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Abstract: Adaptive beamforming is sensitive to steering vector (SV) and covariance matrix mis-
matches, especially when the signal of interest (SOI) component exists in the training sequence. In
this paper, we present a low-complexity robust adaptive beamforming (RAB) method based on
an interference–noise covariance matrix (INCM) reconstruction and SOI SV estimation. First, the
proposed method employs the minimum mean square error criterion to construct the blocking matrix.
Then, the projection matrix is obtained by projecting the blocking matrix onto the signal subspace of
the sample covariance matrix (SCM). The INCM is reconstructed by replacing part of the eigenvector
columns of the SCM with the corresponding eigenvectors of the projection matrix. On the other hand,
the SOI SV is estimated via the iterative mismatch approximation method. The proposed method
only needs to know the priori-knowledge of the array geometry and angular region where the SOI is
located. The simulation results showed that the proposed method can deal with multiple types of
mismatches, while taking into account both low complexity and high robustness.

Keywords: robust adaptive beamforming; orthogonality; blocking matrix; interference-plus-noise
covariance matrix reconstruction

1. Introduction

Adaptive beamforming adjusts the weight vector according to the application envi-
ronment to enhance the SOI by suppressing interference and noise, and it has been widely
used in radar, sonar, microphone array speech processing, wireless communication, radio
astronomy, and other areas [1–3]. Generally, the standard Capon beamformer (SCB) obtains
the maximum-array-output-signal-to-interference-plus-noise ratio (SINR) if the covariance
matrix and SOI SV are accurately known [4]. However, severe performance degradation
may occur in the presence of SV and INCM mismatches due to the fact of array calibration
errors, finite snapshots, and other factors, especially when the SOI component is presented
in the INCM [5,6]. Therefore, various RAB algorithms have been proposed to ensure the
robustness of beamformers over the past years. In general, these RAB methods can be
classified into the following types [6,7]: diagonal loading (DL) technique, eigenspace-based
(ESB) technique, uncertain-set based technique, and covariance matrix reconstruction-based
technique.

DL is one of the most classical RAB methods for improving the robustness of a
beamformer, which is derived by imposing a quadratic constraint either on the norm of the
weight vector or on its SOI SV [8,9]. However, its major challenge is that it is difficult to
choose the optimal DL level in different scenarios. To overcome this drawback, parameter-
free methods in [4,10–13] can automatically compute the DL level without specifying
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any additional user parameters. Regrettably, these methods fail to provide satisfactory
performance in high-input signal noise rates (SNRs).

The ESB technique is another type of traditional RAB method that is performed by
projecting nominal SV onto the signal-plus-interference subspace to eliminate the arbitrary
SV mismatch of SOI [14–17]. However, serious performance degradation will appear at
low-input SNRs. In [15], a modified ESB method based on covariance matrix enhancement
was proposed to improve the performance at low SNRs. In addition, the authors in [17]
proposed a method to obtain the basis vector of signal subspace among the eigenvectors of
the SCM. However, these methods perform poorly in the presence of large SV mismatch
and high-input SNRs.

The uncertain-set-based technique utilizes a spherical or ellipsoidal uncertainty con-
straint setting on the nominal SV to estimate the SOI SV including the worst-case-based
(WCB) method [5,18], doubly constrained method [10,19], probabilistically constrained
method [20,21], and linear programming method [22]. However, these methods do not
eliminate the SOI component from the SCM, and severe performance degradation will
occur in the presence of high-input SNRs [7]. In addition, most of them need to solve
the second-order cone programming (SOCP) problem, which leads to high complexity.
Actually, the uncertain-set-based technique has been demonstrated to be equivalent to the
DL method [6].

