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Neuroelectrophysiology is an old science, dating to the 18th century when electrical activity
in nerves was discovered. Such discoveries have led to a variety of neurophysiological
techniques, ranging from basic neuroscience to clinical applications. These clinical
applications allow assessment of complex neurological functions such as (but not
limited to) sensory perception (vision, hearing, somatosensory function), and muscle
function. The ability to use similar techniques in both humans and animal models
increases the ability to perform mechanistic research to investigate neurological
problems. Good animal to human homology of many neurophysiological systems
facilitates interpretation of data to provide cause-effect linkages to epidemiological
findings. Mechanistic cellular research to screen for toxicity often includes gaps
between cellular and whole animal/person neurophysiological changes, preventing
understanding of the complete function of the nervous system. Building Adverse
Outcome Pathways (AOPs) will allow us to begin to identify brain regions, timelines,
neurotransmitters, etc. that may be Key Events (KE) in the Adverse Outcomes (AO). This
requires an integrated strategy, from in vitro to in vivo (and hypothesis generation, testing,
revision). Scientists need to determine intermediate levels of nervous system organization
that are related to an AO and work both upstream and downstream using mechanistic
approaches. Possibly more than any other organ, the brain will require networks of
pathways/AOPs to allow sufficient predictive accuracy. Advancements in neurobiological
techniques should be incorporated into these AOP-base neurotoxicological assessments,
including interactions between many regions of the brain simultaneously. Coupled with
advancements in optogenetic manipulation, complex functions of the nervous system
(such as acquisition, attention, sensory perception, etc.) can be examined in real time. The
integration of neurophysiological changes with changes in gene/protein expression can
begin to provide the mechanistic underpinnings for biological changes. Establishment of
linkages between changes in cellular physiology and those at the level of the AO will allow
construction of biological pathways (AOPs) and allow development of higher throughput
assays to test for changes to critical physiological circuits. To allow mechanistic/predictive
toxicology of the nervous system to be protective of human populations,
neuroelectrophysiology has a critical role in our future.

Keywords: neurotoxicololgy, neurophysiology, adverse outcome pathway, neural networks, mechanistic

Edited by:
Deborah A. Cory-Slechta,

University of Rochester, United States

Reviewed by:
Marcia Ratner,

Boston University, United States
Gemma Calamandrei,

National Institute of Health (ISS), Italy
Fabien Gosselet,

Université d’Artois, France

*Correspondence:
David W. Herr

Herr.david@epa.gov

Specialty section:
This article was submitted to

Neurotoxicology,
a section of the journal
Frontiers in Toxicology

Received: 23 June 2021
Accepted: 29 November 2021
Published: 14 December 2021

Citation:
Herr DW (2021) The Future of

Neurotoxicology: A
Neuroelectrophysiological Viewpoint.

Front. Toxicology 3:729788.
doi: 10.3389/ftox.2021.729788

Frontiers in Toxicology | www.frontiersin.org December 2021 | Volume 3 | Article 7297881

REVIEW
published: 14 December 2021
doi: 10.3389/ftox.2021.729788

http://crossmark.crossref.org/dialog/?doi=10.3389/ftox.2021.729788&domain=pdf&date_stamp=2021-12-14
https://www.frontiersin.org/articles/10.3389/ftox.2021.729788/full
https://www.frontiersin.org/articles/10.3389/ftox.2021.729788/full
http://creativecommons.org/licenses/by/4.0/
mailto:Herr.david@epa.gov
https://doi.org/10.3389/ftox.2021.729788
https://www.frontiersin.org/journals/toxicology
www.frontiersin.org
https://www.frontiersin.org/journals/toxicology#articles
https://www.frontiersin.org/journals/toxicology
https://www.frontiersin.org/journals/toxicology#editorial-board
https://doi.org/10.3389/ftox.2021.729788


INTRODUCTION

A proposal of future directions for application of
neuroelectrophysiological techniques in toxicology must define
some of the current and future problems facing the science of
neurotoxicology. Currently (and in the foreseeable future), two
major emphases in the field of neurotoxicology are: 1)
mechanistic information and 2) human cognitive alterations
(including diseases such as attention deficit hyperactivity
disorder (ADHD), autism, learning disabilities, motor and
sensory deficits, etc.). Both areas can be advanced through the
systematic collection of targeted functional mechanistic data
based on known or presumed biological pathways (Adverse
Outcome Pathways (AOPs) in the field of neurotoxicology).
Neurophysiology has the ability to bridge mechanistic data
and behavioral changes—a critical linkage. As indicated below,
the collection of mechanistic data to understand the function of
the nervous system has been occurring for a long time.

PAST

When considering future directions for
neuroelectrophysiology as applied to neurotoxicology, it is
beneficial to consider the historical progression of
advancements and how the area of neurophysiology has
contributed to the fields of neuroscience. Electrophysiology
has provided a valuable basic understanding of nervous system
function in neurobiology and neurotoxicology for centuries.
The history of neurophysiology has been detailed in more
exhaustive reviews and is only summarized here (Collura,
1993; Muley et al., 2009; Piccolino, 1998; Verkhratsky and
Parpura, 2014). In the 1660’s, Dr. Jan Swammerdam dissected
a frog leg and discovered that muscle fiber contraction could be
induced by stimulation of nerve fibers (Muley et al., 2009;
Verkhratsky et al., 2006). In 1791, Luigi Galvani published
seminal work regarding nerve-muscle preparations in a frog,
leading to the understanding of stimulus-response and muscle
contractions (Galvani, 1791; Muley et al., 2009; Piccolino,
1998; Verkhratsky et al., 2006), and proposed that
accumulation of positive and negative charges along the
surface of muscles and nerve fibers resulted in “animal
electricity”. Also using a nerve-muscle preparation,
Leopoldo Nobili recorded the first evidence of the
involvement of electrical activity (Nobili, 1828), although he
apparently failed to appreciate the intrinsic biological origin.
In about 1848, a crude recording of an action potential was
made by Emile du Bois-Reymond (du Bois-Reymond, 1848). A
few years later, a measure of nerve conduction involved in
producing muscular contraction was made by Hermann
Ludwig Ferdinand von Helmholtz in 1850 (Helmholtz,
1850a; Helmholtz, 1850b), and published with graphics in
1852 (Helmholtz, 1852). The first “true” measure of nerve
conduction velocity (NCV) was published in 1868 by Julius
Bernstein (Bernstein, 1868; Bernstein, 1871), who also verified
that an action potential involved a charge movement which
exceeded the resting membrane potential. Continuing the

