity less than 25 ym/s
Immotile: velocity is equal to zero

Sperm motility

hormone levels, physical exams, and pH level [6]. However,
these approaches rely on manual assessments which are
prone to human error, costly, and time-consuming. Another
approach is through semen analysis which relies on examin-
ing and evaluating the properties of the sperm, and it has
been widely explored. Generally, there are three ways to ana-
lyze the sperm, namely, (1) sperm count—which concerns
about the concentration of the sperms within a sample, (2)
sperm morphology—which depends on examining the
shape and the size of the sperm’s structure, and (3) sperm
motility—which estimates the velocity of the sperm. These
three properties provide clues to detect infertility and can
indicate the overall quality of the sperm [7, 8]. The World
Health Organization (WHO) has established a standard to
identify the normal and the abnormal sperm based on these
three criteria as tabulated in Table 1 [9].

Sperm analysis is a powerful tool to examine the fertility
disorder, and Table 1 tabulates the cut-off values for the
sperm parameters. In other words, if the obtained value for
the analyzed case is less than the cut-off, then, the case is
considered abnormal. Approximately two out of six men in
the world are having fertility issues, and around 30% of them
encounter problems associated with sperm quality. There
are several ways to investigate the sperm properties such as
sperms’ DNA fragmentation and sperm chromatin structure
assay. However, these methods are time-consuming and
costly and need to be handled manually. Therefore, new
methods have been introduced based on computer vision
which includes the modification of image processing tech-
niques to analyze sperm’s properties. The use of computer
vision in the sperm analysis has provided several advantages
such as the following: (i) it provides a rapid diagnosis, (ii) it
can be modified, (iii) it does not require other chemical con-
dition, and (iv) it is less prone to human error.

This paper is divided into 5 main sections, of which each
of them describes the work undertaken for the completion of
this research. In Introduction, this paper explores the gen-
eral understanding of infertility from a global perspective,
especially on worldly accepted WHO standard. The cause
behind infertility is also looked into, in order to understand
the background as well the available diagnostic processes
related to the issue. In Research Background, gap analysis
was performed through comparisons between currently
available methodologies and techniques. Critical discussions
on the latest documents on sperm tracking methodologies
with their respective ups and downsides are discussed. Find-
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ings inside this section provided the motivation behind this
manuscript and the way modified Gaussian Mixture Model-
ling suit the founded gap. Within Methodology, this manu-
script discussed the modified Gaussian Mixture Modelling
(GMM) which includes the introduction of optimization of
sperm detection and the subsequent sperm motility tracking
which now uses the input of the optimized detection tech-
niques. Based on the work done in this section, the results
are discussed on three main parameters that are accuracy
(A), sensitivity (Sn), and specificity (Sp). In Results, the out-
come of the proposed modified GMM is benchmarked with
a few known, similar techniques to evaluate its performance.
Several concluding remarks were performed in Conclusion,
where the performance of the proposed algorithm is
described to highlight strength and challenges of the work.

2. Research Background

Although sperm count and morphology can give some indi-
cations about the statue of the sperms, they are considered
nonreliable to draw a decisive conclusion on the fertility
on the male in comparison to sperm motility analysis [10].
Since the main concern in fertility analysis is the first sperm
that reaches the fallopian tube and fertilizes the egg, there-
fore, studying the sperm’s velocity properties could provide
more accurate results. According to the WHO, sperm’s
motility can be categorized in three terms: (i) fast progres-
sive (FP) which means the sperm motility is with velocity
> 25 pm/s, (ii) slow progressive (SP) which means the sperm
motility is with velocity < 25 um/s, and (iii) immotile which
means the sperm does not move at all [4, 9, 11].

There are multiple ways to estimate the velocity of the
sperm, which are either through manual visual observation
or through using computerised image processing tools. The
examples of the manual approaches are photoelectric and
multiple exposure phonograph (MEP) [4, 12]. Through
manual visual observation, sperm velocity estimation is rela-
tively slow, insufficient, and less accurate. On the other
hand, semen analysis with image processing techniques uses
algorithms of the computer visions to estimate the sperm’s
motility features which are widely acceptable, reliable, fast,
and robust [13]. The capability of image processing and
computer vision can be seen in various medical field applica-
tions [14-18].

Computer-Aided Sperm Analysis (CASA) was the first
method and was introduced in 1985. This method is capable
to estimate the total number of sperms, detects the sperm’s
morphological features, and estimates the velocity of the
sperm. The sperm analysis results may vary among different
CASA instruments. It is highly dependent on the sperm con-
centration where high concentration of semen samples may
cause motile sperms to be hardly detected. Despite that, this
method fails to detect multiple sperms at the same time. Fur-
thermore, it requires big samples for each experiment, and it
is not capable of detecting the loss or reborn sperms [19].
The CASA instrument settings should be standardized to
ensure the results are comparable where the error trapping
rate and the loss trapping rate should be as low as possible.
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TaBLE 2: Summary of the previous methods in multiple sperm tracking.