The above methods are mainly aimed at estimating SOI SV or SCM. Although these
methods can improve the robustness of a beamformer, all still suffer from serious per-
formance degradation at high-input SNRs. In order to overcome this drawback, a new
type of RAB method based on INCM reconstruction has been developed in recent years.
The authors of [23] firstly employ the SCB to estimate interference SV and reconstruct the
INCM, but the power of interference was not accurately estimated. Gu, in [24], proposed
an RAB method based on INCM reconstruction and SV estimation, where the INCM is
reconstructed by integrating over the complement of the SOI angular region. However, the
complexity is increased significantly. Subsequently, in [25,26], low-complexity shrinkage-
based mismatch estimation (LOCSME) and the sparsity of the source distribution were
used to significantly reduce the complexity. Unfortunately, these methods can achieve
good performance only in certain conditions. To resist more types of mismatches, a new
estimator for INCM based on interference SV and power estimation is presented in [6], and
a QCQP problem with new inequality constraint was established to estimate the SOI SV.
In [27], the authors constructed and solved a set of linear equations to obtain the estimation
of interference power. Furthermore, the residual noise power was considered to improve
the estimation accuracy of incident signal power in [28]. In [29], the iterative mismatch
approximation method was employed to estimate the power and SV of all incident signals;
then, these estimates were used to reconstruct the INCM. In [30], all nominal SVs were
adjusted to an accurate version by a line search along the corresponding gradient vector.
Together with the recorded power, the INCM was reconstructed. The Capon spectrum
can be approximated as the power of noise when the SV mismatch is large enough. To
overcome this drawback, the authors in [31] used the principle of maximum entropy power
spectrum to reconstruct the interference and SOI covariance matrix by estimating all pow-
ers of incident signals. Different from the above INCM reconstruction-based methods, the
authors in [32] reconstructed the INCM by projecting the interference subspace onto the
received snapshots, which can effectively eliminate the SOI component and achieve good
performance. In [33], the INCM reconstruction relies on using the average value of noise
eigenvalues instead of the eigenvalue of the SOI to eliminate a noticeable part of the SOI.
Ai et al. [34] presented an RAB algorithm for subspace projection and covariance recon-
struction (SPCMR) that employs subspace projection and oblique projection to estimate the
SOI SV and interference powers accurately. In [35], each SV was derived from the vector
located at the intersection of two subspaces. Meanwhile, the estimate of each SV was given
in a closed-form expression.
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In this paper, a low-complexity RAB method based on INCM reconstruction and SOI
SV estimation is proposed. Unlike previous methods, the INCM in the proposed method
was reconstructed utilizing the orthogonality of subspace. First, based on the idea of the
matrix filter in [36,37], the minimum mean square error criterion was employed to construct
the blocking matrix. Then, we performed eigen-decomposition on the SCM and obtained
the orthogonal projection matrix of the signal subspace. By projecting the blocking matrix
onto the orthogonal projection matrix, a projection matrix was obtained. Subsequently,
the INCM was reconstructed by replacing the eigenvector columns of the SCM, which can
span to the signal subspace with the corresponding eigenvectors of the projection matrix.
Finally, the SOI SV was estimated by employing the iterative mismatch approximation
method presented in [29]. The theoretical analysis and simulation results demonstrated
that the proposed method can efficiently deal with multiple types of mismatches.

The rest of this paper is organized as follows. The signal model and necessary
background regarding the adaptive beamforming method is introduced in Section 2. In
Section 3, the proposed RAB methods are described in detail, and the feasibility analysis of
the blocking matrix is performed. The simulation results are provided in Section 4. Finally,
conclusions are drawn in Section 5.

2. Signal Model and Background

Consider a uniform linear array (ULA) composed of M omnidirectional sensors that
are illuminated by L + 1 far-field uncorrelated narrowband signals, which consist of one
SOI and L interferences. The array complex sample vector at time k can be presented as:

x(k) = xs(k) + xi(k) + xn(k), (1)

where xs(k) = s0(k)a0 and xi(k) = ∑L
l=1 sl(k)al , respectively, represent the M× 1 vector of

the SOI and interference signal component in the received data. sl(k) and al(l = 0, . . . , L)
are the lth incident signal waveform and corresponding SV. xn(k) is additive complex
Gaussian noise with a zero mean and a variance of σ2

n , which is uncorrelated with all the
other signals. In this paper, the sensors were spaced at half of the wavelength. The nominal
SV from θ can be written as:

a(θ) =
[
1, e−j 2πd

λ sinθ , . . . , e−j(M−1) 2πd
λ sinθ

]T

=
[
1, e−jπsinθ , . . . , e−j(M−1)πsinθ

]T
,

(2)

where (·)T denotes the transpose, and λ and d, respectively, denote signal wavelength and
distance between two adjacent sensors.

