
Neurobiology of Stress 15 (2021) 100377

Available online 5 August 2021
2352-2895/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Dynamic functional network connectivity associated with post-traumatic 
stress symptoms in COVID-19 survivors 

Zening Fu a,b,c, Yiheng Tu a,b, Vince D. Calhoun c,d,e,f, Yuqi Zhang a,b, Qing Zhao a,b, Jun Chen g, 
Qingtao Meng h,**, Zhijie Lu i,***, Li Hu a,b,* 

a CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China 
b Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China 
c Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory 
University, Atlanta, Georgia, United States 
d Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, 201942, United States 
e Department of Psychology, Computer Science, Neuroscience Institute, and Physics, Georgia State University, Atlanta, GA, 30303, United States 
f Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States 
g Department of Radiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China 
h Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China 
i Department of Anesthesiology, Third Affiliated Hospital of Second Military Medical University, Shanghai, 200438, China   

A R T I C L E  I N F O   

Keywords: 
Coronavirus disease 19 (COVID-19) 
Post-traumatic stress symptoms (PTSS) 
Functional magnetic resonance imaging (fMRI) 
Dynamic functional network connectivity 
(dFNC) 
Mental health 

A B S T R A C T   

Accumulating evidence shows that Coronavirus Disease 19 (COVID-19) survivors may encounter prolonged 
mental issues, especially post-traumatic stress symptoms (PTSS). Despite manifesting a plethora of behavioral or 
mental issues in COVID-19 survivors, previous studies illustrated that static brain functional networks of these 
survivors remain intact. The insignificant results could be due to the conventional statistic network analysis was 
unable to reveal information that can vary considerably in different temporal scales. In contrast, time-varying 
characteristics of the dynamic functional networks may help reveal important brain abnormalities in COVID- 
19 survivors. To test this hypothesis, we assessed PTSS and collected functional magnetic resonance imaging 
(fMRI) with COVID-19 survivors discharged from hospitals and matched controls. Results showed that COVID-19 
survivors self-reported a significantly higher PTSS than controls. Tapping into the moment-to-moment variations 
of the fMRI data, we captured the dynamic functional network connectivity (dFNC) states, and three discrimi
native reoccurring brain dFNC states were identified. First of all, COVID-19 survivors showed an increased 
occurrence of a dFNC state with heterogeneous patterns between sensorimotor and visual networks. More 
importantly, the occurrence rate of this state was significantly correlated with the severity of PTSS. Finally, 
COVID-19 survivors demonstrated decreased topological organizations in this dFNC state than controls, 
including the node strength, degree, and local efficiency of the supplementary motor area. To conclude, our 
findings revealed the altered temporal characteristics of functional networks and their associations with PTSS 
due to COVID- 19. The current results highlight the importance of evaluating dynamic functional network 
changes with COVID-19 survivors.   

1. Introduction 

Coronavirus Disease 2019 (COVID-19) is a global pandemic caused 
by the novel severe acute respiratory syndrome coronavirus-2 (SARS- 
CoV-2), which has been spreading worldwide with more than 106 

million confirmed cases and 2 million death as the end of March 2021 
(Worldometer, 2021). Although primarily considered as respiratory 
disease, COVID-19 has become increasingly recognized as neurotropic; 
patients might experience some mild (e.g., headaches, loss of smell, and 
tingling sensations), as well as severe neurological symptoms (e.g., 
aphasia, strokes, and seizures) (Paterson et al., 2020; Pezzini and 
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Padovani, 2020; Widge et al., 2020). Using structural magnetic reso
nance imaging, previous studies reported that half of the COVID-19 
patients have brain structural abnormalities, including white matter 
hyperintensities (Afshar et al., 2020; Anzalone et al., 2020; Egbert et al., 
2020; Kandemirli et al., 2020) and frontal-temporal gray matter volume 
abnormalities (Duan et al., 2021). 