Techniques Advantages Disadvantages
CASA . , (i) Requires a big sample
[28, 29] (i) Detect the sperm’s features (ii) Fails in sperm collisions and proximity
JPDAF (i) Adaptive learning (i) Computational complexity
[20, 21, 22] (ii) Works well with sperm collisions (ii) Slow process termination
HGDT (i) Combination of object segmentation and tracking N T . .
23] (if) Self-learning capability (i) Fails in multiple sperm tracking.

(i) Implementing of training and testing data (i) Requires large training data
CSR-DCF . . Q. . .
[30] for tracking and features extraction (ii) High computational complexity

(ii) Usage of sperm’s features in tracking (iii) Difficult to implement
0 s xcion procs ()1 iy dcus i ih dere medn
[26, 31] (ii) Multisperm tracking W poorly w Y sp wma

in a small space

DAT (i) Easy to implement (i) Does not predict the dead and newborn sperms
[27] (ii) Less mathematical complication (ii) It does not require a testing data (frames)

Joint Probability Data Association Filter (JPDAF) was
adapted to track and measure the velocity of hundreds of
sperms simultaneously. JPDAF is a mathematical and statisti-
cal approach that works based on an approach Global Nearest
Neighbour (GNN) which tracks an object by minimizing
within distance variable and maximizing the between distance
variables. This feature eliminates sperm’s collision conditions
that intervene the results, and it measures the proximity of
close sperms. However, this method has high computational
complexity, and its process termination is slower [20-22].

Another modified approach in sperm tracking is the
Hybrid Generative-Discriminative Tracker (HGDT). Hybrid
Generative system is for object detection, and Discriminative
Tracker is for updating the centroid of each sperm for all
frames for velocity estimation. This method has features of
adaptive learning from frame to another, which enhances
the detection and tracking procedure. The main drawback
of HGDT that it works properly with single tracker rather
than multiple sperm tracking [23, 24].

A recent paper was published earlier this year in which
deep learning in sperm detection and tracking was used. A
modified method called Channel and Spatial Resolution
together with Discriminative Correlation Filter (CSR-DCF)
was implemented. It begins with detection in which the Reti-
naNet method, a deep neural convolutional network
approach, was used. This method extracts the main features
of the sperm by feeding the Convolutional Neural Network.
According to these features, it detects the rest of the sperms
for the whole frames. This method requires a higher compu-
tational model and large training data set, which makes it
difficult to implement and has slow execution time [25].

Kheirkhah et al. [26] suggested a method for sperm
detection and tracking that is based on Adaptive Distance
Tracking (ADT). In this method, the sperm is located by
detecting its centroid, and then, its coordinates are deter-
mined in each frame. Adaptive Window Average Speed
(AWAS) is modified to enhance the accuracy of sperm allo-
cation from frame to another. However, this method works
poorly in a highly dense solution or when there are many
sperms accumulated in a close region.

Another sperm tracking method was suggested by [27]
called Differential Area Trajectory (DAT). In this method,
the sperms’ location is detected collectively, and at the same
time, the footprint is constructed. DAT retains the final
results as a velocity function with respect to time in order
to estimate the velocity of the sperms. Although this method
has a low computational complexity and it is easy to imple-
ment, it does not detect the dead and reborn sperms and it
does not require a testing data (initial frames) which makes
the results less accurate. Table 2 summarizes the previous
techniques that have been used in tracking the motile
sperms. From the summary presented in this table, we can
highlight few research gaps from the existing literatures:

(1) The updating mechanisms to consider newly emerg-
ing sperms reenter the field of views are disregarded
in sperm’s velocity estimation. Thus, the classifica-
tion between normal and abnormality of the sperm
motility is inaccurate

(2) The efficiency of sperm motility analysis is often
decreased in high density medium where the existing
system fails to detect multiple sperms

(3) Due to this, manual semen analyses are still being
used. However, manual analysis has been challeng-
ing due to inconsistency of the semen sample.
Reproducibility of the analysis is difficult to be
achieved which will lead to misclassification

Therefore, in this paper, an automated multistage tracking
system is proposed using sperm motility properties. The auto-
mated tracking comprises two stages of sperms’ head detec-
tion and sperm tracking processes. A new modified Gaussian
Mixture Model with an automated optimization protocol
was proposed to detect multiple sperms head in image frames
extracted from sperm motility video. Then, the output from
stage 1 will then be utilized to accurately track the motile
sperms and eventually determine their velocity.

The main motivation behind this method is to enhance
the quality of sperm analysis by providing high accurate



TaBLE 3: Summary of the previous methods in multiple sperm
tracking.