The output of the beamformer is written as:

y(k) = wHx(k), (3)

where w = (w1, . . . , wM)T is the complex beamformer weight vector, and (·)H is the
Hermitian transpose. The optimal beamformer weight vector, w, can be calculated by
maximizing the output SINR, which is defined as follow:

SINR ,
σ2

0

∣∣wHa0
∣∣2

wHRi+nw
, (4)

where σ2
0 = E

[
|s0(k)|2

]
and a0 denote the SOI power and SV, E[·] denotes the expectation

operator of the stochastic variable. Ri+n ∈ CM×M denotes the precise INCM which can be
written as:
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Ri+n = E
{
[xi(k) + xn(k)][xi(k) + xn(k)]

H
}

=
L
∑

l=1
σ2

l alaH
l + E

[
xn(k)xH

n (k)
]

= Ri + σ2
nI,

(5)

where σ2
l = E

[
|sl(k)|2

]
and I denote the lth interference power and identity matrix,

respectively, and σ2
n is the noise power. The main purpose of the optimal beamformer is to

maximize the output SINR while keeping the SOI undistorted at the same time, which is
the so-called the minimum variance distortionless response (MVDR) problem [2]:

min
w

wHRi+nw s.t.wHa0 = 1. (6)

The optimal beamformer weight vector is given by:

wopt =
R−1

i+na0

aH
0 R−1

i+na0
. (7)

In practical applications, the precise INCM Ri+n is always unavailable, and it is usually
replaced by SCM R̂:

R̂ =
1
K

K

∑
k=1

x(k)xH(k), (8)

where K denotes the number of snapshots. As K increases, R̂ converge to the actual one.
It has been proved that replacing Ri+n by SCM R̂ does not change the optimal output
SINR [2]. Substituting the actual SOI SV a0 by the nominal SV a0 based on the known
array structure, the optimal weight vector becomes the sample covariance inversion (SMI)
beamformer:

wSMI =
R̂−1a0

aH
0 R̂−1a0

. (9)

With the optimal weight vector, the Capon spatial power spectrum, is employed as a
power estimator over all directions [28]:

P̂(θ) = wH
SMIR̂wSMI

= 1
aH(θ)R̂−1a(θ)

, (10)

where a(θ) is the nominal SV associated with θ ∈ (−90◦, 90◦).

3. Proposed Method

The main idea of the proposed method is to utilize the reconstructed INCM and the
corrected SOI SV to derive the optimal weight vector. Depending on the minimum mean
square error criterion, a blocking matrix is obtained. The orthogonality of the subspace is
employed to derive the projection matrix, and the INCM is reconstructed by replacing the
eigenvector columns of the SCM such that they can span to the signal subspace with the
corresponding eigenvectors of the projection matrix. The optimal weight vector is obtained
along with the SOI SV estimated by the iterative mismatch approximation method.

3.1. INCM Reconstruction

Different from Capon power spectrum integration and interference estimation based
INCM reconstruction methods, we present a blocking matrix based on the matrix filter
principle in [36,37], which is suitable for suppressing signals illuminating within a spe-
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cific angular region. Consider a blocking matrix G ∈ CM×M, the property of G can be
described as:

GHa(θ) =
{

a(θ), θ ∈ Θp
0, θ ∈ Θs

, (11)

where Θs denotes the stopband angular region, and the direction of arrival (DOA) of the
SOI lies in it. Θp denotes the passband angular region which contains the locations of
interference. Sampling Θs and Θp uniformly with the Ns and Np sampling points, the corre-
sponding angular sequences can be presented as θp

(
p = 1, . . . , Np

)
and θs (s = 1, . . . , Ns).

The blocking matrix design problem based on the minimum mean square error criterion
can be described as:

min‖
G

GHP− P̆‖F, (12)

where ‖·‖F denotes Frobenius norm. P =
[
a
(
Θp
)
, a(Θs)

]
∈ CM×(Np+Ns) denotes the

nominal manifold matrix, and P̆ =
[
a
(
Θp
)
, 0M×Ns

]
∈ CM×(Np+Ns) denotes the desired

manifold matrix. The solution to (12) can be found by taking the gradient of F(G) =
GHP− P̆F and making it equal to zero:

∂F(G)
∂G = ∂

∂G tr
[(

GHP− P̆
)H(

GHP− P̆
)] 1

2
= 0

G =
(
PPH)−1PP̆H .