evolution of knowledge relating to nerve electrical activity,
the involvement of ions (potassium) in nerve currents was
proposed in 1912 (Bernstein, 1912). The theory of local circuits
was proposed by Ludimar Hermann (Hermann, 1872;
Hermann, 1873) postulating that a nerve contained a
conductive “core”, an insulating sheath, and an external
fluid medium, and that an electrical disturbance would
result in nearby portions of the nerve completing current
loops. However, it was Charles Overton who demonstrated
that sodium ions were involved in the action potential
overshoot (Overton, 1902). The electrical activity in single
sensory fibers, and the encoding of stimulation intensity in
muscles as the firing rate of the sensory fibers was reported in
1926 (Adrian, 1926; Adrian and Zotterman, 1926). This
finding formed the basis for explaining how intensity could
be encoded in the “all-or-none” triggering of what are today
known as action potentials. The development of the voltage
clamp technique allowed researchers to accurately monitor
current flow across neuronal membranes (Cole, 1949;
Marmont, 1949). The involvement of ionic sodium in action
potentials was finally described by Hodgkin and Katz in 1949
using giant squid axons (Hodgkin and Katz, 1949), leading to
the development of the Hodgkin-Huxley model for the ionic
generation of action potentials (Hodgkin et al., 1952; Hodgkin
and Huxley, 1952). The Hodgkin-Huxley model, coupled with
the invention of the patch clamp technique in 1976 (Neher and
Sakmann, 1976), allowed ionic flux thorough single channels
to be studied. After approximately 185 years, the biophysical
basis for the “animal electricity” proposed by Galvani was
defined in detail.

While the above discoveries were obtained in peripheral
nerve/muscle preparations, electrical activity in the brain was
also being investigated. Early investigations involved brain
stimulation and observing motor responses, which initiated
the science of mapping the regions of differing brain function
(Hitzig and Fritsch, 1870). In 1875 and 1877, Richard Canton
recorded electrical activity from the brains of animals (Caton,
1875, Caton, 1877). These recordings involved
Electroencephalogram (EEG) changes in sleep and awake
states, as well as responses to auditory and somatosensory
stimulation. These latter experiments may represent the first
recordings of sensory evoked responses. The impact of
peripheral stimulation on cortical desynchronization and
recording responses localized on the cortex surface of
animals was reported by Adolf Beck in 1890 (Beck, 1890;
Coenen and Zayachkivska, 2013). Spontaneous human EEG
recordings were first published by Hans Berger in 1929,
documenting the importance of electrical activity in the
human brain (Berger, 1929). In 1932, Dietsch introduced
Fourier analysis of the EEG signal, a process that is still in
use today to describe different EEG waveform bandwidths
(Dietsch, 1932). The use of multichannel EEG recordings
allowed description of spatial and temporal variations
(Adrian and Matthews, 1934). As the techniques evolved,
applications of EEG monitoring to localization of various
brain waves was developed. An early medical application of
human EEG involved localization of epileptic seizures, for
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subsequent surgical treatment (Jasper et al., 1940). These
examples briefly show the valuable historical contribution
of in vivo neurophysiology to the world of biology and
medicine.

PRESENT

Mechanistic Neuroelectrophysiology
Simultaneously with the advancement of knowledge of basic
biological physiology, integration with pharmacology and
toxicology was occurring. This, in turn, lead to investigations
into the mechanism of action of various chemicals using
neurophysiological techniques. In general, recordings can be
made from single cells (allowing examination of cell action
potentials, ion flux through channels) or field potentials from
the extracellular space (that may represent activity from multiple
neurons). Some basic descriptions of methods mentioned below
and considerations in their application are summarized in
Table 1.

Again, while the scope of this manuscript prevents exhaustive
methodological and toxicological details, it is hoped the reader
can use the examples provided as a basis for additional research.
One of the first toxicological mechanistic studies was in 1857,
when Claude Bernard used a neuromuscular preparation to show
that curare interfered with neurotransmission at the level of the
neuromuscular junction (Bernard, 1857; Gray, 1947).
Mechanistic investigations can also be exemplified by proof of
dichlorodiphenyltrichloroethane’s (DDT) effects on action
potentials, which involved alterations at the level of sodium
and potassium channels (Shanes, 1949; Narahashi and
Yamasaki, 1960; Narahashi and Haas, 1967; Narahashi and
Haas, 1968). Other investigators used in vitro preparations to
demonstrate that mercury or lead altered presynaptic
neurotransmitter release, presumably by interfering with
calcium function (Manalis and Cooper, 1973; Manalis and
Cooper, 1975; Kober and Cooper, 1976). In vivo
neurophysiological measures of excitability and plasticity
(indicated by population spikes, short- and long-term
potentiation, kindling, etc . . . ) (Goddard et al., 1969; Lømo,
1971; Racine et al., 1972; Bliss and Lømo, 1973; Douglas and
Goddard, 1975; Racine et al., 1983) opened the door for
investigations related to network function and plasticity.
Studies using these techniques illustrated the effect of lindane
on GABA-mediated inhibition in the hippocampus (Joy and
Albertson, 1985; Joy and Albertson, 1987; Joy et al., 1995).
The effects of lindane, dieldrin, and endosulfan on increasing
neuronal network excitability were also investigated using seizure
models such as kindling (Joy et al., 1980; Joy et al., 1982; Gilbert,
1992, Gilbert, 1995; Gilbert and Mack, 1995). An increased decay
of long-term potentiation was shown following long-term
exposure to lead in drinking water (Gilbert and Mack, 1998).
A paradigm known as paired-pulse inhibition was used to
following treatment with cismethrin (Type I) or fenvalerate or
deltamethrin (Type II) pyrethroids, and indicated changes in
sodium channel kinetics supported the data better than changes
in GABAergic function—providing a mechanistic basis for the

altered network physiology (Gilbert et al., 1989). Although some
authors have expressed limitations with respect to extrapolations
to behavioral changes (Hölscher, 1997), neurophysiological
phenomena such as long-term potentiation/depression have
been used as models to study the neural plasticity associated
with biological constructs such as learning and memory (Lynch,
2004; Nicoll, 2017; Abraham et al., 2019). In conjunction with
methods discussed later in this paper, these types of studies
addressed issues such as in vitro to in vivo extrapolation and
the need to examine higher cognitive function, which are still
pressing issues of concern in toxicology.