Specification Specification value/range
Microscope Olympus CX31

Video camera Mounted microscope camera UEye UI-2210C
Magnification %400

Video format AVI

Video resolution 640x480

Video duration 2-7 minutes

Frame rate 50 frames/sec

Participants 85 male participants aged 18 years or older

and reliable results. The main technical contributions and
novelty of this work are listed below:

(1) A modified and optimized GMM function for
sperm’s head recognition is proposed. With the opti-
mization of determining background threshold,
more accurate sperm features can be localized. The
proposed modified GMM will be able to localize
the sperm’s features to be tracked in the second stage
of the proposed system

(2) Multisperm tracking uses similarity and Euclidean
distance methods. The detection of the motile
sperms will be updated automatically including the
new sperms reentering the field of view. This will
ensure accurate sperm’s velocity can be determined
and calculated

(3) Provide overall sperm analysis system with less com-
putational and mathematical complexity. The pro-
posed modified GMM has provided an improved
sperm features that will generate automated thresh-
old to localize the region of interest (i.e., sperm
morphology)

3. Methodology

In this paper, we developed the new algorithm based on the
available VISEM Dataset [32] where the collected data were
used to investigate male reproductive function. The sperm
motility videos were recorded and examined under a 400
times magnification using an Olympus CX31 microscope.
The sample was placed on a heated microscope stage
(37°C), and the videos were captured by a microscope-
mounted camera and saved as AVI file. The dataset contains
motility videos from 85 male participants aged 18 years or
older. Summary of the dataset specification is tabulated in
Table 3.

The overall algorithm for multistage automated sperm
motility tracking is presented in Figure 1. The proposed
algorithm consists of two stages where the first stage focuses
on the preprocessing task where debris are removed from
the original frame. In order to accurately detect the moving
sperms, unwanted debris are eliminated since beginning.
This approach will help improving computational efficiency
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Samples extraction from public dataset

&

Stage 1: Optimization of sperm
detection

o Modified gaussian mixture model
o Sperm detection and segmentation
» Background threshold optimization

:

Stage 2: Sperm motility tracking

o Sperms’ coordinate detection
o Spermtracking
» Velocity estimation

F1GURE 1: Overall process of the proposed method.

of the algorithm in tracing the moving sperms (which will be
conducted on the second stage). Then, the cleaned image
frame was fed into stage 2 where the center coordinates of
the sperms’ head were detected. These coordinates were then
used for sperm tracking in the consecutive frames. The
velocity of the sperm was calculated based on the successful
tracked sperm, and thus, classification of normal and abnor-
mal was made according to the recorded average velocity of
the motile sperms.

3.1. Stage 1: Optimization of Sperm Detection. This stage
started with the sperm detection process with the aim to dis-
tinguish object of interest (i.e., the sperm) from the back-
ground. In addition, the image frames were cleaned by
implementing morphological opening and closing operation
to remove dead cells or debris in each image frame. Then, a
modified Gaussian Mixture Model (GMM) with a new opti-
mization of Gaussian density function is implemented to
detect the sperms and separate them from the background.
This technique is clustering-based method that assigns each
object to a certain class using the mathematical probability
of Gaussian density function, (N (x|, ) to segment the
objects of interest from the background as shown in

= 71 ex —l x—w) = (x— ,
(1)

where x is the pixel intensity value, p is the mean, X is the
covariance matrices, and D is the dimension of the matrix.

The pseudocode of the modified GMM is shown in
Figure 2. During this stage, all objects are clustered into
two different classes, and every class has a different mean y
to estimate its center, covariance X that indicates its length,
and weight probability 7 that describe the how large or small
is the class. If the Gaussian density function (N (x|, %) is
bigger than the set threshold, the pixel is considered the
object whereas if the (N (x| g, X) is smaller than the prede-
termined background threshold (BGy), the pixel is consid-
ered as the background. To ensure accurate and robust



Computational and Mathematical Methods in Medicine

K: Number of probability distribution
m: Weight of probability distribution

u: Mean of probability distribution

3: covariance of probability distribution
m: Number of detected sperms

Parameter initialization, 7, y, 2, m

| O exp (- i(x - W)= (x — u))%generating gaussian density function

1
exp (- E(x— WT=x - w)

for t= 1:K
i=1;
while i < 10
) i
BGr(i) = E )
N(x|p,2) =
# (en) D]z
if N = BGT(i)
x = 1; % object (moving sperms)
else
x = 0; % background (non-moving sperms)
end
m|x(i) = number of detected white pixel
i=i+1;
end
BGr (final) = maximum (m]|x (i))
1
N(x|ﬂ>2)(ﬁnal) = D 1
(2m) (7)|2| )
end

Output: BG(final), x=1,m={my, .....

”K}’ ,M:{l s e

- ,MK}, N={N1, ...... NK}

FicUre 2: Pseudocode of modified Gaussian Mixture Model.

Gaussian density
function

Level of BG Calculate the
threshold
number of
BG= ﬁ) detected sperms

Yes

Differentiate the moving
sperms from dead sperm

Choose BGy that produces
maximum number of
detected moving sperms

F1GURrk 3: Optimization of background threshold.

detection of the sperm, the set threshold was automatically
generated based on the proposed optimization algorithm as
shown in Figure 3. The BG. is automatically generated based
on the sperm sample. The Gaussian density function is cal-
culated, and the process is repeated to attain the highest
detected motile sperms.