In addition to the aforementioned neurological symptoms, new 
research indicated COVID-19 survivors might demonstrate long-term 
mental problems, including fatigue, sleep difficulties, anxiety, depres
sion, and more importantly, post-traumatic stress disorder (PTSD) 
(Huang et al., 2021). Considering the neuropsychiatric symptoms in 
COVID-19 survivors, it is plausible to hypothesize that they may expe
rience the disruption of widespread brain functional networks, which 
can be investigated by examining functional connectivity between 
different brain regions using resting-state functional MRI (fMRI) (Biswal 
et al., 2010; Greicius et al., 2003; Norton et al., 2012). To date, although 
brain structural abnormalities have been described in the context of 
COVID-19 (Lu et al., 2020), brain functional studies are scarce. A recent 
case study using fMRI to evaluate static functional connectivity of the 
default mode network in a COVID-19 patient after surviving critical 
illness reported intact brain network function (Fischer et al., 2020). As 
far as the current authors’ knowledge, no researchers have investigated 
the disrupted functional networks of COVID-19 survivors. 

Challenging the conventional assumption that the functional con
nectivity is temporally static during the resting-state fMRI scan, the 
dynamic functional network connectivity (dFNC) is an approach 
featuring dynamic changes in the integration and segregation of func
tional networks (Fu et al., 2019a; Lurie et al., 2020; Tu et al, 2019, 
2020). Since dFNC is more sensitive to capture the dynamic adaptions to 
diverse cognitive and mental demands (Lurie et al., 2020; Preti et al., 
2017), it enables a more sophisticated evaluation of the spontaneously 
fluctuating nature of neural signals in different temporal scales than 
static ones (Bonkhoff et al., 2020). Thereafter, researchers deem that 
dFNC holds great potential for revealing novel biomarkers for neuro
psychiatric diseases (Fu et al., 2021; Kim et al., 2017; Tu et al, 2019, 
2020). Therefore, the time-varying characteristics of dynamic functional 
networks captured by the dFNC may reveal important brain abnormal
ities in COVID-19 survivors that would be otherwise missed by static 
functional network connectivity. 

To leverage this novel understanding of functional networks to test 
the above research hypothesis, we applied a novel analytical framework 
combining independent component analysis (ICA), sliding-window 
cross-correlation, k-means clustering, and graph-theory methods, to 
compare dFNC in resting-state fMRI data between COVID-19 survivors 
and matched controls. Since COVID-19 patients usually encounter issues 
of social isolation, physical discomfort, and fear for survival, are 
vulnerable to develop long-term mental health problems such as post- 
traumatic stress symptoms (PTSS) (Janiri et al., 2021; Mazza et al., 
2020; Pfefferbaum and North, 2020; Xiong et al., 2020), we predicted 

that there could be discriminative the time-vary characteristics of the 
dynamic functional networks associated with PTSS in COVID-19 
survivors. 

2. Materials and methods 

2.1. Participants and behavioral assessments 

The present study included 50 hospitalized COVID-19 survivors (i.e., 
discharged between February and March 2020 from hospitals in Wuhan, 
China, about 6 months after discharging at the time of the testing) and 
43 age- and sex-matched non-COVID-19 controls recruited from the 
local communities. All COVID-19 survivors of the current study were 
diagnosed and discharged based on the polymerase chain reaction result 
according to world health organization guidelines (Dennison Himmel
farb and Baptiste, 2020). All COVID-19 survivors did not have any 
COVID-19 related symptoms, e.g., fever and cough, at the time of this 
study. No subject in the control group had been clinically diagnosed as 
COVID-19. All participants provided written informed consent prior to 
the study, and the ethical protocols for conducting the current study 
were approved by the ethics committee of the local hospital. 

The PTSD checklist for DSM-5 (PCL-5) was administered (Blevins 
et al., 2015). It consists of 20 items tapping into 20 symptoms of PTSD 
(Blevins et al., 2015), clustered into four domains (i.e., intrusion, 
avoidance, cognition/mood, and arousal/reactivity). Each item is rated 
on a 5-point Likert scale (i.e., 0 = “Not at all” to 4 = “Extremely”). The 
total score of PCL-5 and scores of sub-domains were used in the 
following analyses. Meanwhile, participants also completed the Gener
alized Anxiety Disorder-7 (GAD-7) (Spitzer et al., 2006) and Patient 
Health Questionnaire-9 (PHQ-9) (Kroenke et al., 2001), to measure their 
anxiety and depression levels, respectively. 