(13)

Performing eigen decomposition on R̂ yields:

R̂ =
M
∑

i=1
ΓiuiuH

i = UΓUH

= UsΓsUH
s + UnΓnUH

n ,
(14)

where Γ1 ≥ Γ2 ≥ · · · ΓM−1 ≥ ΓM denotes the eigenvalues of R̂ arranged in descending
order. The minimum eigenvalue can be approximately considered as the estimation of the
noise power σ̃2

n [6]. ui ∈ CM×1 is an eigenvector associated with Γi. Us = (u1, . . . , uL+1) ∈
CM×(L+1) and Un = (uL+2, . . . , uM) ∈ CM×(M−L−1), respectively, denote the signal
subspace eigenvectors and the noise subspace eigenvectors. Γs = diag(Γ1, . . . , ΓL+1) ∈
CM×(L+1) and Γn = diag(ΓL+2, . . . , ΓM) ∈ CM×(M−L−1) are diagonal matrices. According
to the properties of the eigen subspace, we have:

span{u1, . . . , uL+1} = span{a0, . . . , aL}, (15)

where span{u1, . . . , uL+1} denotes the spanned subspace generated by the vector group
{u1, . . . , uL+1}. Then, any accurate SV al can be expressed as a linear combination of
columns of Us [27], which means that the projection matrix Φ = UsUH

s G is orthogonal to
a0. Q = ‖ΦHa(θ)‖2 is used to measure the orthogonality between projection matrix Φ
and a(θ). Assume that the SOI and interference impinge on the half-wavelength spacing
ULA with M = 10 from θ0 = 3◦, θ1 = −35◦, and θ2 = 42◦, the stopband and passband
region are set as Θs = (θ0 − 6◦, θ0 + 6◦) and Θp = (−90◦, θ0 − 6◦)

⋃
(θ0 + 6◦, 90◦). It can

be observed from Figure 1 that Q will be much smaller when θ = θ0 than θ = θ1,2. This
means Φ and a(θ0) are orthogonal or approximately orthogonal. In addition, the value
of Q corresponding to θ1,2 is equal to ‖a(θ1,2)‖2. Hence, projection matrix Φ collects the
spatial information of interference and removes the spatial information of the SOI.

Consider that the interference SV lies in the signal subspace spanned by the dominant
eigenvectors of Φ. Then, employing eigen decomposition on Φ to obtain the signal subspace:

Φ = BΛBH = BsΛsBH
s + BnΛnBH

n , (16)
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where B = [b1, . . . , bM] = [Bs, Bn] and Λ = diag{λ1, . . . , λM) , respectively, denote unitary
and diagonal matrices. bl , l = 1, . . . , M denotes the eigenvector corresponding to λl , which
are arranged in descending order. In addition, Bs contains L + 1 eigenvectors columns
corresponding to the L + 1 largest eigenvalues, and span{b1, . . . , bL+1} can be considered
as the signal subspace.
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Substituting Bs back into (14) and replacing Us, then we can obtain the reconstructed INCM:

R̃i+n = BsΓsBH
s + UnΓnUH

n , (17)

plotting the power spectrum of R̃i+n by replacing R̃i+n with R̂ in (10), which is written as:

P̃(θ) =
1

aH(θ)R̃
−1
n+ia(θ)

. (18)

The spatial power spectrum distribution based on (10) and (18) is drawn in Figure 2.
The SOI was assumed to be impinging from θ0 = 3◦ with a fixed SNR = 30 dB and that
two interferences were impinging from θ1 = −35◦ and θ2 = 42◦ with a fixed interference-
to-noise rate (INR) INR = 20 dB, respectively. This shows that the blocking matrix can
effectively filter the SOI components and interference components are retained. Therefore,
R̃i+n can be used as an INCM to derive the beamformer.
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3.2. SOI SV Estimation and Beamformer Weight Vector Calculation

For estimating the SOI SV, we employed the iterative mismatch approximation method
proposed in [29] to correct the presumed SOI SV. The iterative mismatch approximation
method depends on searching for the SV mismatch in the margin of the amplitude and
phase error. In the presence of SV mismatches, the actual SOI SV can be written as
a0 = a0 + e = α ◦ a0 ◦ ejβ. Employing the principle of estimating the signal steering
vectors via maximizing the beamformer output power [16], the estimated SOI SV ã0 can be
obtained by solving the pseudo-optimization problem:

max
α,β

P̃
(
θq, α, β

)
s.t. |1− αm| ≤ ε

|βm| ≤ Φ,

(19)

where ◦ denotes the Hadamard product, and the power spectrum associated with θq, α, β is

written as P̃
(
θq, α, β

)
= 1/

(
α ◦ a(θq

)
◦ ejβ)HR̂−1(

α ◦ a
(
θq
)
◦ ejβ). ε and Φ denote the prede-

fined boundary values of the amplitude and phase mismatch, respectively. α = (α1, . . . , αM)T

and β = (β1 . . . , βM)T denote the amplitude and phase mismatch vectors, respectively. The
iterative mismatch approximation method is described in Algorithm 1. In addition, the initial
nominal SOI SV is associated with the middle value of Θs.