To obtain the best value of BG, we used the number of
detected sperm as the main parameter to check the accuracy
of the sperm detection. Since each sperm motility video is
recorded in the same environment for each sample, we only
computed the optimization procedure on the first frame of
every acquired video. This process will ensure efficient



parameter optimization and thus ensuring accurate detec-
tion. Therefore, for the highest number of detected sperm
attained, the BGy, the value is chosen as the best value.
The optimized sperm detected video based on the automated
computation of BG; is produced by conducting the pro-
posed optimization technique as shown in Figure 3. The
BGy values were set to have ranged from 10% to 100%;
therefore, the loop of i > 9 was applied to ensure automated
generation of the threshold values.

The resulted images from GMM are not clear enough to
do further analysis. The reason is that there are a lot of dead
cell and derbies that were mixed or surrounded the edges of
the sperm. This will lead to misinterpretation on the results
and inaccurate velocity measurement. Therefore, morpho-
logical process of open and close operations was imple-
mented to reduce the unwanted noise. This technique is
based on either dilating or contracting the shape of the
object in the background. In this study, image opening and
image closing were applied simultaneously to get a clearer
image frame. The size of added or removed pixels is repre-
sented by the size of the kernel or structural element (SE).
Equations (2) and (3) demonstrate the mathematical expres-
sion of the image opening and closing, respectively.

AoB=(AeB)®B,

(2)
(3)

where A is the binary image (results of the modified GMM)
and B is SE element.

AoB=(A®B)eB.

3.2. Stage 2: Sperm Motility Tracking. Once the optimized
detected sperms were found in stage 1, the detection and
tracking processes were continued during which the centers
of the sperms’ heads were identified. Objects that are ellipti-
cal and have area of 150 pixel” were considered the object of
interest (i.e., sperm). Objects that are less than 150 pixel® are
considered debris and were eliminated from the tracking
process. The elliptical area is calculated using

A

elliptical = 7T * MAjOT axes * Minor axes. (4)

The coordinates of the sperms’ head were recorded for
every 10™ frame of the sperm motility video. The mathemat-
ical procedure of the Mass of the Central Momentum of
object was implemented to detect the centers of the sperms’
heads. This method is capable of working on multiobject or
sperm detection in the same frame. Using the Mass of the

where S, the area of the sperm in the previous frame and

S, is the area of the sperm in the current frame. The results
of this equation were automatically updated and stored in a
matrix. t,, is the threshold size that is set to 1.2 in this study

size

Similarity =

0)

S
1, ifS;,>S, and g

Zc
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Central Momentum technique, the coordinates of the center
of the sperms’ head are calculated using

Mo

X, = DS 5

“= o (5)
Mo,

yc = 4 (6)
0,0

Mo = Hfooodxdyxh(x,y), (7)

Mo, = Hiooodxdyyb(x, ¥)s (8)

where the coordinate of the sperm’s head center is donated
as (x., ), ny is the zero-order moment that describes the
area of the object, and n, ; and n, are specified in Equations
(6) and (7), respectively. b(x,y)is the binary image that
resulted from stage 1.

This stage is aimed at finding the sperm in the previous
frame that is closest and most similar to the sperm in the
current frame. There are two assumptions that we made in
this stage: (i) the distance between two sperms (i.e. sperms
in current frame and previous frame) must not exceed the
distance threshold of 125 pixels to be considered the same
motile sperm, and (ii) the shape of the sperms’ heads and
their deformity of the elliptical must not change much in
each frame. The threshold of 125 pixels was set based on
observation and simulation test on all samples. In addition,
the threshold was set by considering the size ratio between
sperm’s head and tail. Thus, by observing the behaviour of
the sperm’s movements in all samples, we concluded that
the threshold of 125 pixels is acceptable to be used. The
closeness of the sperm was defined by having a minimum
Euclidean distance between centers of two sperms of S,
(i.e. sperm in the current frame) and S, (sperm in the previ-

ous frame) given by

x)2+

» (yc—yp)zstdis- (9)

(S, S,) = g (x. -

Therefore, we measured the ratio of the sperm’s head
area from the current (for example, frame-20") and the pre-
vious frames (for example, frame 10™). The ratio should not
exceed the threshold which was defined as the positive dif-
ferences between the area sizes in the current and the previ-
ous frames. Equation (10) denotes the mathematical
definition of the procedure for tracking process.
with the assumption that the object’s size is not expected to
change significantly between antecedent and subsequent
frames. The threshold was set based on the simulation that
was done on 10 different semen samples.

S
<t Zc

= "size <t

or Sz, < Sy, and size>

(10)

Zp
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Based on two conditions as mentioned above, sperms in
the current frame were matched with their corresponding
frame from the previous frame. If the Euclidean distance
and size ratio between sperm in the current and previous
frames were less than or equal to the predetermined thresh-
olds, sperm in the previous frame was matched to its corre-
sponding sperm with the sperm in the current frame.

