ORIGINAL RESEARCH

Proteins as Mediators of the Association Between Diet Quality and Incident Cardiovascular Disease and All-Cause Mortality: The Framingham Heart Study

Youjin Kim , PhD; Sophia Lu, BS; Jennifer E. Ho, MD; Shih-Jen Hwang, PhD; Chen Yao, PhD; Tianxiao Huan, PhD; Daniel Levy, MD; Jiantao Ma, PhD

BACKGROUND: Biological mechanisms underlying the association of a healthy diet with chronic diseases remain unclear. Targeted proteomics may facilitate the understanding of mechanisms linking diet to chronic diseases.

METHODS AND RESULTS: We examined 6360 participants (mean age 50 years; 54% women) in the Framingham Heart Study. The associations between diet and 71 cardiovascular disease (CVD)-related proteins were examined using 3 diet quality scores: the Alternate Healthy Eating Index, the modified Mediterranean-style Diet Score, and the modified Dietary Approaches to Stop Hypertension diet score. A mediation analysis was conducted to examine which proteins mediated the associations of diet with incident CVD and all-cause mortality. Thirty of the 71 proteins were associated with at least 1 diet quality score (P<0.0007) after adjustment for multiple covariates in all study participants and confirmed by an internal validation analysis. Gene ontology analysis identified inflammation-related pathways such as regulation of cell killing and neuroinflammatory response (Bonferroni corrected P<0.05). During a median follow-up of 13 years, we documented 512 deaths and 488 incident CVD events. Higher diet quality scores were associated with lower risk of CVD (P≤0.03) and mortality (P≤0.004). After adjusting for multiple potential confounders, 4 proteins (B2M [beta-2-microglobulin], GDF15 [growth differentiation factor 15], slCAM1 [soluble intercellular adhesion molecule 1], and UCMGP [uncarboxylated matrix Gla-protein]) mediated the association between at least 1 diet quality score and all-cause mortality (median proportion of mediation ranged from 8.6% to 25.9%). We also observed that GDF15 mediated the association of the Alternate Healthy Eating Index with CVD (median proportion of mediation: 8.6%).

CONCLUSIONS: Diet quality is associated with new-onset CVD and mortality and with circulating CVD-related proteins. Several proteins appear to mediate the association of diet with these outcomes.

Key Words: cardiovascular disease
diet quality
mediator
mortality
proteomics

healthy diet is recommended as an important lifestyle factor to reduce the risk of developing cardiovascular disease (CVD) and other chronic diseases.¹ Substantial epidemiological evidence has shown that a healthy diet, as assessed by diet quality score, is associated with reduced risk of a broad range of clinical outcomes including CVD. For example, higher diet quality scores, estimated using the Alternate Healthy Eating Index (AHEI), the Mediterranean-style Diet Score (MDS), or the Dietary Approaches to Stop Hypertension (DASH) diet score, were associated with lower incident coronary heart disease^{2–5} and lower allcause mortality.⁶ Although the association between these diet quality scores and clinical outcomes has

Correspondence to: Jiantao Ma, PhD, Nutrition Epidemiology Data Science, Friedman School of Nutrition Science and Policy, Tufts University, 150 Harrison Ave, Boston, MA 02111. E-mail jiantao.ma@tufts.edu

Supplementary Material for this article is available at https://www.ahajournals.org/doi/suppl/10.1161/JAHA.121.022150

For Sources of Funding and Disclosures, see page 12.

^{© 2021} The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

JAHA is available at: www.ahajournals.org/journal/jaha

CLINICAL PERSPECTIVE

What Is New?

- A healthy diet is associated with circulating cardiovascular disease-related protein biomarkers, largely representing regulators of inflammatory pathways in a group of middle-aged and older participants in the Framingham Heart Study.
- Four proteins—B2M (beta-2-microglobulin), GDF15 (growth differentiation factor 15), sICAM1 (soluble intercellular adhesion molecule 1), and UCMGP (uncarboxylated matrix Gla-protein) may mediate the association of diet with health outcomes.

What Are the Clinical Implications?

• Our findings provide novel evidence to better understand the mechanisms linking healthy diet with new-onset cardiovascular disease and allcause mortality.

Nonstandard Abbreviations and Acronyms

ADM	adrenomedullin
AHEI	Alternate Health Eating Index
B2M	beta-2-microglobulin
DASH	Dietary Approaches to Stop Hypertension
FFQ	Food Frequency Questionnaire
GDF15	growth differentiation factor 15
GO	gene ontology
GRN	granulin
HPX	hemopexin
LDLR	low-density lipoprotein receptor
MDS	Mediterranean-style Diet Score
MMP	matrix metallopeptidase
MPO	myeloperoxidase
PAI1	plasminogen activator inhibitor 1
pQTL	protein quantitative trait loci
sICAM1	soluble intercellular adhesion molecule
UCMGP	uncarboxylated matrix Gla-protein

been well established, the underlying mechanisms remain elusive.

A proteomics approach may play a critical role in the elucidation of underlying mechanisms of the wellobserved diet-disease associations.⁷ A previous FHS (Framingham Heart Study) investigation examined the association of 71 CVD-related proteins with CVD and all-cause mortality.⁸ Diet may play a pivotal role in regulating these proteins; however, current research

examining the association of habitual diet quality with protein biomarkers is limited. To address this knowledge gap, we used data derived from the FHS, a large community-based observational study, to test our hypothesis that the association between diet guality and new-onset CVD and all-cause mortality is mediated, at least partly, by CVD-related proteins. We assessed the cross-sectional association between diet quality and 71 CVD-related proteins. Gene ontology (GO) is a widely used bioinformatic tool to systematically examine protein function and test the potential proteinprotein interaction.⁹ We, therefore, conducted GO functional enrichment analysis to better understand the potential biological mechanisms of diet-associated proteins. We further tested the potential mediation effects of these proteins on the prospective association of diet quality with incident CVD and mortality.

METHODS

Anonymized data and materials used for this analysis have been made publicly available through the database of Genotypes and Phenotypes repository and can be accessed at the following accession number: phs000007.v29.p10.

Study Participants

The present study included FHS participants who attended the seventh examination of the Offspring cohort (1998-2001; n=3530) or the first examination of the Third Generation cohort (2002-2005; n=4095).^{10,11} Among these participants (n=7350), 71 CVD-related protein biomarkers were measured by the SABRe CVD (Systems Approach to Biomarker Research in Cardiovascular Disease) Initiative that was established by the National Heart, Lung, and Blood Institute.⁸ After exclusion of participants without Food frequency questionnaire (FFQ) data (n=750) and missing covariates (n=240) at baseline, we analyzed data collected from up to 6360 participants. Participant selection is shown in Figure 1. All FHS protocols and procedures were approved by the Institutional Review Board for Human Research at Boston University Medical Center and all participants provided written informed consent. The current analyses were approved by the Tufts University Institutional Review Board.

Diet Quality Scores

The FHS used a previously validated 126-item FFQ to assess habitual dietary intake for the year preceding each examination.¹² The FFQ used in the present study was administered at the seventh examination of the Offspring cohort and the first examination of the Third Generation cohort. Dietary data were excluded if the

Figure 1. The flow diagram of participant selection and study overview. The number of participants in each model was varied according to the presence of each protein data. CVD indicates cardiovascular disease.

reported energy intake was <2.5 MJ/day (600 kcal/day) for both men and women, \geq 16.7 MJ/day (4000 kcal/day) for women, \geq 17.5 MJ/day (4200 kcal/day) for men, or if more than \geq 13 food items were left blank.¹³ The FFQ was used to calculate 3 commonly used diet quality scores: the AHEI,² a modified DASH score,^{5,14} and a modified MDS.^{3,15} Although the 3 scores use different scoring strategies, they have largely similar components (Table S1), and higher scores represent a healthier diet.

The AHEI is composed of 11 components including vegetables, fruits, nuts and legumes, whole grains, red and processed meat, sugar-sweetened beverages and fruit juice, eicosapentaenoic and docosahexaenoic acids, other polyunsaturated fatty acids (without eicosapentaenoic acid and docosahexaenoic acid), trans fatty acids, sodium, and alcohol.⁵ Each component score ranges from 0 (unhealthy) to 10 (healthy), with a higher score assigned to moderate alcohol drinking and higher intakes of vegetables, fruits, whole grains, nuts and legumes, eicosapentaenoic and docosahexaenoic acids, and polyunsaturated fatty acids. Lower scores are assigned to higher intakes of sugar-sweetened beverages and fruit juice, red and processed meat, trans fatty acids, and sodium.² The component scores are summed to generate the overall score ranging from possible value of 0 to 110, where a higher score reflects better concordance with the current Dietary Guidelines for Americans.^{2,16}

The modified DASH score is calculated on the basis of energy-adjusted intakes of 8 dietary components including vegetables, fruits, nuts and legumes, whole grains, low-fat dairy, red and processed meat, sugar-sweetened beverages, and sodium.^{5,14} For

each component, with the exception of for red and processed meat, sugar-sweetened beverages, and sodium, we assigned a value of 1 (lowest quintile of intake) to 5 (highest quintile of intake). The order of the scores was reversed for red and processed meat, sugar-sweetened beverages, and sodium, whereby the highest quintile was assigned a value of 1 and the lowest quintile was assigned a value of 5. The scores of all 8 components were then summed to create an overall DASH score ranging from 8 to 40, with higher scores indicating better adherence to the DASH dietary pattern.

The modified MDS was calculated as a measure of adherence to the Mediterranean diet.^{15,17} The MDS is composed of 9 components including vegetables, fruits, nuts, legumes, whole grains, fish, red and processed meat, ratio of monounsaturated to saturated fatty acids, and alcohol.³ Instead of using median intake as a threshold to dichotomize each component as described in a previous study,¹⁵ we categorized consumption of each component into sex- and cohortspecific guartiles.¹⁷ A score of 0 to 3 was assigned to each component based on guartile rank, with the exception of red and processed meat and alcohol. For red and processed meat, the order of the scores was reversed (ie, the highest quartile was assigned a score of 0). For alcohol, we assigned a value of 1 to intake \geq 10 and \leq 25 g/day for men or \geq 5 and \leq 15 g/day for women and a value of 0 for all other intakes. All component scores were summed to generate an overall MDS, ranging from 0 (lowest diet quality) to 25 (highest diet quality).

Target Proteins

The selection of target proteins has been previously described.⁸ Briefly, the SABRe CVD Initiative measured 85 CVD-related proteins. These proteins were quantified using a modified Sandwich ELISA method, multiplexed on a Luminex xMAP platform (Sigma-Aldrich, St. Louis, MO), using frozen fasting plasma samples collected at the same time that the FFQ was administered.^{18,19} Because >80% samples had values below the lower detection limits, 14 proteins were excluded from the present analysis.⁸ A 7-point calibration curve (in triplicate) was used to calibrate protein quantification. Quality control (QC) used both the "High" and "Low" spike control (QC1 and QC2, respectively). The method provided acceptable reproducibility of assay performance (Table S2), with mean intra-assay coefficient of variation of 7.8 (range: 2.3-28.9; interquartile range: 6.6) for QC1 and 6.8 (range: 1.2-15; interguartile range: 5.2) for QC2 and inter-assay coefficient of variation of 8.9 (range: 2.5-21.9; interquartile range: 8.2) for QC1 and 7.9 (range: 2.3-24.5; interguartile range: 5) for QC2. Complete list and selection criteria of the 71

CVD-related proteins analyzed in the present study are presented in Table S2.

Covariates and Clinical Outcome Ascertainment

Data on smoking status (never, past, or current), alcohol intake (servings/week), body mass index (BMI; kg/m²), and blood pressure (mm Hg) were obtained using questionnaires and physical examinations following standard protocols.¹¹ Physical activity score was calculated based on the intensity and time spent for each type of activity assessed by the physical activity questionnaire.²⁰ Participants are under continuous surveillance for CVD events and mortality. A panel of 3 physicians was formed to review all pertinent information including medical and hospital records, death certificates, communication with personal physicians, and next-of-kin interviews. Primary outcomes were allcause mortality and incident CVD including non-fatal CVD (coronary heart disease, myocardial infarction, angina, coronary insufficiency, cerebrovascular accident, atherothrombotic infarction of the brain, transient ischemic attack, cerebrovascular disease, and intermittent claudication) and CVD death (fatal coronary heart disease and death due to stroke, peripheral arterial disease, heart failure, or other cardiovascular causes).²¹

Statistical Analysis

Our 3 main analyses are as follows (Figure 1): (1) examine the cross-sectional association between diet quality and target proteins, (2) visualize the interrelation between diet-related proteins and biological pathways (ie, the functional network), and (3) perform a mediation analysis to test if diet-associated proteins mediate the longitudinal association between diet quality and incident CVD and all-cause mortality.

Diet-Protein Association

We primarily analyzed the 3 diet quality scores (AHEI, DASH, and MDS) on a continuous scale. To facilitate comparisons of the associations between the 3 diet quality scores and proteins, we standardized each score by dividing its SD. Log-transformed CVD-related proteins (n=71) were regressed on age, sex, and co-hort index to obtain residuals and the residuals were then inverse normal transformed to a mean of 0 and SD of 1 for subsequent statistical analysis. Linear mixed effect models (implemented using the R *nIme* package)²² were used to account for family structure in our study sample with adjustment for sex, age, energy intake, smoking status, physical activity score, alcohol intake, and BMI.

We used a 2-step strategy to identify diet-associated proteins. In the first-step analysis, we examined

diet-protein associations in all study participants. We applied Bonferroni correction with adjustment for the number of proteins to account for multiple testing, that is, to determine if a protein was statistically significant, we required that this protein had 2-tailed P<0.0007 (0.05/71). In the second-step analysis, we conducted the internal validation tests to examine robustness of the significant proteins identified in the first-step analvsis. Based on pedigrees, we randomly divided our study participants into 2 independent subcohorts with the allocation ratio of 1:1. We considered a protein significant in the first-step analysis to be a diet-associated protein if that protein was associated with diet quality score at P<0.05 and had regression coefficients in the same direction in both subcohorts. In addition, we tested heterogeneity between the 2 subcohorts by calculating the Cochran's Q statistic using the R meta package²³ and required that diet-associated proteins should not have the heterogeneity P<0.05/the number of significant proteins in the first-step analysis.

Construction of Functional Network

Diet-related proteins were analyzed to identify closely related biological processes based on GO terms and interrelations of functional groups in biological network by using the Cytoscape plug-in ClueGO,²⁴ which enables the visualization of clustered networks and pathways. We used default selection criteria for relevant pathways, that is, a minimum of 3 proteins from the selected diet-related proteins, which accounted for at least 4% from the total number of proteins in the GO terms. The statistical test was based on the 2-sided hypergeometric option with a Bonferroni step-down correction.²⁵ The ClueGO network is created with Cohen's Kappa coefficient \geq 0.5 and reflects the relationships between the terms based on the similarity of their associated proteins.²⁴

Mediation Analysis

In a previous FHS analysis, 46 of the 71 proteins were associated with CVD or all-cause mortality.⁸ We therefore conducted a mediation analysis using a modified approach proposed by Huang and Yang²⁶ to investigate whether a significant association between diet quality and clinical outcomes is mediated by these proteins. A linear mixed effect model was used to estimate the association between diet quality and CVD-related proteins, and a mixed effect Cox proportional hazard model (implemented using R *coxme* package)²⁷ was adopted to estimate the natural direct and indirect effects of diet quality on clinical outcomes. Family structure was accounted for by using a random intercept. We used the R code provided by the Huang and Yang²⁶ to calculate the 95% CIs and *P* values for the nature direct effect, indirect effect, and total effect based on a resampling method taking random draws (repeated for 1E+6 times) from multivariate normal distribution of estimates for model parameters. We considered natural indirect effect (ie, mediation) statistically significant if P<0.05/the number of the proteins significantly associated with diet quality. The proportion of mediation by a target protein was calculated as the ratio of indirect effect to the sum of both direct and indirect effect.

In mediation analysis for incident CVD, participants with history of CVD at baseline were excluded. We adjusted 2 sets of covariates. Covariates in model 1 included sex, age, energy intake, smoking status, physical activity score, alcohol intake, BMI, systolic blood pressure, use of antihypertension medications, high-density lipoprotein cholesterol, total cholesterol, and type 2 diabetes. In model 2, we additionally adjusted for education (with and without college education), smoking pack-years, estimated glomerular filtration rate (mL/min per 1.73²), family history of CVD, aspirin use, and, for women only, menopausal status, oral contraceptive use, and hormone replacement therapy. Similarly, 2 sets of covariates were adjusted for in the mediation analysis for all-cause mortality. In model 1, we adjusted for the covariates included in the model 1 mediation analysis for incident CVD and history of CVD and cancer. In model 2, we included the same additional covariates adjusted for in the model 2 mediation analysis for incident CVD. We conducted sensitivity analysis with exclusion of the incident cases or death events occurring in the first 2 or 5 years after baseline. To test robustness of the proteins significant in the mediation analysis, we further adjusted for other diet-associated proteins that were correlated with the significant proteins. In this multi-marker analysis, we selected proteins with absolute pairwise Spearman correlation coefficients ≥0.3 and added these proteins as covariates.