Evoked Potentials With Clinical
Applications
While less mechanistic in nature than the above examples, other
neurophysiological procedures, such as evoked potentials (EPs)
have contributed to both the fields of neurobiology and
toxicology. To record this type of neurophysiological response,
a stimulus is presented to the test subject, and the time-locked
signal of the nervous system is recorded (often involving signal
averaging). As mentioned previously, this type of procedure may
have first been used by Canton (Brazier, 1984; Caton, 1875;
Caton, 1877). Evoked potentials have served as a neurological
technique to characterize and help localize the neuroanatomical
basis of neurotoxicity.

Assessment of changes in the peripheral nervous andmuscular
system has served to characterize the neurotoxicity of numerous
chemicals. Examination of the nerve-muscle physiology can
involve electromyographic (EMG) examination. These tests
have been shown to be sensitive to several types of
environmental toxicants or experimental manipulations, and
many of these procedures have been described by others
(Arezzo et al., 2011; Howard, 2013; McNeil et al., 2013) and
will only be briefly described here. Perhaps the simplest test is of
spontaneous EMG activity, which often increases in the presence
of neurotoxicity or disease (Hnik et al., 1982; Ross and Lawhorn,
1990; Daube and Rubin, 2009). Stimulation of motor nerves
allows recording of muscle action potentials (M-wave), which
can be altered in the presence of neurotoxicity (Ross and
Lawhorn, 1990). The elapsed time from the stimulus to the
recorded neurophysiological response is known as the distal
latency, and reflects the conduction velocity of the motor
fibers in the stimulated nerve when the M-wave is recorded
(Mallik and Weir, 2005). This measure has been shown to be
a sensitive measure for intoxication with 2,5-hexanedione
(Nachtman and Couri, 1984). A method known as single fiber
jitter testing (voluntary or stimulation methods), measures the
variability in neuromuscular transmission time between
successive muscle action potentials (Stålberg and Sanders,
1981; Stålberg and Sonoo, 1994). Changes in neuromuscular
jitter have been reported in mice after treatment with the
organophosphates (OPs) mipafox or ecothiopate (Kelly et al.,
1994). Decrements in muscle action potential amplitude after
repetitive nerve stimulation (RNS) have been shown after
treatment with the OPs dimethoate (Dongren et al., 1999),
fenvalerate, or phoxim (Yang et al., 2001) or the depolarizing
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TABLE 1 | Example types of neuroelectrophysiological methods.

Peripheral/Central Nervous
System

Advantages Considerations

Can use primary cell culture, immortalized cell lines, iPSC,
neurospheres

Single Electrode Mechanistic information can include single channel function Single cell, typically low throughput
Electrode Array Network level effects, higher throughput (48 and 96 well plates) Cell type/mechanism impacted can be unclear

Ex Vivo Methods

Mechanistic information from “more intact” preparation
Neuromuscular Junction Isolate changes to pre- vs postsynaptic changes in neuromuscular

transmission; Long history of use in multiple species
Isolated from influences of intact central nervous system;
Specialized preparation; Human examples are rare

Excised Peripheral Nerve Action potential conduction velocities; Influences of specific ions can
be examined

Limited to single nerve measures; No information on interactions
with other nerves

Brain Slice Known circuitry. Change in long-term potentiation, paired pulse
inhibition, kindling; May reflect neuroplasticity

Low throughput; Often more successful in early post-natal animals

In Vivo Methods

Neuromuscular
Recordings

Human clinical interpretation Important to control temperature effects

M-Wave Muscle response following stimulation of motor neurons; Can assess
changes in large motor neurons/neuromuscular junction

No assessment of sensory neurons; Must determine nerve vs
muscle effects

Distal Latency Time from stimulation to M-Wave; Assess speed of conduction in
motor neurons

No assessment of sensory neurons

F-Wave Muscle response recorded after antidromic activation of motor
neuron; Assess entire length of large motor neurons

Changes may reflect subtle alterations in nerve fiber composition;
Difficult to assess changes in motor neuron excitability; Possibly
altered by supraspinal/spinal interneuron influences

H-Wave Muscle response after orthodromic activation of afferents in motor
neuron; Includes sensory component; Correlations with sensory-
motor neuropathy

Possibly altered by supraspinal/spinal interneuron influences; Not
easily measured in all muscles

Repetitive Nerve Stimulation M-waves recorded after repetitive stimulation of motor neuron; Can
identify deficits in presynaptic vs postsynaptic neuromuscular
changes

Need to assess neuromuscular units altered by disease/toxicants;
Movement artifacts need to be controlled

Single Fiber
Electromyography

Record extracellular action potentials from single muscle fibers with
repetitive activation; Can detect changes in neuromuscular function
(such as jitter) not detected by RNS; Assess safety factor for
neuromuscular transmission; Can use stimulation or normal
contraction techniques

Requires needle electrodes; Movement artifacts need to be
controlled; Should assess multiple neuromuscular junctions

Electromyographic Activity Can detect changes due to denervation/reinnervation, Active
contraction or spontaneous

May require needle electrodes; Typically, only involves superficial
muscles; Movement artifacts need to be controlled; Need to identify
nerves/muscles affected by toxicity

Peripheral Nerve Human clinical interpretations Important to control temperature effects

Compound Nerve Action
Potential

Ability to detect changes in larger axons, or distribution of axon sizes
within a nerve

Difficult to assess small sized axons without specialized techniques

Nerve Conduction Velocity Measured between two sites on the nerve. Interpretation of changes
in myelin or axon size are accepted