If either closeness or similarity of the object was not
achieved, the object was considered the sperm that swims
out from the frame. The sperm tracker was reinitialized
where the nonmatching sperm was removed from the
tracker. If the sperm was successfully matched with its corre-
sponding sperm, the process was repeated until all sperms in
the frame were processed. This process was continuously
conducted until all image sequence frames were analyzed.
Since SE was implemented in the image optimization, the
selection of SE does not directly affect the tracking and the
detection process. However, the SE was used for morpholog-
ical operation to improve the clarity of the image and further
amplify the sperm’s head size, thus indirectly influencing the
detection process.

After obtaining the coordinate of the sperms, the sperm’s
velocity can be measured according to Equation (11). In
addition, the unit of the velocity was converted from pixel/-
second to ym/s (1 pixel = 0.0002 meter) to meet the standard
that was stated by the WHO. The centroid was detected once
over ten frames so that the variation of the centroid will be
large enough for detection to make the system less
computational-complex and to increase the processing
speed.

\/(xc—xp)2+ ( c_yp)z'

Velocity =
ty frame rates

(11)

The frame rate depends on the properties of the video,
and its unit is frame per second.

The final velocity result is the average velocity of each
sperm in the whole video. The results of sperm’s velocity
in each detection were stored in a matrix. Then, at the end
of the video, the average was obtaining by dividing the
summed velocity values in all frames by the number of the
frames. This gave the system the feature of detecting the
sperms the exited and entered the study area (ie., field of
view) which resulted in higher accuracy.

3.3. Performance Evaluation. In order to ensure that the sys-
tem is more accurate as compared with other previous
works, three mathematical equations where implemented
such as accuracy (A), sensitivity (Sn), and specificity (Sp)
as shown in Equations (12), (13), and (14), respectively.
There are four main elements integrated in these equations,
namely, (i) True Positive (TP) which indicates the number
of positive sperm that are correctly recognized by the pro-
posed technique, (ii) True Negative (TN) which indicates
the negative sperm samples that are positively recognized
by the proposed method, (iii) False Positive (FP) which indi-
cates the number of sperms in which the expert tagged them
as negative and the system recognizes them as positive, and

(iv) False Negative (FN) which indicates the number of
sperm in which the expert tagged them as positive and the
proposed algorithm recognizes them as negative.

Accuracy (4) = 757 ¥;1£§+ N (12)
Sensitivity (Sn) = TP1;4PFN’ (13)
Specificity (Sp) = % (14)

4. Results

Our results were compared with the other methods such as
zero-crossing [33] and classic edge segmentation (Sobel
and Prewitt) [34] to evaluate its performance. Figure 4
shows the comparison results to evaluate the differences
between the proposed modified GMM and the other two
methods. Classical edge segmentation and zero-crossing
techniques included the whole sperm structure (i.e., head,
midpiece, and tail) and considered motile and immotile
sperms. These approaches add unnecessary noises to the
background as compared to our approach. Since the head
of the sperm is the brightest part of other sperm’s structure
as shown in Figure 4(a), our current technique focuses on
the head area only to ensure accurate and fast detection.
The most important capability that has been noticed in our
experiment is that the modified GMM managed to detect
all moving object or sperms. Since the main concern in the
motility measure is the moving sperms, then, the other
undetected sperms are considered immotile.

Moreover, the most important capability of the modified
GMM is BG manipulation. In other words, the background
ratio can be modified to get the desired results. The BGy is
uniquely assigned based on the sperm video samples. The
proposed algorithm able to automatically generate the BG;.
to ensure robust motile sperm detection. Figure 5 shows
the results of three different background ratios, and for the
tested sample, the 50% ratio shows a more accurate, clear
image with smooth edges of the moving sperms. However,
this percentage is not fixed for all samples.

In terms of the detection accuracy, we also conducted a
comparison analysis (performance evaluation) with other
techniques such as adaptive threshold which was reported
by [35] and global threshold which was reported by [36].
We evaluated 10 different sperm motility video samples
whereby each sample consists of different number of sperms.
The evaluation is conducted by calculating the accuracy (A),
sensitivity (Sn), and specificity (Sp) as tabulated in Table 4.

In addition, the overall performance of the proposed
method in comparison with the adaptive and global thresh-
olds is presented in Table 5. As we can notice from Table 5,
the proposed method attained high accuracy, sensitivity
values. Although specificity of the proposed method was
not consistent for each sample, this drawback could be
improved if the immotile sperms were completely removed
from the frame before the tracking process. In addition,
observing the quality of the resulted image was not as good
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FIGURe 4: Comparison of sperm detection between proposed method and other method in (a) original frame, (b) classical edge

segmentation, (c) zero-crossing, and (d) the proposed method.