We identified 71 independent *cis*-pQTL variants (protein quantitative trait loci; linkage disequilibrium R^2 <0.1 and minor allele frequency >0.01) for 18 of the diet-associated proteins based on our previous study.²⁸ These *cis*-pQTLs reside within 500kb from the transcription start site of the protein coding genes, suggesting that they may directly affect expression of the protein coding genes.^{29,30} Therefore, analysis using cis-pQTLs provides evidence to support the causal roles of diet-associated proteins to clinical outcomes. Information on the 71 cis-pQTL variants and the 18 diet-associated proteins are presented in Table S3. We used mixed effect Cox models to examine the association of the 71 cis-pQTL variants with incident CVD and all-cause mortality in our study participants (n=7060). Covariates included in models were sex, age, and the first 2 genetic principal components. All statistical analyses were conducted using R statistical analysis software (version 3.5.0; R Foundation for Statistical Computing, available: http://www.R-project.org).³¹

RESULTS

Participants' characteristics (n=6360; mean age 50 years; 54% women) at baseline are presented in Table 1. Women tended to have higher AHEI and DASH scores. Because MDS was constructed using sex-specific quartiles, MDS scores were similar in both men and women. Higher diet quality scores tended to be associated with a lower proportion of current smokers, more college education, less alcohol intake, and lower BMI. The 3 diet quality scores were correlated, with Pearson r ranging from 0.67 to 0.75 (*P*<0.0001 for all; Figure S1). We found no significant difference in participants' characteristics and distribution of CVD-related proteins in the 2 internal validation subcohorts after Bonferroni correction (Table S4).

Cross-Sectional Association of Diet Quality and CVD-Related Proteins

After adjustment for sex, age, energy intake, smoking status, physical activity score, alcohol intake, and BMI, we found that 34 of the 71 proteins were significantly associated with at least 1 diet quality score at P<0.0007 (Bonferroni corrected P<0.05/71; Table S5). Of these proteins, 31 were associated with AHEI, 25 with DASH, and 14 with MDS. As expected, the observed diet-protein association patterns were similar across the 3 diet quality scores, with pairwise Pearson correlations for t-statistics of 0.92, 0.96, and 0.94, respectively (P<0.0001 for all; Figure S2). Correlation coefficients between the 34 proteins ranged from -0.34 to 0.68 with a mean correlation coefficient of 0.12 (Figure S3). Similar associations between diet quality scores and proteins were obtained after excluding the patients with prevalent cases of CVD and type 2 diabetes (n=673; Figure S4).

The internal validation analysis confirmed that 30 of the 34 proteins met our criteria (Figure 2 and Table S6), that is, associated with at least 1 diet quality score with same direction and P<0.05 in both subcohorts. Twentyeight proteins were associated with AHEI, 21 proteins were associated with DASH, and 12 proteins were associated with MDS. No significant heterogeneity was detected for the 30 proteins based on the Cochran's Q statistic P<0.001 threshold (0.05/34; Table S6).

Functional Network for Diet-Related Proteins

GO functional enrichment analysis for the 30 dietassociated proteins showed significant enrichment for 5 biological processes (Table S7). This analysis highlighted 3 functional groups (Figure 3). The most significant GO biological processes in these 3 functional groups were regulation of neuroinflammatory response (P=5.6×10⁻⁹ for GO:0150076), endothelial cell apoptotic process (P=3.5×10⁻⁶ for GO:2000351), and interleukin-8 production (P=8.7×10⁻⁶ for GO:0032677). Seven proteins (out of 30) were highly enriched in these networks including GRN (granulin; *GRN*), sICAM1 (soluble intercellular adhesion molecule-1; *sICAM1*), LDLR (low-density lipoprotein receptor; *LDLR*), MMP8 (matrix metallopeptidase 8; *MMP8*), MMP9 (*MMP9*), IGF1 (insulin-like growth factor 1; *IGF1*), and PAI1 (plasminogen activator inhibitor 1; *SERPINE1*).

Longitudinal Association of Diet Quality and Incident CVD and Mortality

After exclusion of participants with prevalent CVD at baseline, 5585 participants were included in the longitudinal analysis for incident CVD. We observed 413 nonfatal and 75 fatal CVD events, during a median follow-up time of 12 years. The analysis for all-cause mortality included 5890 participants and 512 death events that occurred during a median follow-up time of 14 years.

Higher diet quality scores were significantly associated with lower risk of incident CVD (fatal and nonfatal) and all-cause mortality (Table S8). Hazard ratios (HRs; 95% CI; *P*-trend) for incident CVD were 0.84 (0.76–0.93; *P*<0.0001), 0.82 (0.73–0.91; *P*=0.0002), and 0.89 (0.80–0.98; *P*=0.025) per SD increase of AHEI (12 points), DASH (5 points), and MDS (4 points), respectively. The HRs (95% CI; *P*-trend) for all-cause mortality were 0.86 (0.78–0.95; *P*=0.004), 0.85 (0.77–0.94; *P*≤0.002), and 0.86 (0.77–0.95; *P*=0.002) per SD increase of AHEI, DASH, and MDS, respectively. In sensitivity analyses, exclusion of events occurring within 2 or 5 years after baseline resulted in similar associations of diet quality scores with incident CVD and all-cause mortality (Table S8).

We examined the 3-way associations between diet guality scores, proteins, and CVD and all-cause mortality. Because of the inverse association between diet guality and incidence CVD and all-cause mortality, we expected that a protein inversely associated with diet quality scores was likely to be positively associated with the clinical outcomes or vice versa. Overall, the observed cross-sectional association between diet quality scores and proteins are consistent with the findings in longitudinal association⁸ or Mendelian randomization analysis²⁸ conducted in previous FHS analyses (Table S9). For example, we observed that better diet quality was associated with lower levels of cystatin C. In the prior FHS studies, Mendelian randomization analysis showed that higher levels of cystatin C were associated with increased risk of coronary heart

		_	>			-						
	AHEI				DASH				MDS			
	T1	Т2	Т3	P-trend*	Ц	Т2	Т3	P-trend	11	Т2	Т3	P-trend
Age, y	50±14	51±14	48±13	<0.0001	49±14	50±14	50±14	0.002	49±13	50±14	50±14	<0.0001
Women, n (%)	862 (41)	1156 (54)	1421 (67)	<0.0001	1503 (59)	736 (43)	682 (32)	<0.0001	1222 (54)	1133 (55)	1084 (53)	0.99
College educated, n (%)	751 (36)	918 (44)	1152 (55)	<0.0001	939 (37)	768 (45)	1114 (53)	<0.0001	780 (35)	923 (45)	1118 (56)	<0.0001
Smoking status, n (%)				0.195				0.003				<0.0001
Never	1104 (53)	1225 (58)	1271 (61)		1284 (51)	1003 (59)	1313 (63)		1124 (50)	1172 (58)	1304 (65)	
Past	636 (30)	630 (30)	664 (32)		768 (31)	525 (31)	637 (31)		742 (33)	626 (31)	562 (28)	
Current	358 (17)	242 (12)	163 (8)		451 (18)	176 (10)	136 (7)		384 (17)	235 (12)	144 (7)	
Smoking pack-years	66±156	31±102	17±78	<0.0001	65±154	28±98	14±69	<0.0001	60±147	34±113	17±78	<0.0001
Alcohol, servings/wk	7±11	5±7	5±5	<0.0001	7±10	5±7	4±6	<0.0001	6±10	5±7	5±6	0.0002
Physical activity score	38±8	37±7	37±7	0.02	38±8	37±7	38±7	0.64	37±8	38±7	38±7	0.03
Body mass index, kg/m²	28±5	28±6	26±5	<0.0001	28±6	28±5	26±5	<0.0001	28±6	28±5	27±5	<0.0001
Systolic blood pressure, mm Hg	123±17	122±17	119±17	<0.0001	122±16	122±18	119±17	<0.0001	121±17	122±18	120±17	0.04
Estimated glomerular filtration rate, mL/min per 1.73 ²	93±19	92±19	93±18	0.902	94±19	92±19	92±18	<0.0001	95±19	92±19	92±18	<0.0001
Hypertension meds, n (%)	447 (21)	423 (20)	354 (17)	0.0002	503 (20)	350 (21)	371 (18)	0.06	406 (18)	444 (22)	374 (19)	0.57
High-density lipoprotein, mmol/L	0.7±0.7	0.8±0.7	1.0±0.8	<0.0001	0.8±0.7	0.8±0.7	0.9±0.8	<0.0001	0.8±0.7	0.8±0.7	0.9±0.8	0.0001
Aspirin use, n (%)	450 (21)	446 (21)	399 (19)	0.053	511 (20)	359 (21)	425 (20)	0.981	412 (18)	399 (20)	484 (24)	<0.0001
Hormone replacement therapy, n (%)	161 (8)	176 (8)	230 (11)	0.0002	167 (7)	151 (9)	249 (12)	<0.0001	188 (8)	185 (9)	194 (10)	0.139
Postmenopausal status, n (%)	464 (22)	531 (25)	591 (28)	<0.0001	491 (20)	455 (27)	641 (31)	<0.0001	535 (24)	523 (26)	529 (26)	0.054
Oral contraceptive use, n (%)	154 (7)	271 (13)	369 (18)	<0.0001	219 (9)	241 (14)	334 (16)	<0.0001	287 (13)	258 (13)	249 (12)	0.721
Type 2 diabetes, n (%)	129 (6)	159 (8)	111 (5)	0.24	155 (6)	129 (8)	115 (6)	0.41	127 (16)	153 (8)	119 (6)	0.65
Cancer, n (%)	77 (4)	81 (4)	63 (3)	0.23	86 (3)	62 (4)	73 (3)	0.89	65 (3)	75 (4)	81 (4)	0.04
CVD, n (%)	137 (7)	131 (6)	102 (5)	0.02	148 (6)	112 (7)	110 (5)	0.40	118 (5)	132 (6)	120 (6)	0.29
Family history of CVD, n (%)	1564 (75)	1574 (75)	1506 (72)	0.039	1875 (75)	1247 (73)	1522 (73)	0.140	1696 (75)	1480 (73)	1468 (73)	0.080
Data were expressed as means±SDs (style Diet Score; and T, tertile. *Total forcer total control total	or absolute nu	mbers (percer	itage). AHEI, A	Iternate Health	y Eating Index;	CVD, cardiova	scular disease	DASH, Dietar	y Approaches to	Stop Hyperten	ision; MDS, M	editerranean-
Cochran-Armitage trend tests for catego	rical variables	and linear mix	ed effects mo	dels for continu	le meulan value Jous variables.	מ הו במהוו ובו וווב	categol y IIIto t			ന്ദ്രവിയനിനാലന	יו פו ומא אפונ	a laiyzeu uy

Baseline Characteristics of Participants According to Tertiles of Diet Quality Score (n=6360) Table 1.

Figure 2. Adjusted regression coefficients and corresponding 95% CI for the associations between standardized diet quality scores and CVD-related proteins in all study participants. Linear mixed effects model was adjusted for sex, age, energy intake, smoking status, physical activity score, alcohol intake, and body mass index. Regression coefficients are depicted with ● for AHEI, ▲ for DASH, and ■ for MDS. The horizontal lines represent 95% CIs. The complete name of the abbreviated proteins can be found in Table S2. ADM indicates adrenomedullin; AGP1, arabinogalactan protein 1; AHEI, Alternate Healthy Eating Index; ANGPTL3, angiopoietin-like 3; APOB, apolipoprotein B; B2M, beta-2-microglobulin; CD14, cluster of differentiation 14; CNTN1, contactin 1; CRP, C-reactive protein; CVD, cardiovascular disease; CXCL16, chemokine ligand 16; DASH, Dietary Approaches to Stop Hypertension; GDF15, growth differentiation factor 15; GMP140, granule membrane protein 140; GRN, granulin; HPX, hemopexin; IGF1, insulin-like growth factor 1; IGFBP1, insulin-like growth factor binding protein 1; LDLR, low-density lipoprotein receptor; MCP1, monocyte chemoattractant protein 1; MDS, Mediterranean-style Diet Score; MMP, matrix metallopeptidase; MPO, myeloperoxidase; PAI1, plasminogen activator inhibitor 1; sICAM1, soluble intercellular adhesion molecule 1; TIMP1, tissue inhibitor of metalloproteinases 1; and UCMGP, uncarboxylated matrix Gla-protein.

disease,²⁸ and longitudinal analysis showed higher levels of cystatin C were associated with increased risk of incident CVD and all-cause mortality.⁸

In addition, we analyzed the association of 71 independent *cis*-pQTL variants for 18 diet-associated proteins with incident CVD and all-cause mortality. We found that participants who carried A allele of rs10908589, a *cis*-pQTL variant of CD5L, had increased CD5L levels ($P=7.9\times10^{-26}$)²⁸ and increased all-cause mortality (HR, 1.28; 95% CI, 1.13–1.44;

Three significant function groups including 5 enriched biological processes were identified, followed by a Bonferroni step-down correction for multiple testing. Nodes indicate enriched GO terms and the same color of nodes means that they are in the same pathway function group. The most significant term is highlighted by a large name label for each group. All terms are compared with each other, and pathway function groups are defined using the Cohen's Kappa coefficients, a measure taking into account how many genes are shared between 2 terms. Each dot represents diet-related target protein. Edges between nodes and dots represent interactions between protein and terms. The width of edges indicated the value of Cohen's Kappa coefficients. The network was generated by using ClueGO, a plug-in of Cytoscape. The complete name of the abbreviated proteins can be found in Table S2. ANGPT1 indicates angiopoietin 1; CCL2, C-C motif chemokine ligand 2; CD14, cluster of differentiation 14; CNTN1, contactin 1; CRP, C-reactive protein; GRN, granulin; ICAM1, intercellular adhesion molecule 1; IGF1, insulin-like growth factor 1; GO, gene ontology; LDLR, low-density lipoprotein receptor; MMP, matrix metallopeptidase; and SERPINE1, serpin family E member 1.

 $P=6.4\times10^{-5}$; Table S10). This observation was consistent with the expected 3-way associations, that is, higher diet quality scores were associated with lower CD5L levels and lower all-cause mortality. Two other independent *cis*-pQTLs associated with CD5L and 2 cis-pQTLs associated with GMP140 (granule membrane protein 140) and CD14 (cluster of differentiation 14) with nominal significance in the association analyses are also presented in Table S10.