Standard methods do not assess small fibers; Testing non-
superficial nerves can be difficult; Determining exact distance along
actual nerve may not be possible

Small Fiber Can assess changes in small nerve fibers Can be technically challenging; Not all types of small nerve fibers are
assessed

Threshold Tracking Can assess changes in various ion channel function Requires specialized equipment/software; Not a large toxicological
database

Peripheral/Central Nervous
System

Human clinical interpretations Important to control temperature effects

Electroretinogram Waveforms reflect transmission through photoreceptors, bipolar
cells, and ganglion cells for pattern stimulation; Can measure
sensory thresholds which are analogous to psychophysical

Requires control of ambient light and light adaptation of subject;
May require anesthesia

Somatosensory Waveforms reflect neurotransmission through lateral or dorsal spinal
columns, brainstem dorsal column nuclei (or cerebellum), thalamic
nuclei, thalamocortical projections, and neurons in the
somatosensory cortex; Can use electrical or “natural” stimuli; Can
measure sensory thresholds which are analogous to psychophysical
procedures

Primarily assesses large diameter neurons; Usually involves signal
averaging

Auditory
(Continued on following page)
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neuromuscular drug decamethonium (Finley et al., 2009). As
reviewed by Le Quesne, changes in EMG responses have been
shown following exposure to acrylamide, lead, organophosphates,
or hexacarbons (Le Quesne, 1978; Hnik et al., 1982). Additional
measures such as the F-wave (antidromic propagation along
motor axons to the motor neuron cell, with subsequent firing
and production of a small M-wave) (Panayiotopoulos and
Chroni, 1996) and the H-reflex (stimulation of sensory fibers
which then activate motor neurons at level of spinal cord, with
subsequent firing of motor neurons and eliciting a M-Wave)
(Cliffer et al., 1998b; Tucker et al., 2005) are also possible,
although they may be technically challenging (Mattsson et al.,
1984). The H-reflex may help disassociate sensory vs motor
changes, due to the involvement of the sensory component,
which should be absent/reduced in the M- or F-responses
(Hamers et al., 1991; Cliffer et al., 1998a).

Often closely associated with electromyography is the
assessment of peripheral nerve function (Arezzo et al., 2011).
Nerve conduction velocity is the measure of the speed of action
potential propagation along a nerve (stimulation and recording
are along the nerve itself) and generally reflects the conduction
speed of the largest diameter axons (Stålberg and Erdem, 2000).
Changes in myelin will alter the normal saltatory conduction and
change the NCV, whereas damage/death of the nerve will tend to
alter the amplitude of the nerve action potential (Kimura, 1984;
Hamers et al., 1991; Mattsson et al., 1992). Because the size and
shape of a nerve action potential reflects the different constituent
nerve fibers of the stimulated nerve (Gasser and Erlanger, 1927),
changes in the distribution of conduction velocities may provide
insight whether different types of nerve fibers are preferentially
affected by a toxicant (Dorfman, 1984; Caccia et al., 1993; Ruijten

et al., 1993). Examples of compounds that have been shown to
alter nerve conduction and/or nerve action potentials include
hexane (Howd et al., 1983; Rebert and Sorenson, 1983; Nylén
et al., 1994), taxol (Cavaletti et al., 1995; Leandri et al., 2012),
carbon disulfide (Herr et al., 1998), nitrile chemicals (Gagnaire
andMarignac, 1999), hexachlorophene (DeJesus et al., 1978), and
cisplatin (Rebert et al., 1984; Thompson et al., 1984; De Koning
et al., 1987).

Stimulation of different sensory systems can be used to assess
changes in somatosensory, auditory, and visual function (Dyer,
1985). Because the parts of the nervous system that generate these
sensory EPs are generally known (Rebert, 1983; Mattsson and
Albee, 1988; Herr and Boyes, 1995), the changes in EPs can help
with neuroanatomical localization of altered physiological
response, and can be integrated into a toxicological profile that
includes targeted histopathological investigations (Mattsson
et al., 1989a; Ross, 1989; Mattsson et al., 1990; Mattsson et al.,
1992; Morgan et al., 2004; Arezzo et al., 2011). An example for the
visual system is the electroretinogram (ERG). This response
includes components reflecting activity at the levels of the
photoreceptors, the bipolar-Müeller cells, and for pattern
stimuli, may include ganglion cell components (Baker Jr et al.,
1988; see; Herr and Boyes, 1995 for review; Heynen and Van
Norren, 1985; Maffei and Fiorentini, 1986; Miura et al., 2009). As
a second example, auditory stimulation allows recording of the
brainstem auditory evoked response. The EP consists of a series of
peaks that include physiological responses from the cochlear hair
cells, the auditory nerve, cochlear nucleus, superior olivary
complex lateral lemniscus, inferior colliculus, medial geniculate
nucleus, and can include the auditory cortex (see Herr and Boyes,
1995; Mattsson et al., 1992 for reviews). The use of analogous

TABLE 1 | (Continued) Example types of neuroelectrophysiological methods.

Peripheral/Central Nervous
System

Advantages Considerations

Waveforms reflect neurotransmission through auditory nerve,
cochlear nucleus, olivary nuclei, lateral lemniscus, inferior colliculus,
medial geniculate nucleus, auditory radiation, auditory cortex; Can
use pure tones to assess frequency-dependent changes; Can
measure sensory thresholds which are analogous to psychophysical
procedures

Requires control of auditory stimulus and testing room noise;
Usually involves signal averaging

Visual Waveforms reflect neurotransmission through retinal
photoreceptors and ganglion cells, optic nerve and tract, lateral
geniculate, thalamocortical projections, visual cortex; Pattern stimuli
can allow selectivity for different cell populations; Can measure
sensory thresholds which are analogous to psychophysical
procedures

Pattern stimulation requires specialized equipment/software;
Requires control of lighting conditions during testing; Usually
involves signal averaging

Motor Threshold Tracking Electrical or magnetic stimulation; Assess function of descending
motor tracts and peripheral motor nerves

Specialized equipment

Hippocampus Known circuitry. Change in long-term potentiation, paired pulse
inhibition, kindling; Can have mechanistic interpretations, Some
tests reflect neuroplasticity