Algorithm 1. Iterative mismatch approximation method.

Input: ε, Φ, aq, R̂−1

Output: ãq, pwr
1: Initialize a = aq
2: for it1 = 1 . . . M
3:

~
Θα =

[
αql , αqh

]
= [1− ε, 1 + ε],

~
Θβ =

[
βql , βqh

]
=
[
ej(−Φ), ej(Φ)

]
4: for it2 = 1 . . . depth

5: Eap =
~
Θβ ⊗

~
Θα, Eap ∈ C1×4

6: ai(it1) = aq(it1)Egp(i), i = 1, . . . , 4
7: Calculate p(i) by substituting ai into Equation (10)
8: (pwr, idx) = max(p)

9: Zoom out of the amplitude/phase error area built by
~
Θα and

~
Θβ to Eap(idx)

10: Update
~
Θα and

~
Θβ

11: end
12: ãq(it1) = aq(it1)Eap(idx)
13: end

Then, the estimated SOI SV ã0 can be corrected as ãq. Substituting (17) together with
ã0 back into the Capon beamformer (7), the robust adaptive beamforming based on INCM
reconstruction via the projecting matrix and SV estimation can be written as:

w̃ =
R̃
−1
i+nã0

ãH
0 R̃
−1
i+nã0

. (20)

In a general case, the estimated SOI SV may be imprecise. Hence, we took ã0 as an
input parameter and performed multiple iterations to improve accuracy. The iteration was
terminated when the following conditions were satisfied:∣∣∣∣∣∣∣

σ̃2
q

∣∣∣current − σ̃2
q

∣∣∣
previous

σ̃2
q

∣∣∣
previous

∣∣∣∣∣∣∣ < ϕ, (21)
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where ϕ and σ̃2
q denote a predefined saturation coefficient and power corresponding to ãq,

respectively. The method we propose is summarized in Algorithm 2.

Algorithm 2. Proposed RAB method.

1: Calculate the SCM R̂ using (8) and eigen decompose R̂ to obtain US and σ̃2
n ;

2: Obtain the blocking matrix G using (13) and the projection matrix Φ = UsUH
s G;

3: Eigen decompose Φ to obtain Bs and reconstruct INCM via (17);
4: Using the iterative mismatch approximation method in Algorithm 1 to estimate the SOI SV;
5: Substitute R̃i+n and ã0 back into (20) to obtain the weight vector.

The number of floating-point operations (flops) was employed to measure the com-
putational complexity. The computational complexity of the proposed method is mainly
determined by calculating the SCM R̂ and matrix eigen decomposition, calculating G
and estimating SOI SV ã0. Calculating the SCM R̂ costs approximately O

(
M2K

)
flops.

Calculating G costs approximately O
(

NS M2 + NP M2 + 2M3) flops. The computational
complexity of matrix inversion and eigen decomposition is approximately O

(
M3) flops.

Assuming that depth = D, the computational complexity of estimating the SOI SV would
be approximately O

(
M3 + 3DM

)
flops. In practice, calculating G is independent of R̂ and

can be seen as a pre-processing operation of the proposed method. With K � M ∼= D, the
overall complexity of proposed method is approximately O

(
M2K

)
flops. In [6], the major

computations were conducted to solve a QCQP problem and estimate interference SVs.

Suppose that S denotes the number of search points in
—
Θ, the computational complexity

is O
(
max

(
M2S, M3.5)). In [30], the sample points, N, for the line search significantly af-

fected the adjustment of the SVs. Hence, when N > M, the computational complexity is
O
(

LNM2). The computational complexity of the MEPS-IPNC in [31] was O
(

M2L
)
, where

L is a small multiple of M. In [32], the computational complexity was O
(
max

(
M2 J, M2S

))
,

where S and J are the number of the sampling points in Θs and Θs ∪ Θi. In [33], the com-
putational complexity was declared to be O

(
M3). In [34], the computational complexity

was O
(
max

(
M2 J, M2S

))
, where S and J are the number of the sampling points in Θ and

—
Θ. In [35], the computational complexity was declared to be O

(
M2 I(L + 1)

)
, where I is the

number of sample points for Θ and Θi−l . Clearly, since the power spectrum calculation,
power spectrum integration, and QCQP problem solving are avoided in our proposed
method, it has the lowest computational complexity. Furthermore, prior information
regarding the SOI angular region and array geometry are needed.