()

FiGure 5: Comparison of different BG ratio size in (a) original frame, (b) segmented with 90% BG ratio, (c) segmented with 50% BG ratio,

and (d) segmented with 20% BG ratio.

TABLE 4: Sperm detection results of proposed method, adaptive thresholding and global thresholding method.

Proposed method

Adaptive threshold Global threshold

Sample No. of motile sperms No. of immotile sperms A(%) Sn(%) Sp(%) A(%) Sn(%) Sp(%) A(%) Sn(%) Sp(%)
1 11 51 91.0 90.0 100 81.3 75.0 81.0 40.0 333 46.2
2 9 19 98.0 97.0 97.0 77.8 86.4 79.2 41.2 22.2 62.5
3 21 12 91.3 95.0 98.0 84.6 90.5 80.6 25.8 40.0 40.0
4 19 16 95.0 98.3 66.0 67.5 81.0 72.0 25.0 37.5 20.0
5 16 29 94.4 93.0 96.7 73.8 75.0 72.7 28.1 18.2 333
6 16 90.0 90.0 50.0 65.7 75.0 60.9 50.0 60.0 45.5
7 19 91.2 100 50.0 53.8 429 60.0 30.8 333 30.0
8 10 15 91.7 100 50.0 65.4 58.8 72.2 37.5 50.0 30.2
9 11 12 92.8 100 66.6 65.7 58.8 72.6 52.2 50.0 53.3
10 7 16 87.5 100 50.0 55.2 58.3 52.9 38.9 25.0 50.0

as it should be, because the structure of the sperms is still
nonuniformed, and some debris and dead cells are still in
the foreground as shown in Figure 6. This will affect the
analysis and will result in inaccurate results. However, as
tabulated in Table 5, in comparison with the adaptive
threshold and global threshold, both techniques are still
detecting the immotile sperms. This has caused inaccuracy
in localizing moving sperms and thus can cause miscalcula-
tion in determining sperm velocity. The proposed method
can discriminate between moving and nonmoving sperms
through an optimization procedure in modified GMM.
However, due to the additional optimization steps imposed
in the proposed method, the processing time is higher as
compared to the two nonoptimized approaches of adaptive
and global thresholds.

Figure 7 shows the error bar for the standard deviation
of the results obtained in Table 4 (performance evaluation).
As we can see from the graph, our method has the smallest
error bar length (specifically the accuracy and the sensitivity)

which indicates that these values are concentrated, and the
plotted average is more likely as compared to the adaptive
and global threshold methods. The standard deviation of
specificity of the proposed method is higher as compared
to other techniques. This could be due to the 10 sperm sam-
ples that we used that have different illumination problems,
and thus, each sample has different difficulties in determin-
ing a localized area. Apart from that, unlike adaptive and
global threshold methods, the accuracy and the sensitivity
scored the highest points in our method, and they were
not overlapped with other methods; therefore, we can tell
that our proposed technique is conclusive.

There are two reasons for this to happen: (1) when the
number of the detected objects (i.e., sperms) is relatively
small; and (2) when we go back to Equation (14), we can tell
that the main variable for this equation is the number of
detected TP and TN. For instance, samples 6 to 8 have
50% Sp, that is because the number of detected TP is 1 and
the number of detected TN is 1 as well, so that makes the
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TaBLE 5: Comparison of overall performance between proposed method, adaptive threshold, and global threshold.

Criteria Proposed method Adaptive threshold Global threshold
Accuracy (average + std) 92.3+2.78 69.1 £9.76 37.1+9.04
Sensitivity (average + std) 96.3 +3.89 70.2 +14.17 37.2+12.72
Specificity (average + std) 72.4 +21.66 70.4 £9.02 41.1+12.17
*Processing time (second) >1 min <1 min <0.5 min

Detected sperm features Head, midpiece, tail
Not detected

Able to locate only moving

Immotile sperms

Head, midpiece, tail

Accurately detect whole sperm
body in less than 1 minute

Head, midpiece, tail

Detected Detected

Accurately detect whole sperm
body in less than 0.5 min

Unnecessary objects such as immotile Unnecessary objects such as immotile

Advantage sperms due to optimization
algorithm in modified GMM
Disadvantage Longer processing time

sperms and debris are considered,
thus causing inaccurate tracking

sperms and debris are considered,
thus causing inaccurate tracking

*Processing time is referred to the time required for the method to accurately track the sperms in the consecutive 50 frames. 50 frames were selected for

consistency in comparison.

Debris or
dead cell

Non-uniform
structure

FIGURE 6: Debris and nonuniform sperm structure that resulted
from the proposed method.

percentage of Sp low which is reflected on the length of its
error bar. To solve the aforementioned issues, morphological
operation was employed in which the image opening and
closing were simultaneously applied to improve the nonuni-
form sperms. Since there are several structural elements (SE)
that can be applied, some SE were examined to find the best
SE that can provide a clear and homogenous structure and
images. Figure 8 shows the result of applying different SE
to the resulted image frames (from the modified GMM).
As we can see from the figure, the results of the morpholog-
ical images with Line and Cube SE do not provide a uniform
sperm’s structure as compared with the Disk SE.