Low throughput; Specialized equipment; Only select human test
correlates; Usually animal models

Seizures Clinical applications; Gold standard for seizurogenic chemicals; Can
localize seizurogenic sites

Animal-human extrapolation

Electroencephalography Clinical applications; Responses can reflect higher cortical
processing

Extrapolation of cognitive potentials between animals-humans may
be difficult

Single Units Ability to study network connectivity; Examine specific cell
populations; Long history of analyzing brain function; Application of
optogenetics

Selectivity bias for larger cells; Must consider animal-human
differences; Usually animal models
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neurophysiological techniques between laboratory animals and
humans can assist in extrapolating effects across species (Hudnell
et al., 1990; Benignus et al., 1991; Boyes, 1994). Additionally, test
guidelines have been developed for using these techniques in a
neurotoxicological setting (United States Environmental
Protection Agency, 1998a; United States Environmental
Protection Agency, 1998b). These guidelines cover the
evaluation of peripheral nerve function, NCV, and sensory
evoked potentials in toxicological studies for submission to the
U.S. E.P.A., and can be adapted for acute, chronic, or
developmental studies. These types of EP tests have been used
to assess somatosensory alterations produced by
dichloroacetylene (Albee et al., 1997), carbonyl sulfide (Herr
et al., 2007), toluene or o-cresyl (Mattsson et al., 1989b), or
hexane (Rebert and Sorenson, 1983). Changes in the auditory
system have been shown following treatment with jet fuel coupled
with noise exposure (Fechter et al., 2007), carbonyl sulfide
(Morgan et al., 2004; Sills et al., 2004; Herr et al., 2007),
chlordimeform or developmental glutamate (Janssen et al.,
1983; Janssen et al., 1991), or polychlorinated biphenyls
(Lilienthal et al., 2011; Poon et al., 2011). Changes in the ERG
have been reported after exposure to methanol (Eells et al., 1996;
Eells et al., 2000), cholinesterase inhibition (Jones et al., 1995), or
lead (Fox and Rubinstein, 1989). Additionally, changes in the
central nervous system function of the visual system (Boyes,
1992) have been shown following treatment with
trichloroethylene (Boyes et al., 2005), carbon disulfide (Herr
et al., 1992), 3,3′-iminodipropionitrile (Herr et al., 1995), and
carbaryl or propoxur (Mwanza et al., 2008). The utility of these
EP methods to detect, help localize the site of neurological
dysfunction, and applicability to human neurology assures that
such methods will continue to be applied in the future.

Neuroelectrophysiology and Cognitive
Measures
Although largely in neuroscience and clinical settings,
neurophysiological methods have also been used to study
neural generators involved in cognitive processing of external
stimuli using both methods based on recording EEG and/or
evoked responses. The amount of literature regarding source
localization (Grech et al., 2008; Asadzadeh et al., 2020)
involving methods such as dipole source modeling (Wood,
1982; Koles, 1998), coherence measures (Nunez, 1995;
Hoechstetter et al., 2004), neural networks (Abeyratne et al.,
1991; Cui et al., 2019) and many other methods, is beyond the
scope of this paper. However, such techniques (along with signal
averaging) have been used to study associations between
cognitive processing and neurophysiological responses. A
negative peak recorded over the fronto-central regions of the
brain at about 100 ms after stimulus delivery (N100) is proposed
to be related to attentional processing, with the amplitude related
to the salience of the stimuli (Haider et al., 1964; Hansen and
Hillyard, 1980; Vogel and Luck, 2000). A negative potential at
around 150 ms can be recorded after an incorrect response during
tasks where the subject is required to identify a correct stimulus. It
is recorded over the cingulate cortex and is thought to be a

subconscious reflection of error monitoring (Falkenstein et al.,
1991; Gehring et al., 1993; Carter et al., 1998). A negative
potential recorded over the frontal cortex between 200–350 ms
(N200) has been related to response inhibition, attention
orientation, and error detection (Wijers et al., 1989; Jodo and
Kayama, 1992). A well-studied positive potential occurring about
300 ms (P300) after a stimulus has been related to the
“significance” of the stimulus, and has been related to
constructs such as attention and working memory (Sutton
et al., 1965; Verleger, 1988; Polich, 2007). These types of
studies move the application of neurophysiology beyond
neurotransmission and sensory perception, and into the realm
of higher cognitive processing.

FUTURE

Future directions for neurophysiology will incorporate the
generation of data for functional changes as integrated into
presumed, or known, biological pathways. Advances in in vitro
high-throughput screening coupled with the recommendation of
the National Research Council (NRC)
(National.Research.Council, 2007; Krewski et al., 2010) has led
to a resurgence in screening chemicals to rank and prioritize them
for further testing. Critical to the success of this approach is the
ability to relate the in vitro changes to adverse outcomes that are
used for regulatory standards settings. Included in the realm of
adverse outcomes are altered neurophysiology and changes in
integrative functions such as cognitive abilities. Such a linkage can
be incorporated into an AOP framework (Figure 1). Within this
framework, neurophysiology plays a critical role in defining
functional changes that can be related to both molecular/
biochemical alterations, as well as behavioral changes in vivo.

In Vitro Approaches
Several lines of research are already underway to use
neurophysiological methods to screen for functional changes
produced by toxicants. Examples include higher throughput
patch clamp methods (Dunlop et al., 2008; Obergrussberger
et al., 2016; Obergrussberger et al., 2018; Liu et al., 2019; Gao
et al., 2020), in vitro cell culture multi-electrode arrays (MEA)
(Mack et al., 2014; Zwartsen et al., 2018; Shafer, 2019), and use of
alternative (non-mammalian) species such as zebrafish (Milan
et al., 2006; Meyer et al., 2016), or Caenorhabditis elegans (C.
elegans), (Richmond and Jorgensen, 1999; Goodman et al., 2012;
Lockery et al., 2012). The use of MEAs has been proposed as a
method to screen for seizurogenic potential of chemicals/drugs,
and has been used in human tissue for epilepsy studies (Dossi
et al., 2014; Meyer et al., 2016; Cho et al., 2017; Bradley and
Strock, 2019; Fan et al., 2019). Additionally, MEAs have been
proposed to have some utility in classifying possible mechanisms
of actions of chemicals on the neuronal activity (Mack et al.,
2014). Recently, MEA recordings have been used to provide
in vitro evidence of altered neurophysiology in dorsal root
ganglion cells (DRG) (Johnstone et al., 2020) based on in silico
predictions (Melnikov et al., 2020). The continued development
of the types of neurophysiological methods described above will
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allow scientists to detect and prioritize chemicals for further
testing, based on changes in neuronal function, and to guide more
targeted testing strategies with potential mechanistic information.