4. Simulation

In this section, a half-wavelength spacing ULA with M = 10 was considered. We
assumed that there existed an SOI impinging from the direction of θ0 = 3◦ and two interfer-
ences impinging from θ1 = −35◦ and θ2 = 42◦. The additive noise was presumed to be a
complex circularly symmetric Gaussian zero-mean unit-variance spatially and temporally
white process. All these sources were narrowband and assumed to be independent to
the noise. To obtain each output SINR point, 200 Monte Carlo trials were used in each
simulation. The proposed method was compared with the RAB method based on INCM
reconstruction and steering vector estimation (INCM-SVE) in [6], subspace-decomposition
and SV adjustment (SDA) in [30], MEPS-IPNC in [31], INCM reconstruction via orthogonal-
ity of subspace (INCM-OS) in [32], desired signal eigenvalue replacement (DSEB) in [33],
SPCMR in [34] and INCM reconstruction via the intersection of subspaces (INCM-IS)
in [35]. For all methods involved in the comparisons, the angular region was presumed to

be Θ = Θs = (θ0 − 6◦, θ0 + 6◦) and
—
Θ = Θp = (−90◦, θ0 − 6◦)

⋃
(θ0 + 6◦, 90◦). and the

interference angular region to be Θi = (θi − 6◦, θi + 6◦). The number of non-dominant
eigenvectors of the matrix C was set as L = 7, and the RCB boundary was ε =

√
0.1 in [6].

The N = 7 dominant eigenvectors of matrix B were employed for B1 in [32]. ξ = 0.95 as
in [33]. The constant satisfying µ = 0.9 and τ =

√
0.1 were as in [34]. Sampling points
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L = 5M and S = 20 were as in [31]. The scale factor µ̃ = 0.1 and the sampling points
N = 2µ̃/0.01 were as in [30]. For the proposed method, the amplitude and phase mismatch
boundary were set as ε = 0.3 and Φ = 6◦, respectively, the depth of the iteration was set
as depth = 10, and the saturation value was ϕ = 0.05. Furthermore, the MATLAB CVX
toolbox was used to solve the QCQP optimization problem in [6]. In our simulations, the
optimal output SINR can be calculated by:

SINRopt = σ2
0 aH

0 R−1
i+na0. (22)

4.1. Example 1: Mismatch Due to the Amplitude and Phase Error of the SV

In the first example, the influence of the SVs with arbitrary amplitude and phase errors
on the beamformer output SINR was considered. The relationship between the mth element
of the nominal SV and the actual SV was modeled as am = αmamejβm , where the arbitrary
amplitude error, αm, and phase error, βm, on each array sensor, respectively, followed the
Gaussian distribution N

(
1, 0.052) and N

(
0, (5◦)2

)
[6]. Figure 3a depicts the output SINR of

the tested methods versus the input SNR for the fixed number of snapshots K = 100. It was
observed that the proposed method had a similar performance among the tested methods
except in [32,33] at high SNRs. In addition, the performance of the proposed method was
only lower than in [6] when the SNR was low. However, the computational complexity
of our method was obviously lower than that in [6]. In Figure 3b, the output SINRs are
shown versus the number of snapshots for the fixed SNR = 30 dB and INR = 20 dB. The
proposed method had a similar performance to the tested methods in [6,30,34,35], and the
number of snapshots did not affect the performance of our proposed method.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 13 
 

 

be a complex circularly symmetric Gaussian zero-mean unit-variance spatially and tem-

porally white process. All these sources were narrowband and assumed to be independ-

ent to the noise. To obtain each output SINR point, 200 Monte Carlo trials were used in 

each simulation. The proposed method was compared with the RAB method based on 

INCM reconstruction and steering vector estimation (INCM-SVE) in [6], subspace-decom-

position and SV adjustment (SDA) in [30], MEPS-IPNC in [31], INCM reconstruction via 

orthogonality of subspace (INCM-OS) in [32], desired signal eigenvalue replacement 

(DSEB) in [33], SPCMR in [34] and INCM reconstruction via the intersection of subspaces 