The morphological operation in commonly used sperm
detection analysis is reported in [37]. They proposed a
method that is based on the morphological structure of the
sperm using ellipse detection. In this method, gray color is
converted to RGB; then, multiple enhanced filters were
added to enhance and segment the sperm from the back-
ground. However, in our proposed method, the modified
GMM is able to convert image class, segmentation, and edge
detection and filter the sperm at the same without adding
further instructions. This made our proposed method less
complex with faster execution. Additionally, the proposed
system will detect motile and immotile sperms which could
add further noise in velocity measurements. According to
Mahdavi et al. [37], the system detects shapes with an ellipse
structure only which is not reliable, because they could be

Percentgae (%)
N
(=)
1

A(%) Sn(%) Sp(%)| A(%) Sn(%) Sp(%)| A(%) Sn(%) Sp(%)

Proposed method  Adaptive threshold ~ Global threshold

FiGUurg 7: Comparison of the performance evaluation between the
proposed method and the other common techniques of adaptive
and global thresholds. The value presented here is in term of
average + standard deviation.

other dead cells or debris in the solution that has an ellipse
shape.

Sperms’ coordinate in the current, and the previous
frames are needed to calculate the velocity of the sperm.
The similarity index was proposed in this study with a cer-
tain threshold. The results of the tracked coordinates are
updated and stored automatically in a matrix once each 10
frames. The results of tracking are shown in Figure 9.

In most cases of the sperm tracking, there will be
instances of sperm exiting the frame/field of view or sperm
entering the frame as shown in Figure 9. These sperms will
be automatically updated and do not intervene with the
results of the velocity. The sperm exiting could result from
several reasons, namely, (i) the sperm losing its kinetic
energy and dies, (ii) error in tacking, (i.e.) the similarly index
exceeding the threshold, and (iii) the sperms that ran out of
the scope of the field of view during the microscopic record-
ing. Figure 10 shows one of the cases of the sperm that left
the field of view between the 10™ and 20" frames.

Additionally, sperm entering the field of view or the
frame is another condition that could occur. This is because
either the lost sperm in the previous frame has been updated
or it gains a less threshold of similarity index. Figure 11
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FIGURE 9: Results of sperm coordinate tracking.

shows three additional sperms that were added between the
20™ and 30™ frames.

Finally, for the sperm motility analysis results, there are
ten samples with similar frame rates of 30 frames per second
and an average of 800 frames. The number of sperms is dif-
ferent from that of another sample. Table 5 shows the results
of motility measurement. The classification of the fast pro-
gressive (FP), slow progressive (SP), and immotile sperms
was done according to the WHO standard of sperm motility
analysis as shown in Table 1. The motility results were
expressed in terms of average velocity (um/s). As it can be
noticed from Table 6, some samples had smaller deviations
and others had larger standard deviations. This condition
is anticipated because the standard range of either FP or

SP is quit wide, due to the different number of sperms in
each sample. Additionally, in terms of classification, a sam-
ple is considered normal if the percentage of the sum of fast
progressive (FP) sperm and the slow progressive (SP) sperm
exceeds 40% from the total sperm (immotile + FP + SP).

5. Discussions

To understand and verify the results obtained from the pre-
vious section, trends of sperm’s velocity are plotted in
Figure 12 where their velocities have been classified into
the WHO standards of either fast progressive, slow progres-
sive, or immotile. Each sample represented a different num-
ber of sperms, and from the figure, samples 3, 4, 8, and 9
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FIGURE 11: An example of sperm reentering the image frame.

are considered a normal sample since the fast progressive
and slow progressive sperms exceed 40% from the total
sperms. The proposed system is capable of automatically
classifying the sperm samples based on the calculated
sperm’s velocity. The proposed optimization technique will
ensure sperms are accurately identified, and the nonmoving
sperms as well as debris are excluded from the analysis.
This advantage will provide an improved sperm motility
classification which will eventually aid the male infertility
diagnosis.

The velocity variations can be justified by many factors.
For example, the size of the middle piece of the sperm is crit-
ical because it contains mitochondria which provides the
energy in forms of adenosine triphosphate (ATP) for the

sperm to live and propagate. The larger the size is, the more
fuel it has; therefore, it can move faster. There are studies
conducted by [38, 39] that proved the higher potential and
the size of middle piece of the sperm results in higher
sperm’s velocity. The same study also concluded that the
length of the sperm plays a role in its velocity and that shows
a significant linear relationship between the length of the
sperm and its swimming velocity.

Moreover, the number of debris and dead cells sur-
rounding the sperms could lower the speed of the sperm.
In general, the existence of the debris near or in the area of
sperm could result in many collisions between the moving
sperm and other debris and dead cells, and that could reduce
the sperm’s velocity. In addition to that, the high number of
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TaBLE 6: Classification of sperm motility results.