Mediation Analysis of Target Proteins in Relation to Diet Quality and Clinical Outcomes

Among the 30 diet-associated proteins, 17 proteins were selected on the basis of significant associations with diet quality scores and with CVD outcomes and

mortality. With adjustment for the mediation analysis model 1 covariates, 6 proteins (GDF15 [growth differentiation factor 15], UCMGP [uncarboxylated matrix Gla protein], sICAM1, ADM [adrenomedullin], CRP [Creactive protein], and B2M [beta-2-microglobulin]) significantly mediated the association between at least 1 diet guality score and all-cause mortality at P for indirect effect <0.003 (0.05/17 proteins; Tables S11 through S13). Among them, UCMGP significantly mediated the association of all-cause mortality with AHEI ($P=1.6\times10^{-5}$), DASH (P=1.2×10⁻⁴), and MDS (P=9.0×10⁻⁵). The median proportion of mediation (Table 2 and Table S14) by UCMGP was 20.7% (95% CI, 11.2-43.3%), 21.0% (95% Cl, 9.4-82.9%), and 17.4% (95% Cl, 8.8-47.4%) for AHEI, DASH, and MDS, respectively. Additional adjustment for education, smoking pack-years, estimated glomerular filtration rate, family history of CVD, aspirin

				Model 1		Model 2	
Diet quality	Mediator	Hazard r	ratio (95% CI)	P value	Mediated proportion, %	P value	Mediated proportion, %
All-cause mortality							
AHEI	GDF15	0.957	(0.941-0.972)	1.2E-16	30.1	0.003	21.8
	UCMGP	0.966	(0.953-0.979)	1.6E-05	20.7	0.002	24.0
	Adrenomedullin	0.985	(0.977–0.992)	0.002	10.4	0.11	
	CRP	0.985	(0.976-0.993)	0.002	9.9	0.06	
	Beta-2-microglobulin	0.984	(0.975–0.992)	0.001	9.9	0.02	10.3
	Soluble intercellular adhesion molecule	0.987	(0.979–0.993)	0.002	9.3	0.03	8.6
Dietary Approaches to Stop Hypertension	UCMGP	0.979	(0.969–0.987)	1.2E-04	21.0	0.003	25.9
	CRP	0.986	(0.977–0.993)	0.002	15.2	0.06	
Mediterranean-style Diet Score	UCMGP	0.978	(0.968–0.987)	9.0E-05	17.4	0.003	19.1
Incident CVD							·
AHEI	GDF15	0.982	(0.971–0.991)	0.002	11.3	0.02	8.6

Table 2. Significant Mediation Effect of Diet-Associated Proteins on Longitudinal Associations of Diet With All-Cause Mortality and Incident CVD Incident CVD

Linear mixed effect and mixed effect Cox proportional hazard models were adopted to estimate the indirect (mediation) effect. Hazard ratios per 1 increase of SD of standardized diet quality score and *P* values were derived from mixed effect Cox proportional hazard models. Model 1 was adjusted for sex, age, energy intake, smoking status, physical activity score, alcohol intake, body mass index, systolic blood pressure, use of antihypertension medications, high-density lipoprotein and total cholesterol, type 2 diabetes, and history of CVD and cancer. Model 2 was additionally adjusted for estimated glomerular filtration rate, smoking pack-years, aspirin use, education, family history of CVD, use of hormone replacement therapy, postmenopausal status, and oral contraceptive use. The median proportion of mediation was calculated as the ratio of indirect effect to the sum of both direct and indirect effect. Complete mediation analysis results are in the Tables S11 through S17. AHEI indicates Alternate Healthy Eating Index; CRP, C-reactive protein; CVD, cardiovascular disease; growth differentiation factor 15; and UCMGP, uncarboxylated matrix gamma-carboxyglutamic acid protein.

use, and, for women only, menopausal status, oral contraceptive use, and hormone replacement therapy reduced the strength of the mediation effect (Table 2). Nonetheless, mediation *P* values for all-cause mortality remained significant or nominally significant for GDF15, UCMGP, B2M, and sICAM1.

Mediation analysis results for incident CVD are presented in Tables S15 through S17. GDF15 was significant in the mediation analysis for AHEI and incident CVD with *P* of 0.002 after adjusting for model 1 covariates (Table S15). The median proportion of mediation by GDF15 was 11.3% (95% CI, 4.9–31.6%). Similarly, additional adjustment for model 2 covariates reduced the strength of the mediation effect (Table 2), mediation P=0.02, and proportion of mediation by GDF15 was 8.6% (95% CI, 2.8–31.2%).

In sensitivity analyses, exclusion of events occurring within 2 or 5 years after baseline did not substantially change the strength of the mediation analysis results (Tables S18 and S19). After adjusting for correlated diet-associated proteins, mediation *P* values for the 4 proteins (B2M, sICAM1, GDF15, and UCMGP) remained similar in the mediation analysis for all-cause mortality with adjustment for model 2 covariates (Table S20). Also, mediation *P* value for GDF15 was similar tos that in the model 2 mediation analysis for incident CVD (Table S21).

DISCUSSION

We showed that diet quality, represented by 3 diet quality scores, was associated with 30 CVD-related protein biomarkers in a large group of middle-aged and older participants in the FHS. The majority of dietassociated proteins were involved in biological pathways related to inflammatory response. Our mediation analysis demonstrated that 6 proteins (ADM, B2M, GDF15, UCMGP, sICAM1, and CRP) may mediate the association between diet quality scores and all-cause mortality. In addition, GDF15 significantly mediated the longitudinal association between diet quality scores and new-onset CVD. Our study provides novel evidence that targeted proteomic analysis may be useful to highlight molecular pathways underlying the beneficial effects of healthy diet for disease prevention.

Our findings are consistent with the literature examining the beneficial effects of healthy diet on CVD and mortality.¹ Although the association between diet and protein biomarkers has not been well studied, we observed associations similar to those reported in previous studies.^{32,33} The cross-sectional Toronto Nutrigenomics and Health study demonstrated that a Western-style dietary pattern was associated with 25 proteins involved in coagulation and lipid metabolism among 54 putative CVD biomarker proteins.³² A Swedish study of 2 population-based cohorts analyzed 184 CVD-related circulating proteins and demonstrated that dietary patterns were associated with 21 proteins.³³ These dietary pattern-associated proteins are involved in multiple pathways such as inflammation and lipid metabolism. In the present study, we observed diet-protein associations consistent with those reported in 3 prior studies.^{32–34} For example, the unhealthy dietary patterns characterized in these studies were associated with higher concentrations of PAI1 (plasminogen activator inhibitor 1), MPO (myeloperoxidase), APOB (apolipoprotein B), GDF15, and HPX (hemopexin). We found that higher diet quality scores, reflecting healthier diet, were associated with lower levels of these proteins.

The biological mechanisms underlying the relationship between healthy diet and CVD and other chronic diseases are not fully understood. It is postulated that adherence to healthy diet has the potential to reduce vascular damage by alleviating inflammatory responses.³⁵ A strong inverse association between overall diet quality and inflammation biomarkers has been demonstrated by few studies.^{36,37} A study of the Women's Health Initiative cohort showed that higher MDS was favorably associated with a series of inflammation markers, including CRP and sICAM-1, which explained ≈30% of the observed MDS-CVD association.³⁷ Another study, also conducted in the Women's Health Initiative³⁴ showed that GDF15 may partly explain dietary effects on all-cause mortality. CRP and sICAM1 are well-known inflammation markers,³⁸ whereas ADM, B2M, and GDF15 have been linked with inflammatory response.^{39–41} These data are consistent with our observations in the mediation analysis and, therefore, provide evidence to support inflammation as an important mechanism underlying the nexus between diet quality and human health.

The present study showed that UCMGP may be a strong mediator with respect to the association of diet quality with all-cause mortality. MGP is primarily secreted by vascular smooth muscle cells in the arterial wall.⁴² The inactive form of MGP, UCMGP, undergoes posttranslational modifications depending upon availability of vitamin K.⁴³ Dark green leafy vegetables,⁴⁴ which are important constituents of healthy diet, are rich in vitamin K. Consistent with our observations, UCMGP is a risk factor for arterial calcification⁴⁵ and has been associated with an increased risk of mortality.⁸ An observational study showed findings consistent with our results,⁴³ highlighting that proteins such as UCMGP may partly explain dietary effects on health outcomes.

The strengths of the present study include the use of comprehensive dietary, lifestyle, and clinical data; long-term follow-up of clinical outcomes; and wellquantified circulating targeted protein biomarkers in a large group of FHS participants. There are several limitations that warrant discussion. We examined

the cross-sectional association between diet quality scores and target proteins, which limits our ability to infer causality between diet and protein biomarkers. Nevertheless, by examining the 3-way associations between diet quality score, proteins, and clinical outcomes, the cross-sectional analysis showed consistency with longitudinal analysis of diet-disease and protein-disease associations. In addition, the crosssectional analysis was in line with associations generated from analyses using genetic variants. Our study population was predominately middle-aged and older White adults, which may limit the generalizability of the present findings to other populations. Dietary intake was assessed using semiguantitative FFQ, which may lead to misclassification. In addition, dietary constituents that were not selected for constructing the diet quality scores may play important roles in the regulation of protein biomarkers and affect the risk of CVD and mortality. Dietary quality may change over time; therefore, further analysis considering the change in diet quality is warranted. Proteins may mediate the relationship between diet quality and non-CVD mortality, which also need to be examined in future studies. Despite the fact that multiple potential confounders were adjusted for in the present analysis, the possibility of residual confounding could not be ruled out.

CONCLUSIONS

In conclusion, we demonstrated that diet quality, represented by 3 diet quality scores, was associated with 30 CVD-related, circulating protein biomarkers. We further showed that several proteins significantly mediated the long-term association of diet quality with incident CVD and all-cause mortality. Our findings provide novel evidence to better understand the mechanisms underlying the observed association of diet with CVD and all-cause mortality.

ARTICLE INFORMATION

Received February 10, 2021; accepted July 26, 2021.

Affiliations

Nutrition Epidemiology and Data Science, Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA (Y.K., J.M.); Health Sciences, Sargent College, Boston University, Boston, MA (S.L.); Division of Cardiology, Department of Medicine and Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA (J.E.H.); Population Sciences Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD (S.H., C.Y., D.L.); Framingham Heart Study, Framingham, MA (S.H., C.Y., D.L.); and Department of Ophthalmology and Visual Sciences, University of Massachusetts Medical School, Worcester, MA (T.H.).

Sources of Funding

This research was supported by grants from the National Heart, Lung and Blood Institute (NHLBI)'s Framingham Heart Study (Contract No. N01-HC-25195) and by the NHLBI Career Transition Award (1K22HL135075-01). Dr Ho was supported by National Institutes of Health grants R01-HL134893 and R01-HL140224. The funding sources had no role in study design, collection, analysis, or interpretation of data; writing of the report; or the decision to submit the article for publication.

Disclosures

None.

Supplementary Material

Tables S1–S21 Figures S1–S4

REFERENCES

- Micha R, Penalvo JL, Cudhea F, Imamura F, Rehm CD, Mozaffarian D. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. *JAMA*. 2017;317:912– 924. DOI: 10.1001/jama.2017.0947.
- Chiuve SE, Fung TT, Rimm EB, Hu FB, McCullough ML, Wang M, Stampfer MJ, Willett WC. Alternative dietary indices both strongly predict risk of chronic disease. *J Nutr.* 2012;142:1009–1018. DOI: 10.3945/ jn.111.157222.
- Fung TT, Rexrode KM, Mantzoros CS, Manson JE, Willett WC, Hu FB. Mediterranean diet and incidence of and mortality from coronary heart disease and stroke in women. *Circulation*. 2009;119:1093–1100. DOI: 10.1161/CIRCULATIONAHA.108.816736.
- Djoussé L, Ho Y-L, Nguyen X-M, Gagnon DR, Wilson PWF, Cho K, Gaziano JM, Halasz I, Federman D, Beckham J, et al. DASH score and subsequent risk of coronary artery disease: the findings from Million Veteran Program. J Am Heart Assoc. 2018;7:e008089. DOI: 10.1161/ JAHA.117.008089.
- Fung TT, Chiuve SE, McCullough ML, Rexrode KM, Logroscino G, Hu FB. Adherence to a dash-style diet and risk of coronary heart disease and stroke in women. *Arch Intern Med.* 2008;168:713–720. DOI: 10.1001/archinte.168.7.713.
- Sotos-Prieto M, Bhupathiraju SN, Mattei J, Fung TT, Li Y, Pan A, Willett WC, Rimm EB, Hu FB. Association of changes in diet quality with total and cause-specific mortality. *N Engl J Med.* 2017;377:143–153. DOI: 10.1056/NEJMoa1613502.
- Lam MP, Ping P, Murphy E. Proteomics research in cardiovascular medicine and biomarker discovery. J Am Coll Cardiol. 2016;68:2819–2830. DOI: 10.1016/j.jacc.2016.10.031.
- Ho JE, Lyass A, Courchesne P, Chen G, Liu C, Yin X, Hwang SJ, Massaro JM, Larson MG, Levy D. Protein biomarkers of cardiovascular disease and mortality in the community. *J Am Heart Assoc.* 2018;7:e008108. DOI: 10.1161/JAHA.117.008108.
- Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, et al. A human protein-protein interaction network: a resource for annotating the proteome. *Cell*. 2005;122:957–968. DOI: 10.1016/j.cell.2005.08.029.
- Kannel WB, Feinleib M, McNamara PM, Garrison RJ, Castelli WP. An investigation of coronary heart disease in families. The Framingham Offspring Study. *Am J Epidemiol.* 1979;110:281–290. DOI: 10.1093/ oxfordjournals.aje.a112813.
- Splansky GL, Corey D, Yang Q, Atwood LD, Cupples LA, Benjamin EJ, D'Agostino RB, Fox CS, Larson MG, Murabito JM, et al. The third generation cohort of the National Heart, Lung, and Blood Institute's Framingham Heart Study: design, recruitment, and initial examination. *Am J Epidemiol.* 2007;165:1328–1335. DOI: 10.1093/aje/kwm021.
- Rimm EB, Giovannucci EL, Stampfer MJ, Colditz GA, Litin LB, Willett WC. Reproducibility and validity of an expanded self-administered semiquantitative food frequency questionnaire among male health professionals. *Am J Epidemiol*. 1992;135:1114–1126. DOI: 10.1093/oxfor djournals.aje.a116211.
- Willett W, Stamfer M. Implications of total energy intake for epidemiologic analyses. In: Willet W, ed. *Nutritional Epidemiology*. Oxford University Press; 2012:261–284.
- Bertoia ML, Triche EW, Michaud DS, Baylin A, Hogan JW, Neuhouser ML, Tinker LF, Van Horn L, Waring ME, Li W, et al. Mediterranean and Dietary Approaches to stop hypertension dietary patterns and risk of sudden cardiac death in postmenopausal women. *Am J Clin Nutr.* 2014;99:344–351. DOI: 10.3945/ajcn.112.056135.
- Trichopoulou A, Costacou T, Bamia C, Trichopoulos D. Adherence to a mediterranean diet and survival in a greek population. *N Engl J Med.* 2003;348:2599–2608. DOI: 10.1056/NEJMoa025039.
- 16. U.S. Department of Health and Human Services and U.S. Department of Agriculture. 2015–2020 Dietary Guidelines for Americans. 8th ed.

December Department of Agriculture (USDA), Department of Health and Human Services (HHS); 2015. Available at: https://health.gov/ our-work/food-nutrition/previous-dietary-guidelines/2015. Accessed March 2021.

- Ma J, Hennein R, Liu C, Long MT, Hoffmann U, Jacques PF, Lichtenstein AH, Hu FB, Levy D. Improved diet quality associates with reduction in liver fat, particularly in individuals with high genetic risk scores for nonalcoholic fatty liver disease. *Gastroenterology*. 2018;155:107–117. DOI: 10.1053/j.gastro.2018.03.038.
- duPont NC, Wang K, Wadhwa PD, Culhane JF, Nelson EL. Validation and comparison of luminex multiplex cytokine analysis kits with ELISA: determinations of a panel of nine cytokines in clinical sample culture supernatants. *J Reprod Immunol.* 2005;66:175–191. DOI: 10.1016/j. jri.2005.03.005.
- Carson RT, Vignali DA. Simultaneous quantitation of 15 cytokines using a multiplexed flow cytometric assay. *J Immunol Methods*. 1999;227:41– 52. DOI: 10.1016/S0022-1759(99)00069-1.
- Kannel WB, Sorlie P. Some health benefits of physical activity. The Framingham Study. Arch Intern Med. 1979;139:857–861. DOI: 10.1001/ archinte.1979.03630450011006.
- Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. *Circulation*. 1998;97:1837–1847. DOI: 10.1161/01.CIR.97.18.1837.
- Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Van Willigen B, Maintainer R. Package 'nlme'. *Linear and nonlinear mixed effects models*. R package version 3.1-152. 2021. Available at: https://CRAN.Rproject.org/package=nlme. Accessed July 2021.
- Balduzzi S, Rucker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. *Evid Based Ment Health*. 2019;22:153–160. DOI: 10.1136/ebmental-2019-300117.
- Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, Fridman WH, Pages F, Trajanoski Z, Galon J. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. *Bioinformatics*. 2009;25:1091–1093. DOI: 10.1093/bioinformatics/btp101.
- Rivals I, Personnaz L, Taing L, Potier MC. Enrichment or depletion of a GO category within a class of genes: which test? *Bioinformatics*. 2007;23:401–407. DOI: 10.1093/bioinformatics/btl633.
- Huang YT, Yang HI. Causal mediation analysis of survival outcome with multiple mediators. *Epidemiology*. 2017;28:370–378. DOI: 10.1097/ EDE.00000000000651.
- Therneau TM, Therneau MTM. Package 'coxme'. *Mixed effects cox models*. R package version 2.2-16. 2025. Available at: https://cran.r-project.org/web/packages/coxme. Accessed July 2021.
- Yao C, Chen G, Song CI, Keefe J, Mendelson M, Huan T, Sun BB, Laser A, Maranville JC, Wu H, et al. Genome-wide mapping of plasma protein QTLs identifies putatively causal genes and pathways for cardiovascular disease. *Nat Commun.* 2018;9:3268. DOI: 10.1038/s41467-018-05512-x.
- Shan N, Wang Z, Hou L. Identification of trans-eQTLs using mediation analysis with multiple mediators. *BMC Bioinformatics*. 2019;20:126. DOI: 10.1186/s12859-019-2651-6.
- Yao C, Joehanes R, Johnson AD, Huan T, Liu C, Freedman JE, Munson PJ, Hill DE, Vidal M, Levy D. Dynamic role of trans regulation of gene expression in relation to complex traits. *Am J Hum Genet*. 2017;100:571– 580. DOI: 10.1016/j.ajhg.2017.02.003.
- Team RC. R: A Language and Environment for Statistical Computing [internet]. R Foundation for Statistical Computing; 2013. Available at: http://www.r-project.org. Accessed July 2021. 2015.
- García-Bailo B, Brenner DR, Nielsen D, Lee H-J, Domanski D, Kuzyk M, Borchers CH, Badawi A, Karmali MA, El-Sohemy A, et al. Dietary patterns and ethnicity are associated with distinct plasma proteomic groups. *Am J Clin Nutr.* 2012;95:352–361. DOI: 10.3945/ ajcn.111.022657.
- Warensjo Lemming E, Byberg L, Stattin K, Ahmad S, Lind L, Elmstahl S, Larsson SC, Wolk A, Michaelsson K. Dietary pattern specific protein biomarkers for cardiovascular disease: a cross-sectional study in 2 independent cohorts. J Am Heart Assoc. 2019;8:e011860. DOI: 10.1161/ JAHA.118.011860.
- Lu AT, Quach A, Wilson JG, Reiner AP, Aviv A, Raj K, Hou L, Baccarelli AA, Li Y, Stewart JD, et al. DNA methylation GrimAge strongly predicts lifespan and healthspan. *Aging (Albany NY)*. 2019;11:303–327.
- 35. Ruiz-Núñez B, Pruimboom L, Dijck-Brouwer DA, Muskiet FA. Lifestyle and nutritional imbalances associated with Western diseases: causes

and consequences of chronic systemic low-grade inflammation in an evolutionary context. *J Nutr Biochem*. 2013;24:1183–1201. DOI: 10.1016/j.jnutbio.2013.02.009.