2.2. MRI data acquisition 

The MRI data of all participants were collected using a GE 3.0 T 
MR750 scanner with a standard 32-channel head coil at the radiology 
department of the Renmin Hospital of Wuhan University, between July 
and August 2020. Subjects were asked to stay awake and to keep their 
heads still during the scan, with their eyes open and ears plugged. High 
resolution brain structural images were acquired with a T1-weighted 
fast-spoiled gradient echo sequence (repetition time = 8.16 ms, echo 
time = 3.18 ms, flip angle = 12◦, slice thickness = 1 mm, interslice gap 
= 1 mm, and field-of-view = 256). Eight-minute resting-state brain 
functional images were acquired with a T2-weighted gradient echo- 
planar imaging (repetition time = 2000 ms, echo time = 30 ms, flip 
angle = 90◦, slice thickness = 3.5 mm, field-of-view = 256 mm, and 38 
slices). 

Abbreviations 

ADN auditory network 
CBN cerebellar network 
CCN cognitive-control network 
COVID-19 Coronavirus Disease 2019 
dFNC dynamic functional network connectivity 
DMN default-mode network 
FDR false-discovery rate 
GAD-7 Generalized Anxiety Disorder-7 
GSP genomics superstruct project 
HCP human connectome project 
ICA independent component analysis 

IC independent component 
PCL-5 post-traumatic stress disorder checklist for DSM-5 
PHQ-9 Patient Health Questionnaire-9 
PTSD post-traumatic stress disorder 
PTSS post-traumatic stress symptoms 
ROIs Regions of interest 
sFNC static FNC 
SCN sub-cortical network 
SMA supplementary motor area 
SPM12 Statistical Parametric Mapping 
SMN sensorimotor network 
TCs time-courses 
VSN visual network  
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2.3. Preprocessing and quality control 

fMRI data were preprocessed using Statistical Parametric Mapping 
(SPM12) toolbox under the MATLAB 2019 environment. The first five 
dummy scans were discarded before preprocessing to guarantee the 
remaining fMRI scans were collected when magnetization achieved a 
steady state. We performed a slice timing correction and then a func
tional realignment on the functional images. The fMRI data were sub
sequently warped into the standard Montreal Neurological Institute 
space using an echo-planar imaging template and were slightly resam
pled to 3 × 3 × 3 mm3 isotropic voxels. The spatial smoothing was 
finally performed to smooth the data with a 6-mm full-width at half- 
maximum Gaussian kernel. 

Because image quality is very important for ICA as well as dFNC 
analysis, similar to our previous studies (Fu et al., 2019b, 2021), we only 
retained participants 1) with head motion ≤ 3◦ and ≤ 3 mm and 2) with 
good functional data providing near full brain successful normalization 
(by comparing the individual mask with the group mask, see supple
mentary materials). 

2.4. Analysis framework 

The framework to explore variations in dFNC in COVID-19 survivors 
and matched controls is provided in Fig. S1. This framework is based on 
a fully automated ICA-based pipeline called Neuromark (Du et al., 
2020), which has been successfully applied to multiple neuroimaging 
studies and identified a wide range of brain connectivity abnormalities 
in neurological and psychiatric diseases (Fu et al., 2021; Fu et al., 2019a; 
Li et al., 2020; Tu et al., 2020). There are three major procedures in this 
framework: 1) apply Neuromark pipeline to extract corresponding 
functional regions and time-courses (TCs) for each individual; 2) 
calculate dFNC between the ICA TCs via a sliding-window approach and 
perform a k-mean clustering on dFNC estimates to identify reoccurring 
connectivity patterns (i.e., reoccurring states) across subjects and time; 
3) calculate the fractional rate to measure the frequency of occurrences 
of different connectivity patterns, and calculate state-based dFNC and 
graph-theory measures to explore transient information transmission in 
large-scale functional networks. 

Besides dFNC, we also calculated static FNC (sFNC) between TCs 
using Pearson’s correlation to build static functional connectivity. 

2.5. Neuromark 

NeuroMark is a reliable ICA-based pipeline that automatically esti
mates functional regions adaptable to each individual subject and 
comparable across subjects by taking advantage of the reliable brain 
network templates extracted from 1828 healthy controls as guidance. 
Two large healthy datasets, i.e., the human connectome project (HCP, 
http://www.humanconnectomeproject.org/) and the genomics super
struct project (GSP, https://dataverse.harvard.edu/dataverse/GSP), 
were used for the construction of the templates. Group ICA was per
formed on the GSP and HCP datasets, respectively, and the identified 
independent components (ICs) from the two datasets were then matched 
by comparing their group-level spatial maps. The reproducible IC pairs 
were further evaluated by examining their peak activations and low- 
frequency fluctuations of their corresponding TCs. Regions of interest 
(ROIs) were defined based on their anatomical and functional prior 
knowledge and were then used as references to calculate spatial maps 
and TCs for the dataset in the present study. Technical details are 
described in the supplementary materials. 