(INCM-IS) in [35]. For all methods involved in the comparisons, the angular region was 

presumed to be 𝚯 = 𝚯𝑠 = (𝜃0 − 6∘, 𝜃0 + 6∘) and �̅� = 𝚯𝑝 = (−90∘, 𝜃0 − 6∘)⋃(𝜃0 + 6∘, 90∘) 

and the interference angular region to be 𝚯𝑖 = (𝜃𝑖 − 6∘, 𝜃𝑖 + 6∘). The number of non-dom-

inant eigenvectors of the matrix 𝑪 was set as 𝐿 = 7, and the RCB boundary was 𝜖 = √0.1 

in [6]. The 𝑁 = 7 dominant eigenvectors of matrix 𝑩 were employed for 𝑩𝟏 in [32]. ξ =

0.95 as in [33]. The constant satisfying μ = 0.9 and 𝜏 = √0.1 were as in [34]. Sampling 

points 𝐿 = 5M and S = 20 were as in [31]. The scale factor μ̃ = 0.1 and the sampling 

points 𝑁 = 2μ̃/0.01 were as in [30]. For the proposed method, the amplitude and phase 

mismatch boundary were set as 𝜖 = 0.3 and 𝜙 = 6∘, respectively, the depth of the itera-

tion was set as depth = 10, and the saturation value was 𝜑 = 0.05. Furthermore, the 

MATLAB CVX toolbox was used to solve the QCQP optimization problem in [6]. In our 

simulations, the optimal output SINR can be calculated by: 

𝑆𝐼𝑁𝑅𝑜𝑝𝑡 = 𝜎0
2𝒂0

𝐻𝑹𝑖+𝑛
−1 𝒂0. (22) 

4.1. Example 1: Mismatch Due to the Amplitude and Phase Error of the SV 

In the first example, the influence of the SVs with arbitrary amplitude and phase er-

rors on the beamformer output SINR was considered. The relationship between the 𝑚th 

element of the nominal SV and the actual SV was modeled as 𝑎𝑚 = 𝛼𝑚�̅�𝑚𝑒𝑗𝛽𝑚, where the 

arbitrary amplitude error, 𝛼𝑚, and phase error, 𝛽𝑚, on each array sensor, respectively, 

followed the Gaussian distribution 𝑁(1, 0.052) and 𝑁(0, (5∘)2) [6]. Figure 3a depicts the 

output SINR of the tested methods versus the input SNR for the fixed number of snap-

shots 𝐾 = 100. It was observed that the proposed method had a similar performance 

among the tested methods except in [32,33] at high SNRs. In addition, the performance of 

the proposed method was only lower than in [6] when the SNR was low. However, the 

computational complexity of our method was obviously lower than that in [6]. In Figure 

3b, the output SINRs are shown versus the number of snapshots for the fixed 𝑆𝑁𝑅 =

30 dB and 𝐼𝑁𝑅 = 20 dB. The proposed method had a similar performance to the tested 

methods in [6,30,34,35], and the number of snapshots did not affect the performance of 

our proposed method. 

  

Figure 3. Output SINRs in the case of amplitude and phase errors versus (a) input SNR with 𝐾 =

100; (b) the number of snapshots with 𝑆𝑁𝑅 = 30 dB. 

4.2. Example 2: Mismatch Due to the Random Look Direction Error 

                

             

   

   

   

   

   

 

  

  

  

  

 
 
  
 
  
 
  
 
  
 
 

            

        

   

         

       

    

     

       

        

                   

                   

   

  

  

  

  

  

  

  

  

  

 
 
  
 
  
 
  
 
  
 
 

            

        

   

         

       

    

     

       

        

Figure 3. Output SINRs in the case of amplitude and phase errors versus (a) input SNR with K = 100;
(b) the number of snapshots with SNR = 30 dB.

4.2. Example 2: Mismatch Due to the Random Look Direction Error

In the second example, the influence of the random look direction errors on the
beamformer output SINR was considered. Assuming that the look direction mismatch
of both the SOI and interferences were uniformly distributed in (−5◦, 5◦). That is means
that the DOA of the SOI was uniformly distributed in (−2◦, 8◦), and the DOAs of the two
interference were uniformly distributed in (−40◦, 30◦) and (37◦, 47◦). Note that the random
DOAs of the SOI and interferences changed in each trial while remaining constant over
snapshots. Figure 4a shows the output SINRs of the tested methods versus the input SNRs
with the fixed snapshots K = 100. It was observed that our proposed method was only
inferior to that in [6] in the performance at low SNR and inferior to that in [6,35] at high
SNRs. Figure 4b depicts the output SINRs of the tested methods against the snapshot
number at SNR = 30 dB and INR = 20 dB. It was observed that the performance of
our proposed method was similar to that in [30] when K > 40. In addition, the methods
in [33,34] were significantly affected by mismatches due to the look direction error.
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Figure 4. Output SINRs in the case of the look direction error versus (a) input SNRs with K = 100;
(b) the number of snapshots with SNR = 30 dB.