- Fung TT, McCullough ML, Newby PK, Manson JE, Meigs JB, Rifai N, Willett WC, Hu FB. Diet-quality scores and plasma concentrations of markers of inflammation and endothelial dysfunction. *Am J Clin Nutr.* 2005;82:163–173. DOI: 10.1093/ajcn/82.1.163.
- Ahmad S, Moorthy MV, Demler OV, Hu FB, Ridker PM, Chasman DI, Mora S. Assessment of risk factors and biomarkers associated with risk of cardiovascular disease among women consuming a Mediterranean diet. *JAMA Netw Open.* 2018;1:e185708. DOI: 10.1001/jamanetworkopen.2018.5708.
- Witkowska AM. Soluble ICAM-1: a marker of vascular inflammation and lifestyle. *Cytokine*. 2005;31:127–134. DOI: 10.1016/j.cyto.2005.04.007.
- Wong LY, Cheung BM, Li YY, Tang F. Adrenomedullin is both proinflammatory and antiinflammatory: its effects on gene expression and secretion of cytokines and macrophage migration inhibitory factor in NR8383 macrophage cell line. *Endocrinology*. 2005;146:1321–1327. DOI: 10.1210/en.2004-1080.
- Amighi J, Hoke M, Mlekusch W, Schlager O, Exner M, Haumer M, Pernicka E, Koppensteiner R, Minar E, Rumpold H, et al. Beta 2 microglobulin and the risk for cardiovascular events in patients with asymptomatic carotid atherosclerosis. *Stroke*. 2011;42:1826–1833. DOI: 10.1161/STROKEAHA.110.600312.

- Luan HH, Wang A, Hilliard BK, Carvalho F, Rosen CE, Ahasic AM, Herzog EL, Kang I, Pisani MA, Yu S, et al. GDF15 is an inflammationinduced central mediator of tissue tolerance. *Cell*. 2019;178:1231–1244. DOI: 10.1016/j.cell.2019.07.033.
- Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, Karsenty G. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. *Nature*. 1997;386:78–81. DOI: 10.1038/386078a0.
- Schurgers LJ, Uitto J, Reutelingsperger CP. Vitamin K-dependent carboxylation of matrix Gla-protein: a crucial switch to control ectopic mineralization. *Trends Mol Med.* 2013;19:217–226. DOI: 10.1016/j. molmed.2012.12.008.
- McKeown NM, Jacques PF, Gundberg CM, Peterson JW, Tucker KL, Kiel DP, Wilson PW, Booth SL. Dietary and nondietary determinants of vitamin K biochemical measures in men and women. *J Nutr.* 2002;132:1329–1334. DOI: 10.1093/jn/132.6.1329.
- 45. Vermeer C, Drummen NEA, Knapen MHJ, Zandbergen FJ. Uncarboxylated matrix gla protein as a biomarker in cardiovascular disease: applications for research and for routine diagnostics. In: Patel VB, Preedy VR, eds. *Biomarkers in Cardiovascular Disease*. Biomarkers in Disease: Methods, Discoveries and Applications. 1st ed. Dordrecht, Netherlands: Springer; 2016:267–283. https://link.springer.com/refer encework/10.1007%2F978-94-007-7678-4.

Supplemental Material

	AHEI	DASH	MDS
Vegetable	\checkmark		
Fruit	\checkmark	\checkmark	\checkmark
Sweetened beverage	\checkmark	\checkmark	
Nut	al		\checkmark
Legume	N	N	\checkmark
Whole grain	\checkmark	\checkmark	\checkmark
Fish			\checkmark
Red and processed meat	\checkmark	\checkmark	\checkmark
Low-fat dairy		\checkmark	
Monounsaturated/Saturated fatty acid ratio			\checkmark
Eicosapentaenoic & Docosahexaenoic acids	\checkmark		
Polyunsaturated fatty acids	\checkmark		
Trans-fat	\checkmark		
Alcohol	\checkmark		\checkmark
Sodium			

Table S1. Components of diet quality scores

AHEI, Alternative Healthy Eating Index; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score.

|--|

Protein symbol	Full Protein Name	Protein-coding	Selection	Intra-ass	ay CV, %	Inter-ass	ay CV, %
		Gene Abbreviation	criteria*	QC1	QC2	QC1	QC2
ADAM15	Disintegrin and metalloproteinase domain-containing protein 15	ADAM15	2	8.3	3.9	3.3	3
	Adrenomedullin	ADM	1	5	0.3 15	10.9	6.3
SRAGE	Receptor for advanced glycation endproducts	AGER	1	14.5	10	5.0 7.0	4
Rikupin	Alpha-1-microglobulin		2,3	3.9	3.9 7 1	63	1.3
	AMBP-DIKUNIN (BIKUNIN)	ANODTI 2	2,3	2.9	10	0.5	9.0
ANGPILS	Angiopoletin-like 3	ANGFILS	1	17.0	14.0	4	4.0
APOAT	Apolipoprolein A-1	APOAT	1	20.9	11.0 6.6	12.1	124
APOD	Apolipoprotein B	ROM	1	3	4.0	13.4	13.4
BCHE	Beta-2-microglobulin Butum/abalina.astoraga	BCHE	23	3.7	4.Z	1/./	9.0
Ostoocalcin		BCIAR	2,3	0.0	0.4 10.7	14.9 5.1	6.3
C2	Osteocalcin Complement C2	DGLAP C2	1	0.0	3.0	0.1 16.1	0.3
MCP1	Complement C2 Menorite chamatastic malagula 1	CC12	4	3.Z 11.1	3.9 13.7	33	61
	Monocyte chemolactic molecule 1		12	3.5	3.6	15 /	14.5
CD163	Cluster of differentiation 163	CD163	23	8.5	1.8	3.4	/ 3
CD40I	Soluble CD40 ligand	CD40LG	2,5	14.8	14 1	3.1	4.0
CD5I	CD5 antigon like	CD5/	1	3	24	12.3	5.7
CDH13	Cadharin 13	CDH13	1	93	5.2	27	47
Adipsin	Adinsin	CED	2	5.0	4.3	16.3	19
CLEC3B	Totraportin	CLEC3B	2	8.5	5.8	5.4	2.8
CLU	Clusterin	CLU	1	11.2	9.1	16.5	12.6
CNTN1	Contactin 1	CNTN1	1	7.8	7.6	6.1	53
COL 18A1	Collagen type XVIII alpha 1	COL18A1	1	17 1	12.9	3	5.9
Ceruloplasmin		CP	2	9.4	5.4	5	3.5
CRP	C-Reactive Protein	CRP	1	5.1	8.2	14.5	9.9
Cystatin C	Cystatin_C	CST3	1	3.2	3.1	9.8	5.1
SDF1	Stromal cell-derived factor 1	CXCI 12	2	4.8	7	15.6	8.4
CXCI 16	Chemokine (C-X-C motif) ligand 16	CXCL16	12	13.5	11 1	2.8	3.5
DPP4		DPP4	.,_	7.8	3.4	2.5	2.3
EFEMP1	EGE containing fibulin-like extracellular matrix protein 1	EFEMP1	2	4.8	3.8	9.7	9.1
FGF23	Fibroblast growth factor 23	FGF23	1	13.4	14	5.5	5.7
FGG	Fibringen	FGG	2	3.8	2.9	97	7
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase	GAPDH	1	37	3.8	19	14.2
GDF15	Growth differentiation factor 15	GDF15	1.2	5.4	5	11.9	6.8
GP5	Glycoprotein V (platelet)	GP5	1	3.9	3.5	15.1	7.6
GRN	Granulin	GRN	1.2	4.2	1.2	6.4	4.4
HPX	Hemopexin	HPX	2	7.7	5.6	4.7	3.4
sICAM1	Intercellular adhesion molecule 1	ICAM1	1	4.5	4.5	11.2	9.3
IGF1	Insulin-like growth factor 1	IGF1	1	9.1	5.5	6.8	3.7
IGFBP1	Insulin-like growth factor-binding protein 1	IGFBP1	1.2	2.5	2.5	6.9	5.4
IGFBP2	Insulin-like growth factor binding protein 2	IGFBP2	2	2.8	6	8.7	10.2
IGFBP3	Insulin-like growth factor-binding protein 3	IGFBP3	1	3.9	4.4	15.2	18
sGP130	Interleukin-6 receptor beta	IL6ST	1	3	3	9.1	3.9
KLKB1	Plasma kallikrein	KLKB1	2	10.2	3.2	16.2	24.5
LDLR	LDL receptor	LDLR	2.3.4	8.9	4.7	3.4	3.9
Leptin	Leptin	LEP	1.2	15.8	7	9.6	3.2
Leptin-R	Leptin receptor	LEPR	1	10.7	9.1	5.5	6
LPA	Lipoprotein(a)	LPA	1,2	9.8	8.2	15.5	14
Myoglobin	Myoglobin	MB	1	6.6	8	6.6	6.2
MCAM	Melanoma cell adhesion molecule	MCAM	2	4.5	3.8	11.1	5.1
UCMGP	Uncarboxylated MGP	MGP	1,2	11.5	10.1	17.8	17.8
MMP8	Matrix metallopeptidase 8	MMP8	3,4	16.9	13.9	8.3	5.6
MMP9	Matrix metallopeptidase 9	MMP9	1,2	4.7	3.9	8.1	10
MPO	Mveloperoxidase	MPO	1,2	3.8	4.4	13.2	9.6
NCAM	Neural cell adhesion molecule	NCAM1	2	2.4	1.6	7.2	4.3
Notch1	Notch 1	NOTCH1	3	2.3	2.3	6.2	5.5
NTproBNP	N-terminal prohormone of brain natriuretic peptide	NPPB	1,2	13.3	10.3	4.4	7.2
NRCAM	Neuronal cell adhesion molecule	NRCAM	2	9	4.4	3.4	2.5
AGP1	Alpha-1 acid glycoprotein	ORM1	1,2	8.1	8.3	4.6	5.7
PMP2	Peripheral myelin protein 2	PMP2	2	5.8	6.6	3.1	4.7
PON1	Serum paraoxonase/arylesterase 1	PON1	2	4.2	3.9	7.4	7.6
PPBP	Pro-platelet basic protein	PPBP	3	3	3.8	6	6.4
REG1A	Lithostathine-1-alpha	REG1A	1	6.9	11.3	7.7	8.8
Resistin	Resistin	RETN	1	11.2	11	5	4.6
SAA1	Serum amvloid A1	SAA1	2	13.6	8.5	21.9	23.4
GMP140	Granule membrane protein 140	SELP	1.2	4.9	4.4	14.8	12.1
SERPINA10	Protein Z-dependent protease inhibitor	SERPINA10	2	3.4	4.7	7	6
PAI1	Plasminogen activator inhibitor 1	SERPINE1	1	10.8	12.3	3.6	4.2
TIMP1	Tissue inhibitor of metalloproteinases 1	TIMP1	1	4.3	5.4	13.2	8.5
TSC22D3	TSC22D3 domain family member 3	TSC22D3	3	9	12.2	9.3	15.9
VEGF	Vascular endothelial growth factor	VEGFA	1.2	14.7	14	4.3	6

CV: coefficient of variation *Selection of biomarker based on:

3 4

Reported association with cardiovascular disease by literature review 1 2

Proteomics discovery via mass spectrometry in the Framingham Heart Study or other studies Gene expression profiling analysis with cardiovascular disease and risk factors Coding genes associated with cardiovascular disease identified by genome-wide association studies