2.6. Dynamic functional network connectivity 

For each subject, dFNC was estimated via a sliding-window 
approach. A tapered window, created by convolving a rectangle 
(width = 20 TRs = 40s) with a Gaussian (σ = 3 TRs), was used as the 

window to segment TCs of ROIs. To enhance the estimation accuracy, we 
applied a graphical least absolute shrinkage and selection operator 
method to estimate the regularized inverse covariance matrix (Allen 
et al., 2014; Friedman et al., 2008). After obtaining the dFNC matrices, 
we applied a k-means clustering algorithm to classify dFNC into 
different groups based on their spatial similarity. The cluster centroids 
were referred to as reoccurring “brain states”, in a conceptual analogy to 
electroencephalogram (EEG) microstates (Khanna et al., 2015). The 
optimal number of states was estimated by the elbow criterion, defining 
as the ratio of within-cluster distance to between-cluster distance (Allen 
et al., 2014). 

2.7. State occurrences and state-based dFNC/graph-theory measures 

To assess the occurrence of different dFNC states, we calculated the 
fractional rate of each brain state by dividing the number of the total 
windows by the number of windows assigned to each state. To investi
gate the dFNC pairs in each state, we calculated the state-based dFNC by 
averaging the dFNC estimates across time windows that were assigned 
to the same state. Graph-theory analysis was further applied to 
demonstrate the abnormal topological organizations in functional brain 
networks. Node strength (i.e., the sum of weights of links connected to a 
node), node degree (i.e., the number of links connected to a node), and 
local efficiency (i.e., the number of edges within neighbors of a node) of 
the component TCs were estimated using the dFNC matrices via the 
brain connectivity toolbox (https://sites.google.com/site/bctnet/) and 
then averaged across windows within each state. We threshold the dFNC 
matrices by setting the dFNC pairs to 0 if their absolute connectivity 
<0.2 and then calculated graph-theory measures based on absolutely 
weighted matrices. 

2.8. Statistical analyses 

Independent-samples t-tests were applied to compare the total score 
of PCL-5, sub-domains of PCL-5, GAD, and PHQ, between COVID-19 
survivors and controls. The threshold for statistical significance was 
corrected for multiple comparisons using the false-discovery rate [FDR] 
procedure (i.e., PFDR<0.05). 

The differences of sFNC between COVID-19 survivors and controls 
were analyzed using a general linear model (GLM), controlling for age 
and gender. The statistically significant threshold was corrected for 
multiple comparisons (i.e., across all pairs of sFNC, N = 1378) using the 
FDR procedure. 

The statistical comparisons of state occurrences and state-based 
dFNC/graph-theory measures between two groups were analyzed 
using GLMs, controlling for age and gender, and the statistically sig
nificant threshold was FDR corrected. In addition, we calculated the 
partial correlations between the dynamic characteristics (i.e., the state 
with abnormal occurrence in COVID-19 survivors) and the scores of 
PCL-5 (i.e., the total score and four sub-domain scores), controlling for 
age, gender, and group label. 

2.9. Data availability 

Raw data were generated at CAS Key Laboratory of Mental Health, 
Institute of Psychology, Beijing, China. Derived data supporting the 
findings of this study are available from the corresponding author on 
request. 

3. Results 

3.1. Behavioral results 

After quality control, 44 COVID-19 survivors (average age: 53.11 ±
10.25; range: 25–69 years; male/female: 12/32) and 42 controls 
(average age: 52.21 ± 11.05; range: 25–67 years; male/female: 11/31) 
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were included for further analyses. COVID-19 survivors and controls 
were matched by age, gender, and mean framewise displacement [FD] 
(age: P = 0.70; gender: P = 0.91, mean FD: P = 0.30). 

Table 1 summarized scores of self-report assessments in COVID-19 
survivors and controls. Using the independent-sample t-test, we found 
that COVID-19 survivors had significantly higher PCL-5 total scores than 
controls (COVID-19 survivors: 15.36 ± 12.05; controls: 7.19 ± 5.55; t84 
= 4.01, P < 0.001). Similarly, COVID-19 survivors also showed signif
icantly higher scores in all PCL-5 sub-domains, GAD, and PHQ (Table 1). 

