# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# Ethyl 2-methyl-4-phenylpyrido[1,2-a]benzimidazole-3-carboxylate

#### Yan Qing Ge, Hai Yan Ge and Xiao Qun Cao\*

School of Chemistry and Chemical Engineering, Taishan Medical College, Tai An, 271016, People's Republic of China Correspondence e-mail: xqcao@yahoo.cn

Received 15 September 2011; accepted 28 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.096; data-to-parameter ratio = 13.6.

The title compound, C<sub>21</sub>H<sub>18</sub>N<sub>2</sub>O<sub>2</sub>, was synthesized using a novel tandem annulation reaction between (1H-benzimidazol-2-vl)(phenvl)methanone and (E)-ethvl 4-bromobut-2-enoate under mild conditions. The dihedral angles between the mean planes of the five-membered imidazole ring and the pyridine, benzene and phenyl rings are 0.45 (6), 1.69 (1) and 70.96 (8)°, respectively. In the crystal, molecules are linked through intermolecular C-H···N hydrogen bonds.

#### **Related literature**

For applications of nitrogen-containing heterocyclic compounds in the agrochemical and pharmaceutical fields, see: Ge et al. (2009). For the synthesis of the title compound, see: Ge et al. (2011). For the structure of 2,7,8-trimethyl-3ethoxycarbonyl-4- phenylpyrido[1,2-a]benzimidazole, see: Ge et al.(2011). Some pyrido[1,2-a]benzimidazole derivatives are of interest for their biological activity, such as antineoplastic activity and central GABA-A receptor modulators for the treatment of anxiety, see: Badawey & Kappe (1999).



## **Experimental**

#### Crystal data

| $C_{21}H_{18}N_2O_2$            | V = 1755.1 (4) Å <sup>3</sup>  |
|---------------------------------|--------------------------------|
| $M_r = 330.37$                  | Z = 4                          |
| Monoclinic, $P2_1/c$            | Mo $K\alpha$ radiation         |
| a = 10.1176 (13)  Å             | $\mu = 0.08 \text{ mm}^{-1}$   |
| b = 14.9136 (18)  Å             | $T = 298  { m K}$              |
| c = 12.2648 (15)  Å             | $0.26 \times 0.22 \times 0.19$ |
| $\beta = 108.487 \ (2)^{\circ}$ |                                |
|                                 |                                |

#### Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996)  $T_{\min} = 0.979, \ T_{\max} = 0.985$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.036$ | 227 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.096$               | H-atom parameters constrained                              |
| S = 1.06                        | $\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$  |
| 3093 reflections                | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ |

0.19 mm

8867 measured reflections 3093 independent reflections

 $R_{\rm int} = 0.021$ 

2515 reflections with  $I > 2\sigma(I)$ 

#### Table 1

## Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdots A$  $D \cdots A$  $D - H \cdot \cdot \cdot A$  $C17 - H17 \cdot \cdot \cdot N2^i$ 0.93 2.31 3.2092 (18) 164

Symmetry code: (i)  $x, -y + \frac{1}{2}, z - \frac{1}{2}$ .

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

This study was supported by the Natural Science Foundation of Shandong Province (Y2007C135).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2449).

#### References

Badawey, E. S. A. M. & Kappe, T. (1999). Eur. J. Med. Chem. 34, 663-667. Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Ge, Y. Q., Jia, J., Li, Y., Yin, L. & Wang, J. W. (2009). Heterocycles, 42, 197-206. Ge, Y. Q., jia, J., Yang, H., Tao, X. T. & Wang, J. W. (2011). Dyes Pigments, 88, 344-349.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o2846 [doi:10.1107/S1600536811039973]

# Ethyl 2-methyl-4-phenylpyrido[1,2-a]benzimidazole-3-carboxylate

# Y. Q. Ge, H. Y. Ge and X. Q. Cao

## Comment

Synthesis of nitrogen-containing heterocyclic compounds has been a subject of great interest due to the wide application in agrochemical and pharmaceutical fields (Ge *et al.*; 2011). Some pyrido[1,2-*a*]benzimidazole derivatives have been of interest for their biological activities, such as antineoplastic activity and central GABA-A receptor modulators for the treatment of anxiety (Badawey *et al.*; 1999). We report here the crystal structure of the title compound, (I) (Fig. 1)