· · · · ·	•					Effect			¢ /	<u> </u>	,
SNP	Protein	Chr	Position	Effect	Other	allele	β	SE	R-Squared	P value	Source
				Allele	Allele	frequency					
rs10796979	CD5L	1	157513404	С	А	0.854	0.16	0.026	0.005	1.1E-09	1000G
rs10908589	CD5L	1	157699867	А	т	0.795	0.241	0.023	0.016	7.9E-26	1000G
rs10908610	CD5L	1	157921375	А	т	0.528	0.117	0.019	0.006	5.4E-10	1000G
rs11056183	UCMGP	12	14926504	A	G	0 764	-0 174	0.029	0.005	1 4F-09	1000G
rs112211052	C?	6	31397654	Δ	G	0.928	0.419	0.043	0.014	4 2E-22	1000G
rc115313300	C2	6	31737/16	G	^	0.025	0.35	0.058	0.005	1 75 00	10000
15115313300	02	0	31/3/410	G	A	0.975	0.33	0.056	0.005	1.7 =-09	1000G
IST10976492	62	0	313/0003	C	A _	0.935	0.321	0.044	0.008	2.3E-13	1000G
rs116298992	C2	6	32068495	С	I	0.978	0.709	0.066	0.017	8.3E-27	1000G
rs11880916	GDF15	19	18492578	G	A	0.755	0.345	0.026	0.025	1.7E-40	1000G
rs12426002	CNTN1	12	41041887	С	Т	0.896	0.221	0.031	0.007	1.9E-12	1000G
rs12811939	CNTN1	12	41047721	A	G	0.636	-0.206	0.023	0.012	2.0E-19	1000G
rs13039514	Cystatin C	20	23610836	G	Т	0.982	0.589	0.084	0.007	2.0E-12	1000G
rs149066340	C2	6	31486405	С	Т	0.979	0.92	0.073	0.023	1.1E-36	1000G
rs17852402	sICAM1	19	10404519	G	А	0.861	-0.257	0.036	0.007	1.6E-12	1000G
rs1838343	CNTN1	12	41196230	C	т	0.58	0 207	0.021	0.015	6.5E-24	1000G
re18673850/	C2	6	31156072	C C	T	0.00	0.207	0.047	0.009	1 3E-1/	10000
********	02	4	150602605	0	^	0.004	0.000	0.077	0.003	1.5E-14	10000
192211320	CRP	1	159693605	G	A	0.677	0.149	0.02	0.008	4.0E-14	1000G
rs2235302	GMP140	1	169580290	A	G	0.476	-0.159	0.019	0.013	1.6E-17	Exome
rs2273378	Cystatin C	20	23476389	A	G	0.899	0.193	0.03	0.006	1.8E-10	1000G
rs2297198	MMP9	20	44674283	С	Т	0.799	-0.153	0.025	0.006	6.4E-10	1000G
rs2326100	CXCL16	17	4676452	G	Α	0.552	-0.139	0.023	0.005	3.2E-09	1000G
rs2424595	Cystatin C	20	23644387	G	А	0.756	-0.126	0.021	0.005	2.0E-09	1000G
rs251351	CD14	5	140227218	т	С	0.63	-0.148	0.021	0.007	3.0E-12	1000G
rs2680703	MPO	17	56429673	А	G	0.596	-0.175	0.021	0.01	1.9E-17	1000G
rc2765501	CD5I	1	157804648	G	^	0.608	0.285	0.018	0.034	4 85 54	10000
132703301		0	117004070	T	C	0.201	0.126	0.010	0.004	9.55.00	10000
152/0/33/	AGET	9	117004220	1	0	0.361	-0.130	0.024	0.005	0.5E-09	1000G
rs28683560	UCMGP	12	15102681	G	C	0.793	0.131	0.023	0.005	1.9E-08	1000G
rs2923091	ADM	11	10358145	A	G	0.662	-0.204	0.025	0.01	2.3E-16	1000G
rs3138074	CD14	5	140015932	A	Т	0.777	0.332	0.022	0.033	9.2E-53	1000G
rs34180877	CNTN1	12	41428205	Т	G	0.955	0.252	0.045	0.004	2.8E-08	1000G
rs34523895	MPO	17	57034095	С	Т	0.606	0.114	0.019	0.005	2.4E-09	1000G
rs35082135	MPO	17	56939694	А	G	0.621	-0.13	0.019	0.007	9.5E-12	1000G
rs35751322	sICAM1	19	10378677	А	т	0.824	0.153	0.026	0.005	5.3E-09	1000G
rs35911336	GDE15	19	18481825	Δ	G	0.833	-0.518	0.029	0.045	1 0E-71	1000G
rc35066000	MPO	17	56363603	т	ĉ	0.824	0.010	0.024	0.008	0.45 14	10000
1333900900		17	100571700	- -	<u>,</u>	0.024	-0.10	0.024	0.000	5.40-14	1000G
rs3917771	GMP140	1	169571728	1	A	0.873	0.212	0.028	0.008	5.0E-14	1000G
rs391/82/	GMP140	1	169564391	A _	C	0.893	-0.181	0.03	0.005	1.4E-09	1000G
rs3917872	GMP140	1	169576667	Т	G	0.983	0.85	0.091	0.013	6.0E-21	1000G
rs3918249	MMP9	20	44638136	С	Т	0.348	0.173	0.019	0.012	2.9E-19	1000G
rs41495647	CNTN1	12	41016867	Т	Α	0.892	0.196	0.03	0.006	4.1E-11	1000G
rs4258871	Cystatin C	20	23746923	С	A	0.836	0.211	0.034	0.006	6.2E-10	1000G
rs4703	UCMGP	12	15095558	G	С	0.531	0.234	0.024	0.014	1.3E-22	1000G
rs4764127	UCMGP	12	14989012	т	А	0.919	0.314	0.043	0.008	1.5E-13	1000G
rs4768307	CNTN1	12	41155000	т	С	0.9	-0.294	0.032	0.012	1.1E-19	1000G
rs60/10007	Cystatin C	20	23753552	т	C C	0.608	_0.12	0.010	0.006	2 9E-10	1000G
rc6076118	Cystatin C	20	23680371	Ť	ĉ	0.501	0.120	0.018	0.007	2.0 10	10000
130070110	Cystatin C	20	23009371		- -	0.301	-0.129	0.010	0.007	2.4L-12	T000G
150130	GIVIP 140	1	109503951	G	1	0.103	-0.609	0.031	0.07	3.0E-07	Exome
rs6666046	GMP140	1	169545422	1	A	0.709	0.151	0.02	0.008	9.3E-14	1000G
rs67682613	C2	6	31826705	G	A	0.858	-0.167	0.026	0.006	2.7E-10	1000G
rs7040440	AGP1	9	117091074	С	Т	0.922	-0.348	0.046	0.008	3.3E-14	1000G
rs7122422	ADM	11	10067262	G	С	0.534	-0.125	0.018	0.007	1.0E-11	1000G
rs7135211	UCMGP	12	15052758	G	A	0.622	0.265	0.019	0.028	3.6E-44	1000G
rs72710043	CD5L	1	157816877	С	Т	0.874	-0.2	0.034	0.005	5.8E-09	1000G
rs72798881	CD14	5	139856491	С	Т	0.925	0.415	0.046	0.012	2.1E-19	1000G
rs732457	Resistin	19	7688838	A	G	0.747	-0.174	0.028	0.005	9.5E-10	1000G
rs73610708	Cystatin C	20	23530846	C	т	0.907	0.247	0.038	0.006	5 7E-11	1000G
1373010700	CNITNI1	10	41102695	T	Ċ	0.974	0.162	0.000	0.000	4.0E.00	10000
15/40/0000	CIVINI	12	41123065	1	-	0.874	0.102	0.020	0.005	4.0E-09	1000G
rs/60694	GMP140	1	169568698	G	1	0.456	-0.236	0.018	0.024	5.0E-38	1000G
rs76782803	Cystatin C	20	23665192	G	A	0.886	0.416	0.032	0.023	1.8E-37	1000G
rs78061871	GDF15	19	18566637	G	А	0.856	-0.18	0.032	0.005	1.6E-08	1000G
rs78638091	CD14	5	139999730	Т	С	0.962	0.349	0.052	0.007	1.6E-11	1000G
rs78958589	Cystatin C	20	23490713	С	Т	0.976	0.415	0.065	0.006	1.4E-10	1000G
rs79141987	MPO	17	56398479	G	А	0.897	0.196	0.034	0.005	1.3E-08	1000G
rs7935957	HPX	11	6450200	А	т	0.788	-0.252	0.022	0.019	5.1E-30	1000G
rs79628425	CD5I	1	157715898	C	G	0.955	0.353	0.049	0.008	5.9E-13	1000G
rs8115833	Cystatin C	20	23630384	Δ	C C	0.883	-0.265	0.031	0.011	5.0E-18	10000
130113033		47	1015100	~ ~	۵ ۸	0.000	-0.200	0.001	0.011	1 55 47	10000
15000/33	GRN Outstation C	17	42401305	G -	A	0.009	0.221	0.020	0.011		1000G
rs911119	Cystatin C	20	23012/37	-	C .	0.779	0.393	0.022	0.046	0.7E-73	1000G
rs9270936	C2	6	32572755	Т	A	0.83	0.243	0.034	0.007	1.1E-12	1000G
rs9427315	CD5L	1	157771028	Т	С	0.954	0.346	0.044	0.009	5.3E-15	1000G
rs9469019	C2	6	31473730	G	Α	0.924	0.302	0.038	0.009	8.4E-16	1000G

Table S3. Cis -protein quantitative trait loci variants for diet-associated proteins (Yao et al. Nat Commun. 2018 Aug 15;9(1):3268.)

Table S4. Characteristics of participants in two independent sub-cohorts

	Sub-cohort	1 (<i>n</i> =2,979)	Sub-cohort	2 (<i>n</i> =3,381)	P value
	Mean or n	SD or %	Mean or <i>n</i>	SD or %	1 Value
Age	50	14	49	14	0.803
Women (n, %)	1590	46	1849	54	0.306
Body mass index	28	6	27	5	0.414
Diet quality					
AHEI	54	12	53	12	0.475
DACU	04	12	04	12	0.475
DASH	24	5	24	5	0.237
MDS	12	4	12	4	0.971
Alcohol intake	5	1	6	8	0.059
Current smoker (n, %)	394	46	461	54	0.660
College educated (n, %)	1533	54	1316	46	0.361
Energy intake	1952	649	1972	663	0.153
Physical activity	38	7	38	7	0.946
CVD-related proteins					
A1M	-0.010	0 994	-0.016	0.992	0.898
ADAM15	0.011	1 001	0.010	0.988	0.557
Adingin	0.026	0.000	0.010	1.007	0.007
Adipsin	-0.030	0.902	-0.012	1.007	0.210
ADM	-0.026	1.002	-0.012	1.003	0.195
AGP1	0.009	1.003	-0.039	0.995	0.127
ANGP1L3	0.020	1.001	-0.042	0.995	0.128
APOA1	-0.021	1.003	0.032	0.997	0.322
APOB	-0.007	1.007	-0.007	0.993	0.426
B2M	-0.012	0.990	-0.028	0.993	0.899
BCHE	0.037	1.001	-0.025	0.993	0.045
Bikunin	0.018	0.998	-0.007	0.984	0.386
NTproBNP	-0.020	0.988	0.007	0.984	0.531
C2	-0.006	1 003	-0.018	0.993	0.675
CD14	0.000	0.095	0.010	1 000	0.509
CD162	-0.024	1.000	-0.004	0.005	0.390
CD 103	-0.011	1.002	0.004	0.995	0.430
CD40L	0.039	0.993	-0.017	0.985	0.130
NCAM	0.026	1.008	-0.025	0.982	0.297
CD5L	0.013	1.012	-0.039	0.982	0.059
CDH13	0.002	1.007	0.012	0.989	0.677
Ceruloplasmin	-0.021	1.026	0.022	0.984	0.131
CLU	-0.017	0.999	0.004	1.005	0.758
CNTN1	0.013	1.015	0.010	0.982	0.846
COL18A1	-0.023	0.993	-0.012	0.994	0.464
CRP	0.001	1 007	-0.038	0.992	0.801
CXCI 16	0.023	0.993	-0.017	0.996	0.660
Cystatin C	0.010	0.000	0.020	0.005	0.000
DDD4	-0.010	0.903	-0.029	1.016	0.043
	-0.030	0.974	0.024	1.010	0.195
	0.001	0.974	-0.029	1.002	0.099
FGG	0.031	1.002	-0.054	0.989	0.084
FGF23	0.015	1.003	-0.013	0.994	0.891
GAPDH	0.053	0.995	-0.011	1.007	0.373
GDF15	-0.004	0.965	-0.043	1.001	0.995
GMP140	0.031	0.996	-0.032	1.003	0.028
GP5	0.015	0.977	0.000	1.001	0.591
GRN	-0.024	1.006	0.012	0.994	0.189
HPX	0.008	1.006	-0.024	0.999	0.337
IGF1	0.002	1.009	0.026	0.999	0.805
IGFBP1	-0.056	1.007	0.052	0.986	0.002
IGFBP2	-0.038	0.993	0.004	1.002	0.278
IGEBP3	0.008	1 006	0.029	0.979	0.346
KI KB1	0.026	1.002	_0.010	1 003	0.507
	0.020	0.007	-0.013	0.003	0.946
LOER	0.011	0.997	0.000	0.995	0.040
Lepun	0.010	0.997	0.000	0.990	0.508
Lepun-R	0.006	0.975	-0.002	0.976	0.749
LPA	0.002	1.000	-0.001	1.004	0.983
MCAM	0.015	0.981	-0.003	0.992	0.427
MCP1	-0.004	0.993	-0.016	1.004	0.634
MMP9	0.012	0.990	-0.027	0.999	0.372
MMP8	0.003	0.964	-0.010	0.995	0.375
MPO	-0.009	0.997	-0.020	0.993	0.427
Myoglobin	0.010	0.995	-0.027	0.993	0.086
Notch1	-0.017	1 010	0.001	0.983	0.301
NRCAM	0.014	0 994	0.015	0.992	0 744
Ostoosaloin	0.014	0.007	0.013	1 000	0.212
DAI1	-0.000	1.011	0.012	0.000	0.212
PAIL	0.018	1.011	-0.049	0.990	0.057
PMPZ	0.017	1.002	0.007	0.993	0.998
PON1	-0.004	0.992	0.032	1.007	0.576
PPBP	0.015	1.000	0.009	0.990	0.656
SERPINA10	-0.009	0.990	0.011	0.990	0.028
REG1A	-0.019	0.992	-0.021	1.005	0.697
Resistin	0.024	0.986	-0.037	1.002	0.598
SAA1	0.020	1.003	-0.028	0.997	0.140
SDF1	0.010	1.001	0.008	0.987	0.472
sGP130	-0.002	1 000	-0.007	0.985	0.605
sICAM1	0.010	0.984	-0.036	1.002	0.508
sRAGE	-0.022	0 999	0.034	0.985	0.269
CLEC3P	-0.022	0.335	0.034	0.000	0.203
	-0.027	0.990	0.021	1.000	0.392
	0.000	0.966	-0.024	1.009	0.629
1502203	0.006	1.001	-0.010	0.996	0.516
UCMGP	0.001	0.984	-0.031	1.001	0.907
VEGF	0.020	0.975	-0.016	0.994	0.149

vecor U.U.ZU U.975 -0.016 0.994 0.149 Data were oppresed as means and SDs or frequency and percentage. A linear while of less the world was used to test the difference between the discovery and validation samples for continuous variables, with family structure as random effect. For categorical variables, Ch-sugare test was used. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterraneanstyle diet score.