3.2. Brain parcellation and static functional network connectivity 

We parcellated the brain into 53 spatially independent components 
as ROIs, which covered almost the whole brain using the Neuromark 
pipeline. Based on their anatomical and functional prior knowledge, the 
53 ROIs were arranged into seven functional networks (Fig. 1A): sub- 
cortical network (SCN), auditory network (ADN), sensorimotor 
network (SMN), visual network (VSN), cognitive-control network 
(CCN), default-mode network (DMN), and cerebellar network (CBN). 
Detailed labels and peak coordinates of each ROI were summarized in 
the supplementary materials Table S1. We calculated the Pearson’s 
correlation coefficient between TCs of ROIs as the measure of sFNC for 
each subject. The averaged sFNC across participants was displayed in 
Fig. 1B, and we did not observe a significant difference in sFNC between 
COVID-19 survivors and controls (PFDR > 0.05). 

3.3. Reoccurring dynamic brain states across COVID-19 survivors and 
controls 

Reoccurring dynamic brain states were identified by clustering the 
windowed dFNC estimates based on their spatial similarity (Allen et al., 
2014; Fu et al., 2018). Here, the term “brain states” refers to the dFNC 
patterns that reoccur across windows and subjects. We performed a 
cluster number validity analysis using the elbow criteria to determine 
the optimal number of clusters as 3, which was within the reasonable 
range of the number of clusters used in previous studies (Allen et al., 
2014; Tu et al, 2019, 2020). Three highly structured dFNC brain states 
are displayed in Fig. 2. The circle panel displays the functional profile of 
each brain state that only retained strong connectivity (absolute con
nectivity strength > 0.2). The fractional rate was not uniformly 
distributed across brain states. States 1 and 2 occurred less frequently, 
showing strongly interconnected brain networks. The dFNC in state 1 
showed less negative connectivity between SCN and SMN/VSN but more 
heterogeneous between SMN and VSN (i.e., negative correlations be
tween these two networks) than dFNC in state 2. Interestingly, positive 
connectivity between CBN and VSN, as well as negative connectivity 
between CBN and SMN, was only observed in state 1. In state 2, strong 
negative connectivity between SCN and SMN/VSN, as well as strong 
within-network connectivity in VSN, were observed. In contrast, State 3 
was a sparsely connected brain state with weak inter-network connec
tivity, but occurred most frequently (i.e., accounts for >70 % of all 
windows). Overall, the identified sparsely connected brain state (i.e., 
state 3) was more frequent, while the more strongly connected states (i. 
e., states 1 and 2) were less frequent, which were in line with previous 
findings in dynamic connectivity states (Allen et al., 2014; Kim et al., 
2017; Tu et al., 2020), indicating the consistency of the time-varying 
characteristics of dFNC. 

3.4. Altered time-varying characteristics of dFNC states in COVID-19 
survivors 

The global FNC patterns of the identified three dFNC states appeared 
similar between COVID-19 survivors and controls. We calculated the 
mean FNC patterns of dFNC states for each group respectively and then 
measured the Spearman correlations between the dFNC patterns of the 
two groups. The correlations shown in Fig. 3A were larger than 0.9 for 

Table 1 
Self-report assessments in COVID-19 survivors and controls.   

Controls COVID-19 survivors Independent- 
sample t-test  

(n = 42) (n = 44) P value t value 

PCL-total 7.19 ± 5.55 15.36 ± 12.05 <0.001 4.01 
PCL-intrusion 2.19 ± 1.99 3.89 ± 3.35 0.006 2.84 
PCL-avoidance 0.57 ± 0.99 1.46 ± 1.28 <0.001 3.56 
PCL-cognition/mood 1.71 ± 2.02 5.18 ± 4.85 <0.001 4.29 
PCL-arousal/ 

reactivity 
2.71 ± 2.41 4.84 ± 3.44 0.001 3.30 

GAD 2.50 ± 2.71 5.93 ± 5.20 <0.001 3.81 
PHQ 3.69 ± 3.45 7.84 ± 5.77 <0.001 4.03 

PCL = PTSD checklist; GAD = General Anxiety Disorder; PHQ = Patient Health 
Questionnaire. Scores were described as mean ± standard deviation. 