## **Experimental**

To a 50 ml round-bottomed flask were added (1*H*-benzo[*d*]imidazol-2-yl)(phenyl)methanone (1.00 mmol), (*E*)-ethyl 4-bromobut-2-enoate (2.00 mmol), potassium carbonate (0.28 g, 2.05 mmol) and dry DMF (10 ml). The mixture was stirred at room temperature for 6 h. The solvent was removed under reduced pressure and an product was isolated by column chromatography on silica gel (yield 74%). Crystals of (I) suitable for X-ray diffraction were obtained by allowing a refluxed solution of the product in ethyl acetate to cool slowly to room temperature (without temperature control) and allowing the solvent to evaporate for 3 d

### Refinement

All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H = 0.97 Å (for CH<sub>2</sub> groups) and 0.96 Å (for CH<sub>3</sub> groups), their isotropic displacement parameters were set to 1.2 times (1.5 times for CH<sub>3</sub> groups) the equivalent displacement parameter of their parent atoms.

### **Figures**



Fig. 1. The molecular structure of (I), showing displacement ellipsoids drawn at the 50% probability level.

# Ethyl 2-methyl-4-phenylpyrido[1,2-a]benzimidazole-3-carboxylate

| Crystal data         |                                                |
|----------------------|------------------------------------------------|
| $C_{21}H_{18}N_2O_2$ | F(000) = 696                                   |
| $M_r = 330.37$       | $D_{\rm x} = 1.250 {\rm ~Mg~m}^{-3}$           |
| Monoclinic, $P2_1/c$ | Mo K $\alpha$ radiation, $\lambda = 0.71073$ Å |

# supplementary materials

Hall symbol: -P 2ybc a = 10.1176 (13) Å *b* = 14.9136 (18) Å c = 12.2648 (15) Å  $\beta = 108.487 (2)^{\circ}$ V = 1755.1 (4) Å<sup>3</sup> Z = 4

#### Da

| Data collection                                             |                                                                           |
|-------------------------------------------------------------|---------------------------------------------------------------------------|
| Bruker SMART APEX CCD<br>diffractometer                     | 3093 independent reflections                                              |
| Radiation source: fine-focus sealed tube                    | 2515 reflections with $I > 2\sigma(I)$                                    |
| graphite                                                    | $R_{\rm int} = 0.021$                                                     |
| $\varphi$ and $\omega$ scans                                | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | $h = -12 \rightarrow 12$                                                  |
| $T_{\min} = 0.979, \ T_{\max} = 0.985$                      | $k = -10 \rightarrow 17$                                                  |
| 8867 measured reflections                                   | $l = -14 \rightarrow 14$                                                  |
|                                                             |                                                                           |

#### Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                               |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                           |
| $R[F^2 > 2\sigma(F^2)] = 0.036$                        | H-atom parameters constrained                                                                                      |
| $wR(F^2) = 0.096$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0406P)^2 + 0.4084P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                |
| <i>S</i> = 1.06                                        | $(\Delta/\sigma)_{max} < 0.001$                                                                                    |
| 3093 reflections                                       | $\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$                                                              |
| 227 parameters                                         | $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$                                                         |
| 0 restraints                                           | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>$Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ |
| Primary atom site location: structure-invariant direct |                                                                                                                    |

Primary atom site location: structure-invariant direct Extinction coefficient: 0.0077 (13) methods

### Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cell parameters from 4793 reflections