The future will require advancements using in vitromodels to
generate mechanistic data beyond screening applications.
Applications using either human embryonic stem cells or
induced pluripotent cells may allow better homology with
human responses than rodent cells. Using cell culture
conditions which allow development of electrically active
three-dimensional (3D) cultures (Dingle et al., 2015;
Sandström et al., 2017) may also help recapitulate the human
nervous system, and such models have been proposed to study
human neurodegenerative diseases (Jorfi et al., 2018; Faravelli
et al., 2020). Such 3D models have been reported to have greater
development of synaptic and ion transport mechanisms than
two-dimensional cultures, suggesting that the neurons are in a
higher state of maturation (Simão et al., 2018). In an example
using electrical activity, the MEA activity of human neurospheres
has been shown to be altered bymethyl mercury, in the absence of
changes in cell proliferation (Ylä-Outinen et al., 2010). Using a
calcium flux measure, chemicals from multiple classes (drugs,
flame retardants, industrial chemicals, poly-aromatic
hydrocarbons, or pesticides) were tested in neurospheres and
ranked for potency (Sirenko et al., 2019). Because this is a
developing area of science, it is important to recognize the
role and current limitations of electrophysiological measures in
brain spheroids and brain-on-chip models (Forro et al., 2021).
The technical issues such as planar vs. 3D electrodes, silicon
electrodes, mesh electrodes, etc . . . are largely due to the relative

recentness of this area of science. Many of these
electrophysiological areas for advancement are similar as those
for in vivo research (see below). All such in vitro models will
require studies related to brain-related biology such as regional
specific neural differences, hormonal influences on neuronal
function, or gender-specific neuronal traits. Regional
differences in neuronal composition may be assisted by
bioprinting technologies using multiple cell types (see Zhuang
et al., 2018 for review). However, the largest challenge will be
inclusion of measures for cognitive function or emotion (Fritsche
et al., 2018).

Although not restricted to electrophysiological preparations,
methods will need to adequately not only model the diversity of
neuronal cell types, but additional biological physiological
functions will need to be included which can alter
toxicokinetics for in vitro methods. While all areas of
toxicology benefit from accurate modeling of chemical
exposure, the blood-brain barrier (BBB) adds an additional
level of complexity when considering the nervous system
(Gumbleton and Audus, 2001; Bagchi et al., 2019). A
developed BBB consists of endothelial cells connected by tight
junctions, astrocytic projections, and the extracellular matrix, and
can act as a barrier to passage of substances into the brain (Ward
and Lamanna, 2004; van Der Helm et al., 2016). Additionally,
transporter proteins such a p-glycoprotein can move substances
out (or into) the brain (Banks, 1999). Inclusion of these additional
cell types and proteins to in vitro or in silico models (Shityakov
and Förster, 2018) will be required to improve dosimetry
estimates. Advances in this area have included transwell

FIGURE 1 | Hypothetical Adverse Outcome Pathway relationship. A xenobiotic interacts with biological tissue and results in a Molecular Initiating Event (MIE). This
change in biology produces an alteration in a measurable Key Event (KE), which in turn, results in the subsequent change in additional Key Events. This progression leads
to measurable changes at the cellular, tissue, and organ levels of biology. Note that multiple MIEs can impinge on a single KE, and KEs can interact in a network manner.
Eventually, the biology is altered sufficiently to result in an Adverse Outcome (AO) that is of concern to society. Altered ion flux could bemeasured using patch clamp
techniques, altered neuronal firing could be measured using multi-electrode arrays, altered network function could be measured using evoked potentials or EEG
measures.
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systems (Stone et al., 2019) co-culture models, and microfluidic
approaches using 3D cultures (Bagchi et al., 2019; Choi et al.,
2020; Staicu et al., 2021). Such advances will need to be included
in toxicity testing to closer reflect the biology of the in vivo
situation.

In Vivo Neural Assessment
There have been some recent in vivo neurophysiological
technique developments that allow assessment of both larger
neurons and small sensory fibers and may provide some
mechanistic insight into changes in peripheral motor or
sensory nerve function. In contrast to traditional
neurophysiological techniques, these methods use a series of
nerve excitability tests that are translatable from humans to
animal models. Several of the tests involve electrical
conditioning pulses (some are 100 ms or longer) and track the
stimulus intensity required to produce a criterion response in the
nerve or muscle. The conditioning pulses activate of inactivate
various ion channels, allowing somemechanistic interpretation of
changes in neuronal responses (Bostock et al., 1998; Nodera and
Kaji, 2006; Krishnan et al., 2008; Krishnan et al., 2009). These
methods have been translated to both animal models and in vitro
preparations (Maurer et al., 2007; Boërio et al., 2009; Mori et al.,
2010; Nodera and Rutkove, 2012; Arnold et al., 2017), and have
been begun to be used in a toxicological context. For example, the
acute symptoms of treatment with oxaliplatin have been
attributed to slowed inactivation of sodium channels (Heide
et al., 2018), and changes in nerve excitability after Wallerian
degeneration have been studied (Sawai et al., 2008). Importantly,
these neurophysiological methods can be used repeatedly over
time, allowing the onset and recovery of toxicological insult to be
monitored (Nasu et al., 2014; Sung et al., 2014; Heide et al., 2018).
Nerve excitability methods have also been used to assess small
sensory fibers (Maurer et al., 2007; Howells et al., 2018), which are
technically difficult to test (Bostock et al., 2003; George et al.,
2007; Serra et al., 2010). Other investigators have used more
traditional histopathological and neurophysiological techniques
to assess small nerve fibers, using rectification of multiunit
activity and binning the latencies into different ranges, to
represent different conduction velocities (correlated with
different sizes of nerves) (Zotova et al., 2008; Zotova and
Arezzo, 2013). Recently, in vitro models for neurophysiological
and histological assessment of rodent dorsal root ganglion or
induced human motor nerve cells have been reported for
assessment of chemotherapy-induced peripheral neuropathy
with proposed expansion into environmental chemicals
(Sharma et al., 2019; Anderson et al., 2021; Pollard et al.,
2021). While these methods are not high throughput,
continued development and application of such methods can
start to bridge the mechanistic/functional gap in
neurophysiological testing of sensory and motor fibers, which
are known to be sensitive to toxicants (Le Quesne, 1978; London
and Albers, 2007).