Fig. 1. Spatial maps of reproducible components as regions of interest (ROIs) and their static functional network connectivity (sFNC). (A) 7 functional 
networks, including 53 ROIs, were identified by two independent datasets. Each color represents a single component as a ROI. (B) Average sFNC across all par
ticipants, which was calculated by Pearson’s correlation coefficient between time-courses (TCs) of ROIs. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 
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all dFNC states (r = 0.9066, 0.9518, 0.9413 for each state, respectively), 
suggesting the intact global patterns of brain states in COVID-19 survi
vors. To further demonstrate that the global patterns of brain states did 
not differ between groups, we calculated the Euclidean distance from 
each time window to the cluster centroids in COVID-19 survivors and 
controls, respectively. Results showed no significant difference in dis
tance from dFNC estimates to the cluster centroids between groups (P >
0.10)f 

Despite the intact global spatial patterns of brain states, we found an 
altered temporal characteristic of the dFNC state in COVID-19 survivors. 
Among the three identified dFNC states, we observed that COVID-19 
survivors showed a significantly increased occurrence (measured by 
fractional rate) in dFNC state 1 (PFDR < 0.05). We then excluded subjects 
without state 1 (i.e., dFNC patterns in these subjects were not clustered 
into state 1) and repeated the statistical analysis. The occurrence of state 

1 was still significantly different between the two groups (PFDR < 0.05). 
We further investigated the relationships between this abnormal tem
poral characteristic of dFNC state and PTSS in COVID-19 survivors. We 
found that with and without excluding subjects without state 1, the 
fractional rate of state 1 was significantly correlated with the PCL total 
score, PCL cognition score, and PCL arousal score, respectively (Fig. 3C; 
PFDR < 0.05). 

3.5. State-based dFNC and graph-theory measures 

Although the global dFNC patterns are intact between COVID-19 
survivors and controls, we hypothesized that local dFNC and topologi
cal organizations might reflect brain changes induced by PTSS in 
COVID-19 survivors. We found that the dFNC between thalamus and 
inferior parietal lobule (IPL) in state 3 shrank in COVID-19 survivors 

Fig. 2. Reoccurring dynamic functional network connectivity (dFNC) brain states identified by clustering analysis. The dFNC patterns of brain states are 
displayed as the matrix form, accompanied by the functional profile of each centroid, showing the top 250 connectivity with strength >0.2 in each state. The 
connectivity between brain regions was also mapped to a brain template, with different colors indicating different functional networks. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web version of this article.) 
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(closer to 0) and interestingly, this dFNC was positively correlated with 
the PCL-5 intrusion score (Fig. 4). Other state-based dFNC did not show 
any significant differences between groups (P > 0.05). 

The graph-theory analysis showed that in state 1, the node degree 
and strength of the supplementary motor area (SMA) were significantly 
lower in COVID-19 survivors than controls (PFDR < 0.05; the local effi
ciency of the SMA was also lower in COVID-19 survivors, Puncorrected =

0.0014), suggesting that the function of the SMA in state 1 was disrupted 
in COVID-19 survivors (Fig. 5). The graph-theory measures did not show 
any significant differences in other brain regions (P > 0.05). 

4. Discussion 

In the present study, we assessed PTSS and collected fMRI with 
COVID-19 survivors around six months after they were discharged from 
hospitals. Compared to non-COVID-19 controls, COVID-19 survivors 
had significantly higher PCL-5 total scores as well as scores of all PCL-5 
sub-domains, GAD, and PHQ. Using a novel fMRI analytical pipeline, we 
found that COVID-19 survivors had abnormal time-varying character
istics and topological organizations in a reoccurring brain state, which 
was associated with the severity of their self-report PTSS. 

Recent studies have demonstrated that COVID-19 survivors were 
vulnerable to develop PTSS after they were recovered from the infection 
(Janiri et al., 2021; Mazza et al., 2020; Tu et al., 2021). A cross-sectional 
study found a PTSD prevalence of 30.2 % patients who had recovered 
from COVID-19 infection within a short period (i.e., one to four months), 
and women reported more symptoms (Janiri et al., 2021). In line with 

the previous findings, our results showed that COVID-19 survivors could 
maintain a higher PTSS for a longer period (i.e., around six months). Due 
to the small number of males in both groups (N = 11 and N = 12 in 
control and COVID-19 survivor groups, respectively), sex was not 
considered as a factor in the present statistical analyses. Nevertheless, 
we observed that female survivors reported significantly higher PCL-5 
scores than male survivors (t = 4.37, P < 0.001), suggesting females 
could be more vulnerable to PTSS due to COVID-19. 