4.3. Example 3: Mismatch Due to the Incoherent Local Scattering Error

In the third example, the influence of the incoherent local scattering error on the
beamformer output SINRs was considered. The SOI was assumed to have a time-varying
signature, which was modeled as:

x̂s(k) = s0(k)a0 +
4

∑
p=1

sp(k)a
(
θp
)
, (23)

where a0 denotes the SOI SV. a
(
θp
)
(p = 1, 2, 3, 4) denotes the incoherent scattering signal

SV, and the DOAs, θp, are independently distributed in a Gaussian distribution drawn
from a random generator N(θ0, 4◦) in each trial. sp(k) are independently and identically
distributed zero-mean complex Gaussian random variables independently drawn from a
random generator, N(0, 1). In addition, θp changes from trial to trial, while it remains fixed
over the samples. At the same time, sp(k) changes both from trial to trial and from sample
to sample. In this case, the SOI covariance matrix is no longer a rank-one matrix and the
output SINR should be expressed as [5]:

SINRopt =
wHRsw

wHRi+nw
. (24)

The optimal weight vector can be obtained by maximizing the SINR [5]:

wopt = P
{

R−1
i+nRs

}
, (25)

where P{·} denotes the principal eigenvector of a matrix. Figure 5a shows the output SINRs
of the tested methods versus the input SNRs with the fixed snapshots K = 100. It was
observed that the performance of our proposed method was similar to that in [6,30] at high
SNRs and only lower than in [33] at low SNRs. However, the method in [33] had severe
performance degradation at high SNRs. Figure 5b depicts the output SINRs of the tested
methods against the snapshot number at SNR = 30 dB and INR = 20 dB. It was observed
that the proposed method had a similar performance with the tested methods in [6,30,35],
and the number of snapshots did not affect the performance of our proposed method.
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Figure 5. Output SINRs in the case of incoherent local scattering error versus (a) input SNRs with
K = 100; (b) the number of snapshots with SNR = 30 dB.

4.4. Example 4: Mismatch Due to the Coherent Local Scattering Error

In the fourth example, the influence of the coherent local scattering mismatch on
the beamformer output SINRs was considered. The coherent local scattering mismatch
usually occurs in multipath propagation scenarios. Assume that the SOI is distorted by
local scattering and consists of four coherent paths; the actual SV is formed as:

â0 = a0 +
4

∑
p=1

ejΦp a
(
θp
)
, (26)

where a0 denotes the SOI SV. a
(
θp
)
(p = 1, 2, 3, 4) denotes the coherent signal path from

θp. θp are independently distributed in a Gaussian distribution drawn from a random
generator, N(θ0, 4◦), in each trial. Φp denotes the path phase and uniformly distributed
in (0, 2π) from trial to trial. θp and Φp change from trial to trial, while it remains fixed
over the samples. Figure 6a shows the output SINRs of the tested methods versus the
input SNRs with the fixed snapshots K = 100. It was observed that the performance of
the optimal beamformer had an approximately 6 dB increment in output SINRs due to
the extra paths. The performance of our proposed method was similar to that in [6,30,35]
at high SNRs. The method in [6] achieved the best performance at the cost of the highest
complexity compared with the others. Figure 6b depicts the output SINRs of the tested
methods against the snapshot number at SNR = 30 dB and INR = 20 dB. It was observed
that the proposed method had a small impact on the number of snapshots.
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Figure 6. Output SINRs in the case of coherent local scattering error versus (a) input SNR with
K = 100; (b) the number of snapshots with SNR = 30 dB.

5. Conclusions

In this paper, we proposed a low-complexity RAB method based on INCM recon-
struction via subspace projection. In this method, the component of the SOI in the SCM
was eliminated by replacing the eigenvector columns in the SCM such that they could
span to the signal subspace with the corresponding eigenvectors in the projection matrix.
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Meanwhile, the SOI SV was estimated by employing the iterative mismatch approxima-
tion method. Since the calculation of the blocking matrix can be seen as pre-processing,
the complexity of INCM reconstruction only depends on a countable number of matri-
ces’ eigen decomposition and multiplication. Both the analysis and simulation illustrate
that the proposed method is robust to various types of mismatches while maintaining
low complexity.
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