Network Connectivity
Another critical direction for neurophysiological investigations is
the interrogation of network connectivity. Neurons, while

affected by toxicants individually, function as part of an
integrated network. For years, investigators have used in vitro
approaches such as brain slices as a reductionist approach to
study neuronal networks (Dingledine et al., 1980; Joy and
Albertson, 1985; Joy and Albertson, 1987; Joy et al., 1989;
Gilbert, 2004). Recently, technological advances have allowed
patch clamp investigations in brain slices (including human
slices) to look at network connectivity (Radnikow et al., 2011;
Peng et al., 2019). Other investigators have used cell culture-based
in vitro MEA to begin to look at formation of synaptic
connectivity and network interactions between cells (Jimbo
et al., 2003; Berdondini et al., 2006; Müller et al., 2015).
Formation of functional networks on MEAs has been
described (Erickson et al., 2008; Robinette et al., 2011), and
the influence of chemicals to alter network-related endpoints
such as coordinated bursting or synchronous firing has been
investigated (Brown et al., 2016; Frank et al., 2018). Amechanistic
hypothesis for synaptic plasticity in hippocampal neurons
cultured on MEAs has been proposed to involve NMDA
receptors and ERK1/2 signaling, along with gene transcription
and protein synthesis, for maintenance of synchronous bursting
for days (Arnold et al., 2005). The need for assessments of
neuronal connectivity is critical in a developmental context,
and can also be assessed using alternative species such as
zebrafish (Miller et al., 2018). To truly assess the impact of
chemicals on in vivo integrated neuronal function, it is
essential to include network interactions as a future direction
for both in vitro and in vivo work.

Assessment of complex neuronal function (such as cognitive
or sensory alterations) using neurophysiological techniques will
require incorporation of methods developed in basic
neuroscience research with continued use and development of
methods applicable to humans. As described earlier in this
manuscript, neurophysiological methods to assess changes in
sensory or cognitive processing in humans have been
described (Hansen and Hillyard, 1980; Verleger, 1988; Wijers
et al., 1989; Jodo and Kayama, 1992; Vogel and Luck, 2000;
Polich, 2007). Assessment of sensory perception is likely to
continue to rely on evoked response methods (as described
above), with the inclusion of larger arrays of electrodes to
allow assessment of changes in the topography of neural
responses (Junghöfer et al., 2000; Robinson et al., 2017).
Interrogation of complex sensory or cognitive processing will
require assessment of networks of neurons and/or brain regions
(Buzsáki, 2004; Urai et al., 2021). Neurophysiology is uniquely
suited for recording neuronal responses in virtually “real time”, in
contrast to the longer time periods usually required for in vivo
imaging methods (D’Esposito et al., 1999; Sack and Linden, 2003;
Trachtenberg et al., 2002). To adequately map neuronal network
responses, an array of electrodes is necessary. In humans, these
are typically surface electrodes and may be coupled with
performance of a behavioral task (Bekker et al., 2004; Sänger
et al., 2014). However, mechanistic studies to provide the
biological basis for these responses will require animal models
and often involve implanted electrodes.

The recording and interpretation of neuronal network activity
in vivo is an ongoing effort in neuroscience. Advancements in
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electrode probe materials such as silicon (Senzai et al., 2019;
Timme et al., 2021), carbon fiber (Kozai et al., 2012), or mesh
probes that can be based on nanotechnology (Liu, 2015; Xie et al.,
2015) have allowed long-term recordings of neuronal network
responses. Multiple probes, each with multiple electrodes, allow
sampling a three-dimensional array of neuronal activity. Multi-
electrode methods allow assessment of the timing and correlation
of firing between many neurons simultaneously in both
anesthetized preparations and in alert and behaving animals.
An eight probe array (with 64 recording sites) has been used to
examine activity in the rat somatosensory and prefrontal cortex
(Barthó et al., 2004). By examining the three-dimensional
location of the neurons, the first movement of the
autocorellogram, action potential waveform duration, and
mean firing rates, the neurons were able to be classified as
pyramidal cells or interneurons. A series of probes has been
developed with over 5,000 recording sites, with 768 sites recorded
simultaneously (Steinmetz et al., 2020) over an eight week
period—allowing incorporation into future behavioral
paradigms. Using a head-fixed preparation, about 30,000
neurons were recorded from 42 brain regions during multiple
sessions of a visual discrimination task in mice. The regional
brain responses to ipsilateral vs contralateral choices, and
engagement timing were differentiated (Steinmetz et al., 2019).
These multi-electrode methods allow assessment of cell outputs
(action potentials) with great fidelity. However, it is much more
difficult to measure the multiple inputs to a neuron’s dendrites
and spines. One approach to looking for changes in cellular
inputs can involve measuring the extracellular current flow using
a technique known as current source density analysis (CSD)
(Mitzdorf, 1985; Szymanski et al., 2009; Senzai et al., 2019). While
CSD does not have widespread use in the neurotoxicology field, it
has been used to show increased current flow into the
supragranular layer of the auditory cortex in rats after an
acute dose of salicylate (Stolzberg et al., 2012), indicating
changes in intracortical microcircuits. Other investigators have
used CSD analysis to show reduction in electrical sinks in the
stratum moleculare and decreased distance from the peak inward
current (sink) to the granule cell layer of the hippocampus,
suggesting a loss of entorhinal afferents to the hippocampal
outer molecular layer after 20 weeks of ethanol exposure
(Abraham and Hunter, 1982). Therefore, application of multi-
electrode analysis, coupled with CSD techniques can begin to
assess both neuronal network circuitry and alterations in synaptic
inputs (field potentials).