Although recent studies have demonstrated brain structural abnor
malities in COVID-19 survivors (Lu et al., 2020), few previous studies 
tapped on the brain functional abnormalities, which might reveal the 
underlying pathophysiology of prolonged mental health symptoms in 
COVID-19 survivors. In line with a previous study showing intact brain 
network function in a COVID-19 patient surviving critical illness 
(Fischer et al., 2020), we did not find any disrupted sFNC by comparing 
the static functional connectivity/networks between COVID-19 survi
vors and controls. However, given the dynamic nature of brain activity 
and connectivity, time-varying characteristics of dFNC that may reveal 
neural pathophysiology of prolonged mental health symptoms in 
COVID-19 survivors cannot be discovered through sFNC alone (Chang 
and Glover, 2010; Hutchison et al., 2013; Liu et al., 2018). We, there
fore, focused on investigating the dFNC of COVID-19 survivors and 
identified three reoccurring brain dFNC states characterized by different 
connectivity patterns. 

Within each brain state, dFNC remained quasi-stable (Allen et al, 
2014, 2018). Of the three dFNC states, COVID-19 survivors spent 
significantly more time in state 1, which was characterized by 

Fig. 3. Intact global dynamic functional network connectivity (dFNC) patterns but altered temporal characteristic in dFNC state. (A) The spatial patterns of 
dFNC did not differ between Coronavirus Disease 2019 (COVID-19) survivors and controls (Spearman correlations: r = 0.9066, 0.9518, 0.9413, respectively). (B) The 
fractional rate of dFNC state 1 was significantly larger in COVID-19 survivors than controls, with and without excluding subjects without state 1. Bars represent the 
mean of fractional rate, and error bars represent the standard deviation of the mean. (C) The fractional rate of dFNC state 1 was significantly correlated with post- 
traumatic stress symptoms (PTSS). The correlation coefficients between the fractional rate and PTSS are shown using scatter plots, with different colors representing 
different groups. Asterisks * indicate significant group difference after false-discovery rate (FDR) correction. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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Fig. 4. Abnormal state-based dynamic functional 
network connectivity (dFNC) in Coronavirus Dis
ease (2019) (COVID-19) survivors. (A) dFNC be
tween thalamus and inferior parietal lobule (IPL) 
within state 3. (B) dFNC between thalamus and IPL 
was lower (closer to zero) in COVID-19 survivors than 
healthy controls. Each dot represents an individual’s 
connectivity strength and the color represents the 
group label. The green box represents 95 % of the 
standard deviation of mean and the yellow box rep
resents the standard deviation. (C) State-based dFNC 
between thalamus and IPL was associated with post- 
traumatic stress disorder checklist for DSM-5 (PCL- 
5) intrusion score. Asterisks * indicate significant 
group difference after false-discovery rate (FDR) 
correction. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   

Fig. 5. Topological measures of dynamic func
tional network connectivity (dFNC) states. (A) the 
84th independent component (IC) of the spatial tem
plates (model order = 100), i.e., the supplementary 
motor area (SMA) in dFNC state 1. (B) Group com
parison in node strength, node degree, and local ef
ficiency of the SMA are displayed using boxplots. 
Each dot represents an individual’s value, and the 
color represents the group label. The green box rep
resents 95 % of the standard deviation of the mean, 
and the yellow box represents the standard deviation. 
Asterisks * indicate significant group difference after 
false-discovery rate (FDR) correction. Only subjects 
who had the state 1 were used for the statistical an
alyses. (For interpretation of the references to color in 
this figure legend, the reader is referred to the Web 
version of this article.)   
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heterogeneous patterns between sensorimotor and visual networks and 
strong connectivities between cerebellar network and sensorimotor and 
visual networks. Importantly, the increased occurrence rate of this state 
was positively correlated with survivors’ PCL-5 scores, suggesting the 
link between PTSS and abnormalities in the time-vary characteristics of 
state 1. In addition, using graph-theory analysis, we observed the dis
rupted function of the SMA in state 1. Interestingly, we found that the 
local efficiency of SMA was negatively correlated with GAD and PHQ 
(results are provided in the supplementary materials). As a critical area 
for linking cognition to action (Nachev et al., 2008), SMA is believed to 
be involved in the psychomotor features of depression (Bracht et al., 
2012; Sarkheil et al., 2020). Previous work has widely reported 
decreased SMA volumes in depressive subjects, suggesting a potential 
linkage between depressive symptoms and brain volume reduction in 
SMA (Exner et al., 2009). A recent study based on multimodal data from 
the UKBiobank COVID-19 database has also identified widespread loss 
of gray matter in COVID-19 patients, including the parahippocampal 
gyrus, frontal cortex, and insula, and these results extended to the 
anterior cingulate cortex, supramarginal gyrus, and temporal pole when 
examining the entire cortical surface (Douaud et al., 2021). Taken 
together these previous findings and our results, we speculate that 
COVID-19 survivors with depressive symptoms might show a reduction 
of brain volume within multiple brain regions linking with SMA, which 
will limit the local activities in these regions. The restricted local ac
tivities will further affect the information processing and integration, 
reflecting by transiently decreased regional efficiency. 