Table S5. Cross-sec	tional association	on between die	et quality scores	and plasma o	concentration	of CVD-related	proteins in all	study participa	ants
Protein	β	SE	P value	β	SE	P value	β	SE	P value
A1M	-0.033	0.012	0.007	-0.007	0.012	0.570	-0.011	0.013	0.406
ADAM15	-0.029	0.013	0.028	-0.003	0.013	0.850	-0.017	0.014	0.209
Adipsin	-0.072	0.012	4.4E-10	-0.053	0.012	5.6E-06	-0.037	0.012	0.002
ADM	-0.077	0.011	5.5E-12	-0.055	0.011	1.0E-06	-0.043	0.012	1.9E-04
AGP1	-0.101	0.012	3.2E-16	-0.112	0.012	3.9E-19	-0.066	0.013	2.3E-07
ANGPTL3	-0.080	0.012	1.9E-11	-0.073	0.012	1.4E-09	-0.067	0.012	4.9E-08
APOA1	0.006	0.012	0.602	-0.020	0.012	0.111	-0.013	0.013	0.301
APOB	-0.069	0.013	3.7E-08	-0.083	0.013	7.3E-11	-0.056	0.013	1.6E-05
32M	-0.067	0.012	9.1E-09	-0.044	0.012	2.1E-04	-0.033	0.012	0.006
BCHE	-0.027	0.013	0.034	-0.032	0.013	0.013	-0.015	0.013	0.249
Bikunin	0.018	0.013	0.163	-0.004	0.013	0.733	0.010	0.013	0.459
NTproBNP	0.012	0.011	0.313	0.024	0.012	0.037	0.006	0.012	0.618
22	-0.051	0.013	5.4E-05	-0.055	0.013	2.1E-05	-0.037	0.013	0.005
CD14	-0.047	0.013	2.4E-04	-0.065	0.013	4.7E-07	-0.041	0.013	0.002
CD163	-0.008	0.013	0.537	0.006	0.013	0.664	0.004	0.013	0.743
JD40L	-0.002	0.013	0.878	-0.005	0.013	0.708	0.002	0.013	0.862
	-0.007	0.012	0.556	0.021	0.012	0.072	0.022	0.012	0.065
DSL	-0.051	0.013	5.8E-05	-0.048	0.013	2.3E-04	-0.033	0.013	0.013
	-0.031	0.013	0.020	-0.007	0.013	0.600	-0.017	0.014	0.204
Seruloplasmin	-0.020	0.012	0.092	-0.019	0.012	0.108	-0.014	0.012	0.242
	-0.003	0.013	0.813	-0.015	0.013	0.249	0.000	0.014	0.986
OI 18A1	-0.092	0.012	0.015	-0.009	0.012	0.92-13	0.002	0.013	1.4E-10 0 066
	-0.031	0.013	275 19	-0.007	0.013	6.55 15	0.001	0.013	4 1 = 00
CXCI 16	-0.103	0.012	3.3E-04	-0.033	0.012	0.014	-0.072	0.012	0 000
Cystatin C	-0.040	0.013	4 2E-08	-0.032	0.013	0.014	-0.034	0.013	0.003
	0.002	0.013	0.405	0.000	0.012	0.192	0.014	0.012	0.317
FEMP1	-0.020	0.010	0.072	-0.003	0.010	0.793	-0.008	0.014	0.465
GG	-0.037	0.012	0.002	-0.030	0.012	0.013	-0.016	0.012	0.400
GF23	-0.024	0.013	0.072	0.011	0.013	0.414	-0.007	0.014	0.627
SAPDH	0.052	0.013	7.7E-05	0.089	0.013	3.2E-11	0.079	0.014	8.4E-09
SDF15	-0.051	0.009	4.3E-08	-0.024	0.010	0.012	-0.019	0.010	0.056
GMP140	-0.066	0.013	1.7E-07	-0.048	0.013	2.0E-04	-0.053	0.013	4.7E-05
GP5	0.004	0.013	0.744	0.033	0.013	0.013	0.007	0.013	0.594
GRN	-0.048	0.013	2.4E-04	-0.032	0.013	0.015	-0.043	0.013	0.002
IPX	-0.069	0.012	1.1E-08	-0.063	0.012	2.4E-07	-0.053	0.013	2.2E-05
GF1	0.073	0.012	5.7E-10	0.050	0.012	3.4E-05	0.061	0.012	5.2E-07
GFBP1	0.002	0.011	0.865	0.045	0.011	5.9E-05	0.009	0.011	0.432
GFBP2	0.011	0.012	0.329	0.020	0.012	0.087	0.002	0.012	0.889
GFBP3	0.035	0.013	0.007	0.041	0.013	0.002	0.044	0.013	0.001
KLKB1	0.009	0.013	0.498	-0.017	0.013	0.188	0.001	0.013	0.950
.DLR	-0.049	0.013	1.9E-04	-0.022	0.013	0.097	-0.028	0.014	0.040
eptin	-0.042	0.009	4.1E-06	-0.031	0.009	6.4E-04	-0.022	0.009	0.019
.eptin-R	0.012	0.013	0.339	0.023	0.013	0.077	0.017	0.013	0.208
.PA	0.012	0.013	0.356	0.019	0.013	0.151	0.027	0.013	0.049
NCAM	0.041	0.012	0.001	0.051	0.013	4.9E-05	0.041	0.013	0.001
NCP1	-0.051	0.012	3.2E-05	-0.043	0.012	5.2E-04	-0.033	0.013	0.009
MMP8	-0.066	0.013	1.4E-07	-0.032	0.013	0.011	-0.042	0.013	0.001
/MP9	-0.062	0.013	9.2E-07	-0.034	0.013	0.008	-0.041	0.013	0.002
IPO	-0.079	0.013	6.4E-10	-0.074	0.013	6.9E-09	-0.054	0.013	4.8E-05
lyoglobin	0.003	0.011	0.785	0.019	0.011	0.094	0.018	0.012	0.122
lotch1	0.010	0.013	0.451	0.021	0.013	0.121	0.011	0.014	0.415
IRCAM	-0.027	0.013	0.038	-0.010	0.013	0.448	-0.023	0.014	0.091
osteocalcin	-0.004	0.013	0.758	-0.002	0.013	0.853	0.000	0.013	0.992
AI1	-0.072	0.012	5.6E-10	-0.081	0.012	4.1E-12	-0.043	0.012	3.2E-04
MP2	-0.025	0.013	0.060	0.002	0.013	0.859	-0.016	0.014	0.240
	0.001	0.013	0.959	-0.008	0.013	0.519	-0.007	0.013	0.615
	-0.016	0.013	0.219	-0.008	0.013	0.541	0.000	0.014	0.984
	-0.036	0.013	0.006	0.003	0.013	0.821	-0.015	0.013	0.276
legia	0.000	0.013	0.979	-0.021	0.013	0.099	-0.014	0.013	0.281
10515UII	-0.051	0.013	1.2E-U5	-0.028	0.013	0.028	-0.029	0.013	0.030
DE1	-0.040	0.012	2.2E-U4	-0.047	0.012	1.1E-04	-0.014	0.013	0.248
	0.028	0.013	0.030	0.045	0.013	0.4E-04	0.027	0.013	0.044
GF 130	-0.023	0.013		0.000	0.013	0.972	0.000	0.013	0.987
RAGE	-0.087	0.013	4.0E-1∠ 0.217	-0.071	0.013	2.3E-08	-0.034	0.013	0.1E-05 0.104
	0.013	0.013	0.317	0.022	0.013	0.077	0.021	0.013	0.104
rimpi	-0.004	0.013	5.55 06	-0.013	0.013	0.200	-0.003	0.014	0.703
INIT 1	-0.001	0.011	0.627	-0.034	0.011	0.003	-0.020	0.012	0.090
ICMGP	-0 160	0.013	4 1F-50	-0.110	0.013	1.6⊏-21	-0 111	0.014	0.04 I 6 8⊑-21
/EGE	-0.105	0.011	0.058	-0.110	0.011	0 387	-0.111	0.012	0.00-21
100	-0.020	0.013	0.000	-0.011	0.013	0.307	-0.010	0.013	0.274

Linear mixed effect models were utilized to account for family structure with adjustment for sex, age, energy intake, smoking status, physical activity, alcohol intake, and body mass index. The names of proteins highlighted in bold indicate significant proteins after bonferroni correction (P < 0.0007 [0.05/71]). AHEI, Alternate Healthy Eating Index; β ; regression coefficient; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score; SE, standard error.

				AF	IEI							DA	SH							MI	JS			
Protein	S	ub-cohor	t 1	S	ub-cohor	2	0	<u> </u>	S	Sub-cohor	t 1	S	ub-cohor	t 2	0	On	S	ub-cohort	:1	S	ub-cohor	2	0	On
	β	SE	P value	β	SE	P value	Q	QP	β	SE	P value	β	SE	P value	Q	Qp	β	SE	P value	β	SE	P value	Q	Qþ
Adipsin	-0.090	0.016	1.7E-08	-0.052	0.017	0.002	2.739	0.098	-0.063	0.016	9.4E-05	-0.040	0.017	0.017	0.955	0.328								
ADM	-0.075	0.015	1.1E-06	-0.077	0.016	1.7E-06	0.012	0.912	-0.059	0.016	1.8E-04	-0.051	0.016	0.002	0.127	0.721	-0.059	0.016	2.1E-04	-0.024	0.017	0.159	2.462	0.117
AGP1	-0.098	0.017	7.0E-09	-0.108	0.018	2.3E-09	0.150	0.698	-0.108	0.017	3.4E-10	-0.117	0.018	1.1E-10	0.137	0.711	-0.068	0.017	8.5E-05	-0.064	0.019	7.7E-04	3.7E-02	0.848
ANGPTL3	-0.085	0.016	2.0E-07	-0.075	0.018	2.2E-05	0.168	0.682	-0.062	0.017	1.7E-04	-0.085	0.018	1.6E-06	0.861	0.353	-0.061	0.017	2.5E-04	-0.074	0.018	5.7E-05	0.251	0.616
APOB	-0.087	0.017	3.3E-07	-0.048	0.019	0.010	2.369	0.124	-0.096	0.017	2.5E-08	-0.067	0.019	3.5E-04	1.285	0.257	-0.090	0.017	2.6E-07	-0.017	0.019	0.390	6.979	0.008
B2M	-0.063	0.016	8.5E-05	-0.071	0.017	2.8E-05	0.098	0.755	-0.035	0.016	0.033	-0.053	0.017	0.002	0.571	0.450								
C2	-0.060	0.017	0.001	-0.040	0.018	0.029	0.636	0.425	-0.055	0.018	0.002	-0.054	0.019	0.004	2.8E-04	0.987								
CD14	-0.055	0.018	0.002	-0.038	0.018	0.036	0.419	0.517	-0.073	0.018	6.7E-05	-0.057	0.018	0.002	0.369	0.543								
CD5L	-0.058	0.017	0.001	-0.046	0.019	0.017	0.244	0.622	-0.045	0.018	0.011	-0.054	0.019	0.005	0.118	0.732								
CNTN1	0.104	0.017	3.8E-10	0.077	0.018	2.7E-05	1.191	0.275	0.096	0.017	1.0E-08	0.080	0.018	1.3E-05	0.412	0.521	0.091	0.017	1.0E-07	0.071	0.019	2.1E-04	0.610	0.435
CRP	-0.111	0.016	5.8E-12	-0.093	0.017	9.6E-08	0.593	0.441	-0.097	0.016	2.8E-09	-0.088	0.017	5.3E-07	0.160	0.689	-0.080	0.016	1.4E-06	-0.062	0.018	6.2E-04	0.545	0.460
CXCL16	-0.051	0.017	0.003	-0.040	0.019	0.034	0.212	0.645																
Cystatin C	-0.060	0.016	1.3E-04	-0.063	0.017	1.5E-04	0.029	0.866																
GAPDH	0.045	0.018	0.013	0.060	0.019	0.002	0.302	0.583	0.093	0.018	5.5E-07	0.084	0.019	1.4E-05	0.108	0.743	0.084	0.019	7.2E-06	0.072	0.020	3.1E-04	0.191	0.662
GDF15	-0.069	0.013	1.6E-07	-0.031	0.013	2.0E-02	3.962	0.047																
GMP140	-0.074	0.017	2.5E-05	-0.058	0.019	2.0E-03	0.396	0.529	-0.039	0.018	0.028	-0.057	0.019	0.002	0.492	0.483	-0.057	0.018	0.002	-0.049	0.019	0.011	0.086	0.769
GRN	-0.035	0.018	0.048	-0.063	0.019	0.001	1.164	0.281								0.959								
HPX	-0.068	0.017	4.1E-05	-0.071	0.018	5.9E-05	0.022	0.882	-0.058	0.017	6.0E-04	-0.069	0.018	1.1E-04	0.223	0.637	-0.048	0.017	0.004	-0.057	0.018	0.002	0.125	0.724
IGF1	0.067	0.016	3.9E-05	0.080	0.017	3.8E-06	0.285	0.593	0.035	0.017	0.037	0.065	0.017	1.6E-04	1.664	0.197	0.053	0.017	0.002	0.072	0.018	5.8E-05	0.621	0.431
IGFBP1									0.057	0.015	1.9E-04	0.033	0.016	0.046	1.180	0.277								
LDLR	-0.039	0.018	0.029	-0.059	0.019	0.002	0.544	0.461																
Leptin	-0.059	0.012	1.7E-06	-0.020	0.013	0.133	5.432	0.020	-0.043	0.013	0.001	-0.017	0.013	0.214	2.820	0.093								
MCAM									0.036	0.017	0.039	0.069	0.018	1.7E-04	2.053	0.152								
MCP1	-0.033	0.017	0.055	-0.069	0.018	1.1E-04	2.289	0.130	-0.042	0.017	0.017	-0.044	0.018	0.015	0.010	0.921								
MMP8	-0.077	0.017	9.2E-06	-0.051	0.018	0.005	1.040	0.308																
MMP9	-0.067	0.017	1.3E-04	-0.056	0.018	0.003	0.184	0.668																
MPO	-0.085	0.017	1.2E-06	-0.070	0.019	1.9E-04	0.363	0.547	-0.066	0.018	1.9E-04	-0.082	0.019	1.2E-05	0.354	0.552	-0.048	0.018	0.007	-0.058	0.019	0.003	0.129	0.719
PAI1	-0.073	0.016	4.0E-06	-0.071	0.017	3.3E-05	0.010	0.919	-0.084	0.016	1.6E-07	-0.079	0.017	4.0E-06	0.053	0.819	-0.038	0.016	0.021	-0.050	0.018	0.005	2.8E-01	0.600
Resistin	-0.047	0.018	0.009	-0.057	0.019	0.002	0.156	0.693																
SAA1	-0.065	0.017	9.2E-05	-0.023	0.018	0.203	3.433	0.064	-0.059	0.017	4.5E-04	-0.035	0.018	0.049	1.151	0.283								
SDF1									0.057	0.018	0.002	0.033	0.019	0.091	0.890	0.345								
sICAM1	-0.094	0.017	7.3E-08	-0.077	0.018	2.3E-05	0.440	0.507	-0.057	0.018	0.001	-0.086	0.018	3.0E-06	1.296	0.255	-0.056	0.018	0.002	-0.051	0.019	0.007	0.049	0.826
TIMP1	-0.058	0.015	1.8E-04	-0.042	0.016	0.010	0.531	0.466																
UCMGP	-0.194	0.016	1.0E-34	-0.140	0.016	1.5E-17	5.627	0.018	-0.126	0.016	4.3E-15	-0.092	0.017	3.4E-08	2.272	0.132	-0.133	0.016	3.3E-16	-0.084	0.017	8.9E-07	4.211	0.040

Table S6. Cross-sectional association between diet quality scores and plasma concentration of CVD-related proteins in two independent sub-cohorts

Linear mixed effect models were utilized to account for family structure with adjustment for sex, age, energy intake, smoking status, physical activity, alcohol intake, and body mass index. Proteins were considered as significant when *P* <0.05 and regression coefficients have same direction in both sub-cohorts. Heterogeneity was tested between the two sub-cohorts by calculating the Cochran's Q statistic and *P* <0.001 (0.05/38) was considered to indicate statistical significance. β, regression coefficient; Q, Cochran's heterogeneity Q statistic; Qp, *P*-value for Q statistic; SE, standard error.

-1 able 37. Gene unitorouv (GU) terms of biological brocesses enriched to diet-associated broteins ($n = 30$

GOID	GOTerm	Term PValue	Term PValue Corrected with Bonferroni step down	Group PValue	Group PValue Corrected with Bonferroni step down	GOLevels	GOGroups	% Associated Genes	Number of Genes	Associated Genes Found
GO:0032677	regulation of interleukin-8 production	8.7E-06	8.7E-06	8.7E-06	8.7E-06	[4, 5, 6, 7]	Group1	4.35	4.00	[CD14, CNTN1, CRP, SERPINE1]
GO:2000351	regulation of endothelial cell apoptotic process	8.7E-07	3.5E-06	8.7E-07	1.7E-06	[7, 8]	Group2	7.69	4.00	[ANGPT1, CCL2, ICAM1, SERPINE1]
GO:0150077	regulation of neuroinflammatory response	1.1E-09	5.6E-09	1.1E-09	3.3E-09	[5, 6, 7]	Group3	14.71	5.00	[GRN, IGF1, LDLR, MMP8, MMP9]
GO:0150079	negative regulation of neuroinflammatory response	1.2E-06	3.6E-06	1.1E-09	3.3E-09	[5, 6, 7, 8]	Group3	20.00	3.00	[GRN, IGF1, LDLR]
GO:1903978	regulation of microglial cell activation	2.5E-06	5.1E-06	1.1E-09	3.3E-09	[5, 6, 7, 8]	Group3	15.79	3.00	[GRN, LDLR, MMP8]

Outcome	Exclusion of recent events	Diet	Ν	HR	LCI	UCI	P value
		AHEI	5585	0.840	0.760	0.930	1.2E-16
	All	DASH	5585	0.820	0.730	0.910	2.0E-04
		MDS	5585	0.890	0.800	0.983	0.025
		AHEI	5527	0.800	0.720	0.889	1.2E-16
CVD (fatal + non-fatal)	2 yrs	DASH	5527	0.825	0.746	0.913	1.2E-16
		MDS	5527	0.885	0.799	0.980	0.019
		AHEI	5396	0.758	0.673	0.855	1.2E-16
	5 yrs	DASH	5396	0.794	0.709	0.891	1.2E-16
		MDS	5396	0.843	0.751	0.946	0.004
		AHEI	5890	0.860	0.780	0.950	0.004
	All	DASH	5890	0.850	0.770	0.940	0.002
		MDS	5890	0.860	0.770	0.950	0.002
		AHEI	5883	0.838	0.771	0.911	1.2E-16
All-cause mortality	2 yrs	DASH	5883	0.885	0.817	0.959	0.003
		MDS	5883	0.869	0.801	0.943	0.001
		AHEI	5865	0.854	0.782	0.933	1.2E-16
	5 yrs	DASH	5865	0.892	0.819	0.971	0.008
		MDS	5865	0.868	0.795	0.946	0.001

Table S8. Sensitivity analysis with removal of events occurred in the first 2 years and 5 years after baseline in all study participants

Mixed effect Cox proportional hazards model for incident CVD was adjusted for sex, age, energy intake, smoking status, physical activity levels, alcohol intake, body mass index, systolic blood pressure, use of antihypertension medications, high density lipoprotein cholesterol, total cholesterol, and type 2 diabetes. For all-cause mortality, model was adjusted for the covariates included for incident CVD and history of CVD and cancer. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Protein -	Present study	Ho et	al (2018)	Yao et al (2018)
Protein	Diet	CVD and CVD death	All-cause mortality	CHD
Adipsin	-	+	+	
ADM	-	+	+	
AGP1	-	+	+	
ANGPTL3	-			
APOB	-			
B2M	-	+	+	
C2	-			
CD14	-		+	
CD5L	-		+	
CNTN1	+		-	
CRP	-	+	+	
CXCL16	-			
Cystatin C	-	+	+	+
GAPDH	+			
GDF15	-	+	+	
GMP140	-			
GRN	-	+	+	
HPX	-			
IGF1	+		-	
IGFBP1	+	+	+	
LDLR	-	-		
MCP1	-		+	
MMP8	-		+	
MMP9	-	+	+	
MPO	-	+	+	+
PAI1	-			
Resistin	-	+	+	
sICAM1	-	+	+	
TIMP1	-	+	+	
UCMGP	-	+	+	

Table S9. Direction of association between diet quality scores, proteins, and CVD and all-cause mortality

+ sign indicates a positive association and – sign indicates an inverse association. Directions (+, Positive; -, negative) were obtained from the previous Framingham Heart Study publications, Ho et al (J Am Heart Assoc. 2018 Jul 13;7(14):e008108.) and Yao et al (Nat Commun. 2018 Aug 15;9(1):3268.). CVD and CVD death included atheroslerotic CVD, heart failure, and CVD death. CVD, cardiovascular disease.