Immotile Fast progressive sperms Slow progressive sperms
Sample sperms No. of Average velocity Star}de}rd No. of Average velocity Sta{lde}rd Classification
sperms (um/s) deviation sperms (um/s) deviation
1 51 4 34.5 1.3 7 232 4.6 Abnormal
2 19 4 49.5 1.2 5 13.6 7.1 Abnormal
3 12 14 36.9 39 7 12.8 4.5 Normal
4 16 10 36.6 4.5 9 4.5 3.05 Normal
5 29 4 27.5 2 12 6.34 4.22 Abnormal
6 16 3 25.9 0.77 6 54 23 Abnormal
7 19 3 26.2 0.7 3 17.4 2.62 Abnormal
8 15 4 26.2 0.78 6 8.8 54 Normal
9 12 4 29.5 4.5 7 4.1 2.54 Normal
10 16 5 27.5 2 2 3.85 1.48 Abnormal
Sample 10 (n=23) 69%

Sample 9 (n=23) 52%

Sample 8 (n=25) o 24% 60%

Sample 7 (n=25) 76%

Sample 6 (n=25) 64%

Sample 5 (n=45) 64%

Sample 4 (n=35) o 26% 45%

Sample 3 (n=33) 2% 36%

Sample 2 (n=28) 68%

Sample 1 (n=62) 82%

0% 20% 40% 60% 80% 100%

Percentage (%)

M Fast progressive
M Slow pProgressive
Immotile

FIGURE 12: Trends of sperm velocity that have been classified for 10 sperm samples.

Debris or
dead cells
Accumulated
dead cells -
and sperms Wide open
areas
Large-head
Clean, wide, sperm
open areas Clean, wide,
open areas

FIGURE 13: Sperm movement scenario for (a) sample 1, (b) sample 2, (c) sample 3, and (d) sample 4.
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debris represents high viscosity thus eventually reducing the
sperm’s velocity. We can observe this incidence by compar-
ing the results obtained in Tables 6 and 4, sample results
(frames) as shown in Figure 13, respectively. Sample 1 con-
tains a lot of debris and accumulated dead cell; thus, the
sample will have high density which will reduce the speed
of the moving objects. In the contrary, sample 3 and sample
4 have many sperms with a high-speed value. The two sam-
ples also had less debris and dead cells around the sperms,
and that could explain the reason that they have an overall
high number of fast progressive sperms.

The number of immotile sperms near the moving
sperms may also affect the sperm’s velocity. Referring to
Table 6, we noticed that the ratio between the numbers of
immotile sperms and motile sperms is large in sample 1
and that is an indicator for low velocity value results. On
the other hand, sample 3 had less immotile sperm which is
why it results in a large number of sperms that have high
velocity. This is supported by studies done by [30, 40] where
they found out that there is a relationship between the num-
ber of dead sperms and overall sperm velocity in a solution;
the higher the numbers of dead or immotile sperms, the
lesser the velocity of moving sperm. The studies also men-
tioned that the existence of dead or immotile sperms might
result in collisions which slowed down the progression of
the sperms. Since the classification of the samples depends
on the number of the motile and immotile sperm, the more
immotile sperms the sample has, the more likely the sample
will be abnormal.

6. Conclusions

In this paper, a modified GMM algorithm with the capability
in optimizing sperm detection process was proposed for
multisperm tracking for male infertility diagnosis. The pro-
posed method consists of two stages where the first stage
focuses on accurate sperm detection while the second stage
comprises sperm tracking and velocity measurement. Motil-
ity results were evaluated, and 10 sperm samples were pre-
sented, and the performance of the proposed method was
compared with other state-of-the-art techniques. When
tested on 10 sperm motility videos, the proposed method
attained 92.3%, 96.3%, and 72.4% in accuracy, sensitivity,
and specificity, respectively. These performance indicators
ranked the proposed method as the highest as compared to
the other methods. Based on the video samples, 4 tested
samples were classified as normal and the other 6 turned
to be abnormal. The main limitation with the current work
is that when two sperms collide and move together in the
same line, the system will consider them as one sperm. This
problem could be fixed with optimized feature extraction
technique where more features of collide sperms will be con-
sidered to update the sperm tracker in the tracking process.
In addition, despite utilizing Euclidean distance and similar-
ity measures in computing sperm trajectory analysis, feature
histogram and foreground information could be added as an
indicator to select optimum region for sperm tracking. This
will enable object information to be extracted to improve the
accuracy of the proposed system. The current state of the
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proposed system requires code optimization to improve
the computational efficiency especially when dealing with
high concentration sample. Furthermore, the research can
be continued by considering a mathematical model in esti-
mation sperm motion. The estimation will be able to aid
researchers in predicting the location of the corresponding
sperms in the next consecutive frames.

Data Availability

The VISEM Multimodal video dataset of human spermato-
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