State 2 was a regionally densely connected dFNC state characterized 
by highly positive within-network connectivity (i.e., subcortical, audi
tory, sensorimotor, and visual networks) and negative between-network 
connectivity (i.e., between subcortical-sensorimotor networks). 
Although this brain state has been identified abnormal in many neuro
psychiatric disorders, including autism (Fu et al., 2019b), Parkinson’s 
disease (Kim et al., 2017), schizophrenia (Du et al., 2018), and chronic 
pain (Tu et al., 2020) (these diseases share a common thalamocortical 
dysrhythmia model (Llinás et al., 1999; Vanneste et al., 2018)), typically 
with altered occurrence rate and disrupted cortical-subcortical connec
tivity, COVID-19 survivors and controls did not differ in the occurrence 
rate of this state. State 3 was the most frequent state that accounts for 
more than 70 % of the time. This brain state shared similar patterns with 
sFNC and was considered as the average of less variable dFNC states, 
which were not sufficiently distinct to be separated (Allen et al., 2014). 
Although the occurrence of this state was not aberrant in COVID-19 
survivors, we observed lower dFNC (close to zero) between the thal
amus and IPL than healthy controls. Such altered dFNC has been 
observed in many brain disorders, such as autism (Fu et al., 2019b) and 
schizophrenia (Damaraju et al., 2014). Since diffuse subcortical and 
parietal white matter hyperintensities were observed in COVID-19 sur
vivors (Kandemirli et al., 2020; Parsons et al., 2020), the identified 
dFNC between thalamus and IPL might reflect the disrupted functional 
interaction caused by white matter abnormalities. 

There are several limitations in this study. First, we only recruited 
participants from Wuhan city, the center of the outbreak of COVID-19 at 
the beginning of 2020. Cohort studies from other regions and countries 
are necessary for validation. Second, we only recorded brain imaging 
data in one session. Longitudinal observations will be insightful to 
observe the trajectories of PTSS and brain dysfunctions in COVID-19 
survivors. Another limitation of this study is that we only investigated 
the associations between dynamic features and PTSS/GAD/PHQ. The 
investigation of correlations between dynamic features and other 
behavioral scores will provide more comprehensive information on 
COVID-19. For example, SMA is involved in motor preparation (Peng 
et al., 2015), simple voluntary movements (Colebatch et al., 1991), and 
higher motor processing functions (Rao et al., 1993). In future work, we 
would like to collect motor performance data for COVID-19 survivors to 
examine whether COVID-19 influences motor performance and whether 
it is associated with brain abnormalities in SMA. Finally, clinical records 

of COVID-19 survivors were not retrievable. Thus, we were not able to 
examine the relationship between clinical characteristics (e.g., the 
severity of the disease) and their PTSS/brain connectivity after 6 
months. 

In conclusion, we recorded PTSS and brain MRI in patients who 
survived from COVID-19 infection. We found that COVID-19 survivors 
had more severe PTSS than controls, and the PTSS were not associated 
with the sFNC, but with the disrupted dFNC state. Given the dynamic 
nature of brain activity and connectivity, we would like to highlight the 
great potential to investigate the underlying neural pathophysiology of 
prolonged mental health symptoms in COVID-19 survivors through the 
time-varying characteristics of dFNC. 
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