END	Chr	Desition	Effect	Other	Effect allele	Drotoin	Assoc	iation with	protein		Associatio	on with trait	t	
3116	Chi	POSILION	allele	allele	frequency	Protein	β	SE	P value	Trait	HR	LCI	UCI	P value
rs10908589	1	157699867	А	Т	0.795	CD5L	0.241	0.023	7.9E-26	All-cause mortality	1.276	1.132	1.438	6.4E-05
rs2765501	1	157804648	G	А	0.608	CD5L	-0.285	0.018	4.8E-54	All-cause mortality	0.878	0.802	0.960	4.3E-03
rs10796979	1	157513404	С	А	0.854	CD5L	0.160	0.026	1.1E-09	All-cause mortality	1.146	1.006	1.304	4.0E-02
rs760694	1	169568698	G	Т	0.456	GMP140	-0.236	0.018	5.0E-38	All-cause mortality	1.130	1.035	1.234	6.5E-03
rs3138074	5	140015932	А	Т	0.777	CD14	0.332	0.022	9.2E-53	Incident CVD	1.214	1.050	1.403	8.9E-03

Table S10. Association of cis-pQTL and incident CVD and all-cause mortality in all study participants

A mixed effect Cox proportional hazard model was used, accounting for family structure, with adjustment for sex, age, and the first two principal components estimated from single nucleotide polymorphisms. pQTL-outcome associations with *P* <0.05 were included. β (SE) estimates are per each additional effect allele. Positive β reflects higher circulating protein level. CVD, cardiovascular disease; HR, Hazard Ratio; LCI, lower confidence interval; pQTL, protein quantitative trait loci; UCI, upper confidence interval.

Protein	Model		Direct	effect			Indirec	t effect			Total	effect	
FIOLEIII	MOUEI	HR	LCI	UCI	P value	HR	LCI	UCI	P value	HR	LCI	UCI	P value
Adipsip	Model 1	0.862	0.793	0.936	4.4E-04	0.993	0.986	0.998	0.029	0.855	0.787	0.929	2.5E-04
Aupsin	Model 2	0.882	0.782	0.994	4.0E-02	0.998	0.989	1.007	0.693	0.880	0.781	0.992	0.037
	Model 1	0.878	0.808	0.954	0.002	0.985	0.977	0.992	0.002	0.865	0.796	0.939	0.001
ADIVI	Model 2	0.895	0.793	1.008	0.069	0.992	0.983	1.001	0.111	0.888	0.788	1.001	0.051
	Model 1	0.868	0.799	0.943	0.001	0.990	0.983	0.997	0.015	0.860	0.792	0.934	3.7E-04
AGPT	Model 2	0.887	0.787	1.001	0.052	0.992	0.983	0.999	0.065	0.880	0.781	0.992	0.038
POM	Model 1	0.864	0.795	0.939	0.001	0.984	0.975	0.992	0.001	0.850	0.782	0.924	1.5E-04
DZIVI	Model 2	0.889	0.788	1.002	0.055	0.986	0.975	0.995	0.020	0.877	0.778	0.988	0.032
CD14	Model 1	0.864	0.796	0.938	0.001	0.992	0.986	0.997	0.017	0.857	0.790	0.931	2.8E-04
CD14	Model 2	0.880	0.781	0.992	0.036	0.997	0.991	1.000	0.208	0.877	0.778	0.989	0.032
CNTN1	Model 1	0.868	0.798	0.943	0.001	0.991	0.984	0.997	0.017	0.860	0.791	0.934	3.8E-04
CINTINI	Model 2	0.889	0.788	1.002	0.055	0.988	0.978	0.996	0.019	0.878	0.779	0.990	0.034
CPD	Model 1	0.874	0.804	0.950	0.001	0.985	0.976	0.993	0.002	0.861	0.793	0.935	4.3E-04
CKF	Model 2	0.892	0.790	1.005	0.061	0.990	0.980	0.999	0.063	0.883	0.783	0.995	0.041
Cystatin C	Model 1	0.868	0.799	0.943	0.001	0.991	0.984	0.996	0.011	0.860	0.792	0.935	4.0E-04
Cystatin C	Model 2	0.886	0.786	0.999	0.048	0.996	0.990	1.002	0.256	0.883	0.783	0.995	0.042
CDE15	Model 1	0.902	0.830	0.981	0.016	0.957	0.941	0.972	1.2E-16	0.863	0.793	0.939	0.001
GDI 15	Model 2	0.915	0.811	1.032	0.150	0.974	0.959	0.988	0.003	0.892	0.790	1.006	0.062
GRN	Model 1	0.867	0.798	0.942	0.001	0.993	0.987	0.998	0.025	0.861	0.793	0.935	4.2E-04
GILL	Model 2	0.888	0.788	1.001	0.052	0.997	0.992	1.001	0.265	0.886	0.786	0.998	0.046
IGE1	Model 1	0.876	0.806	0.951	0.002	0.991	0.984	0.997	0.012	0.868	0.799	0.943	0.001
	Model 2	0.894	0.793	1.008	0.068	0.991	0.983	0.998	0.046	0.886	0.787	0.999	0.048
	Model 1	0.867	0.798	0.942	0.001	0.993	0.988	0.998	0.023	0.861	0.793	0.936	4.3E-04
	Model 2	0.885	0.785	0.998	0.047	0.998	0.992	1.002	0.352	0.883	0.784	0.996	0.043
	Model 1	0.874	0.805	0.949	0.001	0.991	0.984	0.996	0.012	0.866	0.797	0.941	0.001
IVIIVIE 9	Model 2	0.897	0.796	1.011	0.076	0.993	0.985	0.999	0.068	0.891	0.790	1.004	0.059
MPO	Model 1	0.866	0.797	0.941	0.001	0.993	0.986	0.998	0.030	0.860	0.791	0.934	3.5E-04
	Model 2	0.889	0.789	1.002	0.054	0.993	0.984	1.000	0.093	0.882	0.783	0.994	0.040
	Model 1	0.880	0.810	0.957	0.003	0.987	0.979	0.993	0.002	0.869	0.800	0.944	0.001
SICAWI	Model 2	0.907	0.804	1.023	0.115	0.990	0.981	0.997	0.031	0.898	0.797	1.013	0.080
	Model 1	0.877	0.807	0.953	0.002	0.966	0.953	0.979	1.6E-05	0.847	0.779	0.921	1.1E-04
UCIVIGP	Model 2	0.901	0.798	1.017	0.092	0.967	0.947	0.986	0.002	0.871	0.772	0.983	0.025

Table S11. Mediation analysis of CVD-related proteins in relation to AHEI and all-cause mortality in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in model 1 included sex, age, energy intake, smoking status, physical activity score, alcohol intake, body mass index, systolic blood pressure, use of antihypertension medications, high density lipoprotein cholesterol, total cholesterol, type 2 diabetes, and history of CVD and cancer. In model 2, we additionally adjusted for education, smoking pack-years, estimated glomerular filtration rate, family history of CVD, aspirin use, and menopausal status, oral contraceptive use and hormone replacement therapy (women only). AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Protoin	Model		Direct	effect			Indirec	t effect			Total	effect	
FIOLEIII	Model	HR	LCI	UCI	P value	HR	LCI	UCI	P value	HR	LCI	UCI	P value
Adipsin	Model 1	0.912	0.843	0.988	0.024	0.994	0.989	0.999	0.043	0.907	0.838	0.982	0.017
Adipain	Model 2	0.932	0.829	1.047	0.237	0.999	0.991	1.005	0.654	0.931	0.828	1.045	0.227
	Model 1	0.923	0.853	1.000	0.049	0.987	0.979	0.994	0.003	0.911	0.842	0.987	0.022
ADIVI	Model 2	0.940	0.837	1.056	0.302	0.992	0.983	1.000	0.093	0.933	0.831	1.048	0.243
	Model 1	0.919	0.849	0.996	0.039	0.989	0.980	0.996	0.011	0.909	0.839	0.984	0.019
AGET	Model 2	0.939	0.836	1.055	0.294	0.989	0.978	0.998	0.043	0.929	0.826	1.044	0.216
R3M	Model 1	0.919	0.849	0.995	0.038	0.988	0.980	0.995	0.008	0.908	0.838	0.983	0.018
DZIVI	Model 2	0.945	0.841	1.062	0.343	0.991	0.982	0.998	0.053	0.936	0.833	1.052	0.270
	Model 1	0.915	0.845	0.991	0.029	0.990	0.983	0.995	0.008	0.905	0.836	0.981	0.015
0014	Model 2	0.933	0.831	1.049	0.247	0.994	0.986	0.999	0.090	0.927	0.825	1.042	0.206
CNTN1	Model 1	0.922	0.851	0.998	0.046	0.991	0.983	0.997	0.017	0.913	0.843	0.989	0.025
CINTIN	Model 2	0.944	0.840	1.061	0.337	0.985	0.974	0.994	0.011	0.930	0.827	1.045	0.223
CPD	Model 1	0.924	0.853	1.001	0.055	0.986	0.977	0.993	0.002	0.911	0.841	0.987	0.023
CITE	Model 2	0.942	0.838	1.059	0.320	0.990	0.980	0.999	0.057	0.933	0.831	1.048	0.246
ICE1	Model 1	0.921	0.850	0.998	0.045	0.994	0.988	0.998	0.029	0.916	0.845	0.992	0.031
101 1	Model 2	0.941	0.837	1.057	0.306	0.994	0.987	0.999	0.076	0.935	0.832	1.050	0.258
MCP1	Model 1	0.916	0.846	0.992	0.031	0.995	0.989	0.998	0.042	0.911	0.841	0.987	0.022
	Model 2	0.936	0.833	1.051	0.266	0.997	0.991	1.000	0.193	0.933	0.830	1.048	0.244
MPO	Model 1	0.916	0.846	0.992	0.031	0.993	0.986	0.998	0.025	0.909	0.839	0.984	0.019
IVIF O	Model 2	0.940	0.837	1.056	0.298	0.994	0.987	1.000	0.113	0.935	0.832	1.050	0.255
alCAM1	Model 1	0.932	0.860	1.009	0.082	0.989	0.981	0.995	0.004	0.921	0.850	0.997	0.043
SICAMI	Model 2	0.959	0.853	1.078	0.483	0.992	0.984	0.998	0.051	0.951	0.847	1.069	0.402
	Model 1	0.923	0.852	0.999	0.049	0.979	0.969	0.987	1.2E-04	0.903	0.834	0.978	0.012
	Model 2	0.952	0.847	1.069	0.407	0.977	0.963	0.990	0.003	0.930	0.828	1.044	0.220

Table S12. Mediation analysis of CVD-related proteins in relation to DASH and all-cause mortality in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in Model 1 and 2 were the same as in Table S11. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Protoin	Model	Direct effect				Indirect effect				Total effect			
FIOLEIN	Model	HR	LCI	UCI	P value	HR	LCI	UCI	P value	HR	LCI	UCI	P value
	Model 1	0.898	0.828	0.973	0.009	0.994	0.988	0.998	0.037	0.892	0.823	0.967	0.006
AGET	Model 2	0.891	0.792	1.002	0.055	0.995	0.989	1.000	0.122	0.887	0.788	0.997	0.045
CNITNI4	Model 1	0.901	0.831	0.977	0.012	0.992	0.985	0.997	0.019	0.894	0.824	0.969	0.006
CINTIN	Model 2	0.894	0.795	1.005	0.062	0.988	0.979	0.996	0.021	0.883	0.785	0.994	0.039
	Model 1	0.906	0.835	0.982	0.017	0.989	0.982	0.995	0.007	0.896	0.826	0.972	0.008
CKF	Model 2	0.900	0.800	1.012	0.078	0.993	0.985	0.999	0.095	0.894	0.795	1.005	0.061
	Model 1	0.904	0.833	0.980	0.015	0.992	0.986	0.997	0.018	0.897	0.826	0.973	0.009
IGFT	Model 2	0.897	0.797	1.009	0.070	0.992	0.984	0.998	0.056	0.890	0.791	1.001	0.052
MPO	Model 1	0.897	0.827	0.973	0.009	0.995	0.990	0.999	0.047	0.892	0.823	0.968	0.006
NFO	Model 2	0.896	0.796	1.007	0.066	0.995	0.988	1.000	0.129	0.891	0.793	1.002	0.054
	Model 1	0.910	0.839	0.988	0.024	0.992	0.985	0.997	0.021	0.903	0.832	0.980	0.014
SICAIVIT	Model 2	0.912	0.810	1.026	0.125	0.994	0.987	1.000	0.104	0.906	0.805	1.020	0.102
	Model 1	0.899	0.829	0.975	0.010	0.978	0.968	0.987	9.0E-05	0.879	0.811	0.954	0.002
UCINIGP	Model 2	0.904	0.804	1.016	0.090	0.976	0.961	0.989	0.003	0.882	0.785	0.991	0.035

Table S13. Mediation analysis of CVD-related proteins in relation to MDS and all-cause mortality in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in Model 1 and 2 were the same as in Table S11. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Drotoin		AHEI			DASH			MDS	
FIOLEIII	Median	LCI	UCI	Median	LCI	UCI	Median	LCI	UCI
GDF15	30.1%	16.8%	70.1%						
UCMGP	20.7%	11.2%	43.3%	21.0%	9.4%	82.9%	17.4%	8.8%	47.4%
ADM	10.4%	4.8%	26.0%						
CRP	9.9%	4.2%	24.7%	15.2%	5.2%	74.2%			
B2M	9.9%	4.8%	22.0%						
sICAM1	9.3%	4.1%	24.6%						

Table S14. Median proportion mediated and its 95% confidence interval (CI) of CVD-related proteins in relation to diet scores and all-cause mortality in all study participants

Proportion of mediation by a target protein was calculated as the ratio of indirect effect to the sum of both direct and indirect effects.