Cognitive Function
The assessment of changes in cognitive function produced by
toxicants is an on-going challenge. Once again, principles and
advances in neuroscience will have to be adapted to advance
toxicological procedures. Knowing where and when to look for
altered physiological responses will remain an important
question. Combinations of technologies, such as EEG,
magnetoencephalography, and fMRI, may be used to examine
sources of cognitive responses (Min et al., 2020). The role of
frequency-based assessment of EEG has been linked to
communication between different brain regions, memory

formation, and other cognitive processes in both human and
animal models (Lachaux et al., 2012). In humans. decreased
power in alpha and beta EEG frequencies, and reductions in
P300 power, were found in high load working memory tasks
(Chuang et al., 2019). However, investigations may also continue
to rely on evoked responses to interrogate complex brain
functions. As some examples, the P3 potential resulting from
olfactory stimulation in humans was shown to be modulated by
attention in the inferior frontal cortex, insula, and inferior
temporal gyrus (Singh et al., 2019). Increased reaction time
variability and a reduced amplitude of the P3 potential has
been associated with increased ADHD Problems Scale scores
on the Child Behavior Checklist (Liu et al., 2020). In rats, peak P2
was found to be related to target detection in an auditory go/no go
task, but P3 was not altered (as frequently seen in humans).
Increased low frequency power (1–7 Hz) was observed in the
frontal cortex on hit trials, but 8–14 Hz power (alpha frequency
range) was suppressed, compared to correct rejections (Nanda
et al., 2020). These studies illustrate the power of
neurophysiological techniques to study cognitive processing in
real time, albeit with some differences between rodent models and
humans, with an extensive range of cognitive processing
remaining to be investigated.

Perturbation Methodology: Optogenetics
Using methods to perturb normal brain function in animal
models will remain an important approach to uncover
toxicological mechanisms. Traditional methods such as
electrical stimulation, lesions, and pharmacological
manipulations can still provide important mechanistic
information (Nadler and Cuthbertson, 1980). A well-known
caveat to lesion and electrical stimulation methods, is the non-
specific nature of the technique. Not only are neuronal cell bodies
affected, but so are axons of passage. Pharmacological
manipulations can target specific types of neurons/receptors,
etc . . . but may involve a relatively longer time scale of effects
and may involve multiple brain regions (Cassaday et al., 1991;
Singh et al., 1998; Berman et al., 2002).

Many of these limitations can be overcome with application of
the relatively new technique of optogenetics, coupled with
neurophysiology. Optogenetic tools allow targeting specific
types of neurons with excitatory or inhibitory opsins, allowing
neuron function to be controlled with light pulses in real time,
and can be integrated with electrophysiology and
neuroanatomical methods (Kim et al., 2017; Kuleshova, 2019).
Optogenetic inhibition has been used to study the flow of neural
network information from sensory to motor areas of the cortex in
mice (Guo et al., 2014). Changes in EEG activity have also been
examined using optogenetic techniques. For example,
modulation of hippocampal theta activity by somatostatin
positive, but not parvalbumin positive, GABAergic neurons in
a mouse model of Alzheimer’s disease has been demonstrated
(Chung et al., 2018). Optogenetic re-activation of dentate gyrus
neurons that were first activated during fear conditioning,
induced freezing behavior in a different environmental
context—indicating that these specific neurons were
contributing to the memory engram (Liu et al., 2012).
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Optogenetic stimulation of auditory presynaptic inputs to the
lateral amygdala has been shown to serve as a conditioned
stimulus (CS) during fear conditioning, substituting for an
auditory stimulus. This study showed the importance of
auditory inputs (traditional CS for fear training) to the lateral
amygdala in fear memory formation (Kwon et al., 2014). The role
of dopaminergic and GABAergic neurons in emotional reward
(salience) during motivational behaviors has been dissected using
optogenetic methods (Nieh et al., 2013). Closed-loop optogenetic
techniques are under development that allow the brain’s neuronal
activity to control the optogenetic stimulation of neurons,
resulting in extremely naturalistic stimulation paradigms
(Grosenick et al., 2015; Bolus et al., 2018). Additionally,
optogenetic and neurophysiological techniques can be used in
conjunction with other methods such as fMRI, voltage imaging,
calcium imaging, and neurotransmitter release (Liang et al., 2015;
Renault et al., 2015; Burmeister et al., 2018; Adam et al., 2019) to
examine the mechanistic basis of changes produced by
xenobiotics on complex brain network functions, such as
learning and memory, in nearly real time. Application of these
sorts of tools in a toxicological setting can provide valuable
mechanistic information that is related to changes in behavior.

CONCLUSIONS

To adequately solve the problems facing neurotoxicology, the
generation of mechanistic data to fill data gaps and allow the
construction of AOP networks is needed. Understanding the
biological pathways involved in toxicological alterations will
enable the predictive validity of in vitro screens and the
physiological relevance of omic-based changes produced by
toxicants to be verified. This type of validity is essential for
regulatory purposes and will increase the translational
relevance to humans. Given the impetus to use in vitro
methods as the basis for future risk assessments (National

Research Council, 2007; Krewski et al., 2010), the benefit/cost
of animal research needs to be considered. At the current time,
there is insufficient scientific knowledge to adequately develop
in vitro tests to adequately assess and protect higher cognitive
functions. Thus, judicious and hypothesis-driven in vivo research
to determine mechanistic key events in AOPs and Integrated
Approaches to Testing and Assessments (Organisation for
Economic Co-Operation and Development, 2016) will provide
toxicological linkages for regulatory purposes and allow the
development of batteries of in vitro assays to eventually
replace the majority of animal testing. It is the change in brain
function that is of concern to the public. Since the 1700’s,
neurophysiology has been uniquely positioned to bridge the
gap between mechanistic studies and in vivo alterations of the
brain’s neuronal networks, helping to fulfill the promise of
systems biology to protect human and ecological health.
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