Protein	Model		Direct	effect			Indirec	t effect			Total	effect	
FIOLEIII	Model	HR	LCI	UCI	<i>p</i> -value	HR	LCI	UCI	<i>p</i> -value	HR	LCI	UCI	<i>p</i> -value
Adipsin	Model 1	0.849	0.768	0.938	0.001	0.993	0.986	1.000	0.088	0.843	0.763	0.931	0.001
Adipairi	Model 2	0.834	0.730	0.954	0.008	1.000	0.990	1.010	0.958	0.834	0.730	0.954	0.008
	Model 1	0.851	0.770	0.941	0.002	0.993	0.984	1.000	0.094	0.845	0.765	0.934	0.001
ADIVI	Model 2	0.835	0.729	0.955	0.009	0.994	0.983	1.003	0.221	0.829	0.725	0.949	0.006
	Model 1	0.851	0.770	0.940	0.001	0.993	0.985	1.001	0.122	0.845	0.765	0.933	0.001
AGIT	Model 2	0.834	0.730	0.953	0.008	0.997	0.987	1.005	0.429	0.831	0.727	0.950	0.007
B2M	Model 1	0.843	0.762	0.931	0.001	0.992	0.984	0.999	0.056	0.836	0.757	0.924	4.7E-04
DZIVI	Model 2	0.833	0.728	0.952	0.007	0.999	0.989	1.009	0.822	0.832	0.728	0.951	7.0E-03
CD14	Model 1	0.850	0.770	0.939	0.001	0.994	0.988	0.999	0.084	0.845	0.766	0.933	0.001
CD14	Model 2	0.832	0.728	0.951	0.007	0.999	0.994	1.003	0.559	0.831	0.727	0.950	0.007
CNTN1	Model 1	0.844	0.763	0.933	0.001	0.996	0.988	1.004	0.313	0.841	0.761	0.929	0.001
CINTINI	Model 2	0.846	0.738	0.969	0.016	0.987	0.976	0.997	0.031	0.835	0.729	0.956	0.009
CPD	Model 1	0.846	0.765	0.935	0.001	0.997	0.987	1.006	0.463	0.843	0.763	0.932	0.001
CILL	Model 2	0.833	0.728	0.953	0.008	0.998	0.987	1.009	0.742	0.832	0.727	0.951	0.007
Cyctatin C	Model 1	0.855	0.774	0.945	0.002	0.994	0.987	0.999	0.066	0.850	0.769	0.939	0.001
Cystatin C	Model 2	0.836	0.732	0.956	0.009	0.997	0.989	1.003	0.352	0.834	0.730	0.953	0.008
	Model 1	0.866	0.783	0.957	0.005	0.982	0.971	0.991	0.002	0.850	0.769	0.939	0.001
GDF 15	Model 2	0.845	0.739	0.966	0.014	0.984	0.972	0.994	0.016	0.832	0.728	0.951	0.007
CPN	Model 1	0.849	0.768	0.938	0.001	0.997	0.992	1.002	0.255	0.846	0.766	0.935	0.001
GRN	Model 2	0.835	0.730	0.955	0.009	0.999	0.994	1.005	0.772	0.835	0.730	0.955	0.008
	Model 1	0.847	0.767	0.937	0.001	0.998	0.991	1.004	0.453	0.845	0.765	0.934	0.001
IGFT	Model 2	0.841	0.736	0.962	0.011	0.995	0.986	1.003	0.262	0.837	0.733	0.957	0.009
	Model 1	0.848	0.767	0.936	0.001	0.995	0.989	1.000	0.102	0.843	0.763	0.932	0.001
IVIIVIF O	Model 2	0.832	0.728	0.951	0.007	1.000	0.994	1.006	0.977	0.832	0.728	0.951	0.007
	Model 1	0.849	0.768	0.939	0.001	0.996	0.990	1.001	0.180	0.846	0.765	0.935	0.001
IVIIVIE9	Model 2	0.829	0.724	0.948	0.006	1.000	0.994	1.006	0.986	0.829	0.724	0.948	0.006
MDO	Model 1	0.848	0.767	0.937	0.001	0.997	0.990	1.004	0.361	0.845	0.765	0.934	0.001
MFO	Model 2	0.831	0.727	0.950	0.007	1.002	0.993	1.011	0.620	0.833	0.728	0.952	0.008
	Model 1	0.848	0.766	0.938	0.001	0.992	0.984	0.998	0.043	0.841	0.760	0.930	0.001
SICAMI	Model 2	0.834	0.729	0.954	0.008	0.993	0.985	1.000	0.107	0.829	0.724	0.948	0.006
	Model 1	0.851	0.770	0.941	0.002	0.991	0.975	1.007	0.271	0.843	0.763	0.932	0.001
UCINIGP	Model 2	0.837	0.731	0.958	0.010	0.995	0.973	1.017	0.635	0.833	0.728	0.952	0.008

Table S15. Mediation analysis of CVD-related proteins in relation to AHEI and incdient CVD (fatal and non-fatal) in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in model 1 included sex, age, energy intake, smoking status, physical activity score, alcohol intake, body mass index, systolic blood pressure, use of antihypertension medications, high density lipoprotein cholesterol, total cholesterol, and type 2 diabetes. In model 2, we additionally adjusted for education, smoking pack-years, estimated glomerular filtration rate, family history of CVD, aspirin use, and menopausal status, oral contraceptive use and hormone replacement therapy (women only). AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Drotoin	Madal		Direct	effect			Indirec	t effect			Total	effect	
FIOLEIN	Model	HR	LCI	UCI	P value	HR	LCI	UCI	P value	HR	LCI	UCI	P value
Adipoin	Model 1	0.864	0.778	0.960	0.006	0.995	0.987	1.001	0.128	0.859	0.774	0.954	0.005
Aupsin	Model 2	0.864	0.759	0.983	0.027	1.000	0.992	1.008	0.953	0.864	0.759	0.983	0.027
	Model 1	0.867	0.780	0.964	0.008	0.994	0.985	1.000	0.114	0.862	0.776	0.957	0.006
ADIVI	Model 2	0.871	0.765	0.991	0.037	0.993	0.983	1.003	0.193	0.865	0.760	0.984	0.028
	Model 1	0.870	0.783	0.966	0.009	0.991	0.980	1.000	0.076	0.862	0.776	0.957	0.005
AGFT	Model 2	0.870	0.765	0.990	0.035	0.995	0.984	1.007	0.425	0.866	0.761	0.986	0.029
POM	Model 1	0.861	0.775	0.956	0.005	0.995	0.988	1.000	0.125	0.856	0.771	0.951	0.004
DZIVI	Model 2	0.865	0.760	0.985	0.029	0.999	0.992	1.006	0.803	0.865	0.759	0.984	0.028
	Model 1	0.865	0.778	0.960	0.007	0.994	0.986	1.000	0.097	0.859	0.774	0.954	0.005
CD14	Model 2	0.865	0.760	0.985	0.029	0.998	0.991	1.006	0.624	0.864	0.759	0.983	0.027
CNITN/	Model 1	0.863	0.776	0.959	0.006	0.993	0.984	1.002	0.136	0.857	0.771	0.952	0.004
CINTINI	Model 2	0.874	0.767	0.996	0.043	0.984	0.972	0.995	0.020	0.860	0.755	0.980	0.023
	Model 1	0.861	0.774	0.957	0.005	1.000	0.991	1.009	0.962	0.861	0.775	0.956	0.005
UKF	Model 2	0.867	0.761	0.987	0.031	0.998	0.987	1.009	0.715	0.865	0.760	0.985	0.029
	Model 1	0.863	0.777	0.960	0.006	0.999	0.994	1.003	0.480	0.862	0.776	0.958	0.006
IGFT	Model 2	0.874	0.768	0.995	0.042	0.996	0.989	1.002	0.251	0.871	0.766	0.991	0.037
	Model 1	0.859	0.773	0.954	0.005	0.998	0.994	1.001	0.289	0.858	0.772	0.953	0.004
	Model 2	0.867	0.762	0.986	0.030	0.999	0.994	1.002	0.407	0.866	0.761	0.985	0.028
MPO	Model 1	0.865	0.779	0.961	0.007	0.995	0.987	1.001	0.154	0.860	0.774	0.955	0.005
IVIFO	Model 2	0.865	0.760	0.984	0.027	1.002	0.995	1.009	0.574	0.866	0.761	0.985	0.029
	Model 1	0.862	0.775	0.959	0.006	0.994	0.986	0.999	0.080	0.856	0.770	0.952	0.004
SICAMI	Model 2	0.870	0.764	0.990	0.035	0.995	0.987	1.000	0.133	0.865	0.760	0.985	0.029
	Model 1	0.868	0.781	0.964	0.008	0.993	0.982	1.004	0.222	0.862	0.776	0.957	0.006
UCIVIGP	Model 2	0.871	0.765	0.991	0.037	0.995	0.980	1.010	0.494	0.867	0.761	0.986	0.030

Table S16. Mediation analysis of CVD-related proteins in relation to DASH and incdient CVD (fatal and non-fatal) in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in Model 1 and 2 were the same as in Table S15. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

Protoin	Model		Direct	effect			Indirec	t effect			Total	effect	
FIOLEIN	Model	HR	LCI	UCI	P value	HR	LCI	UCI	P value	HR	LCI	UCI	P value
	Model 1	0.927	0.841	1.022	0.128	0.995	0.989	1.000	0.127	0.923	0.837	1.017	0.106
AGFT	Model 2	0.915	0.803	1.043	0.183	0.998	0.991	1.003	0.372	0.913	0.801	1.040	0.172
CNITNI4	Model 1	0.923	0.837	1.018	0.110	0.996	0.988	1.003	0.242	0.919	0.833	1.014	0.092
CINTINI	Model 2	0.923	0.808	1.053	0.235	0.988	0.977	0.996	0.030	0.911	0.798	1.040	0.170
	Model 1	0.925	0.839	1.020	0.120	0.997	0.990	1.003	0.346	0.922	0.836	1.017	0.105
CRP	Model 2	0.914	0.801	1.043	0.181	0.998	0.991	1.006	0.638	0.912	0.800	1.041	0.174
	Model 1	0.924	0.838	1.019	0.115	0.998	0.991	1.003	0.373	0.922	0.836	1.016	0.103
IGFT	Model 2	0.920	0.806	1.049	0.215	0.995	0.986	1.002	0.213	0.915	0.803	1.043	0.187
MDO	Model 1	0.925	0.839	1.020	0.118	0.997	0.992	1.002	0.314	0.923	0.837	1.017	0.106
IVIPO	Model 2	0.915	0.802	1.043	0.184	1.001	0.995	1.008	0.588	0.916	0.803	1.044	0.192
	Model 1	0.922	0.835	1.017	0.106	0.994	0.988	0.999	0.073	0.916	0.830	1.011	0.083
SICAMI	Model 2	0.914	0.801	1.042	0.178	0.996	0.989	1.000	0.183	0.910	0.798	1.038	0.159
	Model 1	0.928	0.842	1.023	0.134	0.993	0.982	1.003	0.180	0.921	0.836	1.016	0.100
UCIMGP	Model 2	0.919	0.806	1.048	0.211	0.994	0.978	1.010	0.450	0.914	0.801	1.042	0.179

Table S17. Mediation analysis of CVD-related proteins in relation to MDS and incdient CVD (fatal and non-fatal) in all study participants

Linear mixed and mixed effect Cox proportional hazard models was applied. Covariates in Model 1 and 2 were the same as in Table S15. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; HR, Hazard Ratio; LCI, lower confidence interval; MDS, Mediterranean-style diet score; UCI, upper confidence interval.

	AH	IEI	DA	SH	M	DS
Protein	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years
Adipsin	0.707	0.651	0.669	0.621		
ADM	0.175	0.126	0.148	0.108		
AGP1	0.093	0.167	0.067	0.134	0.152	0.212
B2M	0.034	0.031	0.073	0.069		
CD14	0.234	0.261	0.122	0.152		
CNTN1	0.030	0.034	0.018	0.022	0.033	0.037
CRP	0.098	0.192	0.089	0.171	0.132	0.214
Cystatin C	0.340	0.402				
GDF15	0.003	0.003				
GRN	0.334	0.344				
IGF1	0.058	0.057	0.093	0.093	0.070	0.068
MCP1			0.215	0.228		
MMP8	0.451	0.495				
MMP9	0.069	0.078				
MPO	0.128	0.141	0.146	0.161	0.162	0.176
sICAM1	0.034	0.037	0.055	0.058	0.118	0.123
UCMGP	0.004	0.004	0.005	0.006	0.005	0.005

Table S18. *P*-values for the mediation effect (indirect effect) of diet-/CVD-related proteins on the associations of diet quality score with all-cause mortality after removal of events occurred in the first 2 years and 5 years after baseline in all study participants

Linear mixed effect and mixed effect Cox proportional hazard models were applied. Covariates were those adjusted in model 2 mediation analysis for all-cause mortality. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score.

	AF	IEI	DA	SH	MI	DS
Protein	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years	Exclusion of events during the first 2 years	Exclusion of events during the first 5 years
Adipsin	0.833	0.639	0.835	0.640		
ADM	0.428	0.655	0.379	0.100		
AGP1	0.514	0.202	0.522	0.126	0.438	0.204
B2M	0.837	0.593	0.790	0.069		
CD14	0.803	0.513	0.912	0.160		
CNTN1	0.024	0.030	0.016	0.024	0.026	0.041
CRP	0.918	0.930	0.889	0.173	0.806	0.212
Cystatin C	0.546	0.995				
GDF15	0.027	0.044				
GRN	0.844	0.886				
IGF1	0.271	0.285	0.265	0.095	0.227	0.069
MCP1			0.578	0.222		
MMP8	0.616	0.667				
MMP9	0.593	0.496				
MPO	0.911	0.845	0.867	0.157	0.892	0.169
sICAM1	0.119	0.115	0.147	0.055	0.200	0.119
UCMGP	0.854	0.805	1.000	0.003	0.949	0.002

Table S19. *P*-values for the mediation effect (indirect effect) of diet-/CVD-related proteins on the associations of diet quality score with incident CVD after removal of events occurred in the first 2 years and 5 years after baseline in all study participants

Linear mixed effect and mixed effect Cox proportional hazard models were applied. Covariates were those adjusted in model 2 mediation analysis for incident CVD. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score.

Table S20. *P*-values for the mediation effect (indirect effect) by diet-/CVD-related proteins on the associations of diet quality score with all-cause mortality in multi-marker analysis in all study participants

Protein	Correlated proteins for further adjustment	AHEI	DASH	MDS
Adipsin	ADM, AGP1, B2M, CD14, Cystatin C, GDF15, UCMGP	0.697	0.643	
ADM	Adipsin, B2M, Cystatin C, GDF15, UCMGP	0.116	0.116	
AGP1	Adipsin, B2M, CD14, CRP	0.059	0.048	0.125
B2M	Adipsin, ADM, AGP1, CD14, Cystatin C, GDF15, MCP1, sICAM1, UCMGP	0.022	0.048	
CD14	Adipsin, AGP1, B2M	0.175	0.106	
CRP	AGP1	0.073	0.065	0.105
Cystatin C	Adipsin, ADM, B2M, GDF15, MCP1, sICAM1, UCMGP	0.262		
GDF15	Adipsin, ADM, B2M, Cystatin C, MCP1, sICAM1, UCMGP	0.002		
MPO	B2M, Cystatin C, GDF15, sICAM1	0.104	0.093	0.124
sICAM1	B2M, Cystatin C, GDF15, MPO	0.029	0.052	0.110
UCMGP	Adipsin, ADM, B2M, Cystatin C, GDF15	0.002	0.005	0.004

Linear mixed effect and mixed effect Cox proportional hazard models were applied. In addition to correlated proteins, covariates were those adjusted in model 2 mediation analysis for all-cause mortality. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score.

Table S21. *P*-values for the mediation effect (indirect effect) by diet-/CVD-related proteins on the associations of diet quality score with incident CVD in multi-marker analysis in all study participants

Protein	Correlated proteins for further adjustment	AHEI	DASH	MDS
Adipsin	ADM, AGP1, B2M, CD14, Cystatin C, GDF15, UCMGP	0.926	0.905	
ADM	Adipsin, B2M, Cystatin C, GDF15, UCMGP	0.234	0.222	
AGP1	Adipsin, B2M, CD14, CRP	0.438	0.447	0.384
B2M	Adipsin, ADM, AGP1, CD14, Cystatin C, GDF15, MCP1, sICAM1, UCMGP	0.843	0.769	
CD14	Adipsin, AGP1, B2M	0.597	0.697	
CRP	AGP1	0.792	0.720	0.659
Cystatin C	Adipsin, ADM, B2M, GDF15, MCP1, sICAM1, UCMGP	0.369		
GDF15	Adipsin, ADM, B2M, Cystatin C, MCP1, sICAM1, UCMGP	0.016		
MPO	B2M, Cystatin C, GDF15, sICAM1	0.634	0.655	0.632
sICAM1	B2M, Cystatin C, GDF15, MPO	0.113	0.140	0.194
UCMGP	Adipsin, ADM, B2M, Cystatin C, GDF15	0.670	0.575	0.507

Linear mixed effect and mixed effect Cox proportional hazard models were applied. In addition to correlated proteins, covariates were those adjusted in model 2 mediation analysis for incident CVD. AHEI, Alternate Healthy Eating Index; CVD, cardiovascular disease; DASH, Dietary Approaches to Stop Hypertension; MDS, Mediterranean-style diet score.

Figure S1. Pearson correlation matrix of diet quality scores. AHEI, Alternative healthy eating index; DASH, Dietary Approaches to Stop Hypertension score; MDS, Mediterranean-style dietary score.

Figure S2. Pearson correlation coefficients of t-statistics between the three diet quality scores. AHEI, Alternative healthy eating index; DASH, Dietary Approaches to Stop Hypertension score; MDS, Mediterranean-style dietary score.

Figure S3. Heatmap of the Pearson's correlation coefficients between the 34 proteins. Positive correlations are shown in blue and negative correlations are in red. Darker color indicates stronger correlation.

Figure S4. Pearson correlation coefficients between the *p*-values for the associations between three diet quality scores and CVDrelated proteins (*n*=71). *P*-values (-log10 [*p* value]) for all participants (*n*=6,360) are shown on the x-axis, and *p*-values (-log10 [*p* value]) for the participants without CVD and type 2 diabetes (*n*=5,687) are shown on the y-axis. The model was adjusted for sex, age, and energy intake, smoking status, physical activity score, alcohol intake, and BMI. AHEI, Alternative healthy eating index; DASH, Dietary Approaches to Stop Hypertension score; MDS, Mediterranean-style dietary score.