 $\theta = 2.2 - 28.2^{\circ}$ 

 $\mu = 0.08 \text{ mm}^{-1}$ 

BLOCK, yellow

 $0.26 \times 0.22 \times 0.19 \text{ mm}$ 

T = 298 K

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

|      | x            | у             | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|------|--------------|---------------|--------------|---------------------------|
| 01   | 0.10877 (12) | 0.07612 (10)  | 0.79576 (12) | 0.0806 (4)                |
| O2   | 0.26487 (10) | -0.01607 (7)  | 0.91064 (10) | 0.0565 (3)                |
| N1   | 0.57376 (11) | 0.22116 (7)   | 0.87282 (9)  | 0.0359 (3)                |
| N2   | 0.60190 (12) | 0.26824 (8)   | 1.05384 (9)  | 0.0436 (3)                |
| C1   | 0.68800 (13) | 0.27812 (9)   | 0.90225 (11) | 0.0375 (3)                |
| C2   | 0.70311 (14) | 0.30576 (9)   | 1.01441 (11) | 0.0398 (3)                |
| C3   | 0.81352 (16) | 0.36238 (11)  | 1.07098 (13) | 0.0508 (4)                |
| Н3   | 0.8262       | 0.3817        | 1.1457       | 0.061*                    |
| C4   | 0.90241 (16) | 0.38855 (11)  | 1.01303 (14) | 0.0545 (4)                |
| H4   | 0.9767       | 0.4260        | 1.0496       | 0.065*                    |
| C5   | 0.88497 (16) | 0.36077 (11)  | 0.90058 (14) | 0.0540 (4)                |
| Н5   | 0.9473       | 0.3804        | 0.8640       | 0.065*                    |
| C6   | 0.77758 (15) | 0.30500 (10)  | 0.84297 (13) | 0.0468 (4)                |
| Н6   | 0.7654       | 0.2862        | 0.7681       | 0.056*                    |
| C7   | 0.52624 (13) | 0.21772 (9)   | 0.96751 (11) | 0.0365 (3)                |
| C8   | 0.40891 (14) | 0.16270 (9)   | 0.95981 (11) | 0.0385 (3)                |
| С9   | 0.35444 (14) | 0.15819 (10)  | 1.05942 (12) | 0.0406 (3)                |
| C10  | 0.42867 (17) | 0.11386 (11)  | 1.15914 (13) | 0.0511 (4)                |
| H10  | 0.5136       | 0.0872        | 1.1647       | 0.061*                    |
| C11  | 0.3766 (2)   | 0.10917 (13)  | 1.25066 (14) | 0.0637 (5)                |
| H11  | 0.4261       | 0.0784        | 1.3170       | 0.076*                    |
| C12  | 0.2527 (2)   | 0.14964 (13)  | 1.24415 (16) | 0.0677 (5)                |
| H12  | 0.2186       | 0.1466        | 1.3061       | 0.081*                    |
| C13  | 0.17917 (19) | 0.19447 (12)  | 1.14640 (17) | 0.0634 (5)                |
| H13  | 0.0956       | 0.2225        | 1.1422       | 0.076*                    |
| C14  | 0.22908 (16) | 0.19811 (11)  | 1.05370 (14) | 0.0517 (4)                |
| H14  | 0.1778       | 0.2277        | 0.9869       | 0.062*                    |
| C15  | 0.34899 (14) | 0.11679 (9)   | 0.85925 (11) | 0.0389 (3)                |
| C16  | 0.39968 (14) | 0.12299 (9)   | 0.76289 (11) | 0.0400 (3)                |
| C17  | 0.51144 (14) | 0.17530 (9)   | 0.77255 (11) | 0.0398 (3)                |
| H17  | 0.5464       | 0.1803        | 0.7112       | 0.048*                    |
| C18  | 0.33086 (17) | 0.07371 (12)  | 0.65248 (12) | 0.0548 (4)                |
| H18A | 0.3839       | 0.0823        | 0.6008       | 0.082*                    |
| H18B | 0.2382       | 0.0965        | 0.6179       | 0.082*                    |
| H18C | 0.3265       | 0.0109        | 0.6682       | 0.082*                    |
| C19  | 0.22564 (15) | 0.05809 (10)  | 0.85009 (12) | 0.0443 (3)                |
| C20  | 0.15708 (18) | -0.07492 (11) | 0.92566 (16) | 0.0598 (4)                |
| H20A | 0.1769       | -0.1366       | 0.9109       | 0.072*                    |
| H20B | 0.0673       | -0.0587       | 0.8717       | 0.072*                    |
| C21  | 0.15356 (18) | -0.06592 (12) | 1.04557 (16) | 0.0656 (5)                |
| H21A | 0.2437       | -0.0800       | 1.0985       | 0.098*                    |
| H21B | 0.0855       | -0.1064       | 1.0572       | 0.098*                    |
| H21C | 0.1292       | -0.0055       | 1.0583       | 0.098*                    |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# Atomic displacement parameters $(Å^2)$

|              | $U^{11}$         | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|--------------|------------------|-------------|-------------|--------------|-------------|--------------|
| 01           | 0.0426 (7)       | 0.0950 (10) | 0.0882 (9)  | -0.0126 (6)  | -0.0019 (6) | 0.0330 (8)   |
| 02           | 0.0439 (6)       | 0.0466 (6)  | 0.0797 (8)  | -0.0035 (5)  | 0.0206 (5)  | 0.0096 (6)   |
| N1           | 0.0368 (6)       | 0.0431 (6)  | 0.0287 (5)  | -0.0039 (5)  | 0.0119 (5)  | 0.0010 (5)   |
| N2           | 0.0455 (7)       | 0.0532 (7)  | 0.0345 (6)  | -0.0091 (6)  | 0.0160 (5)  | -0.0049 (5)  |
| C1           | 0.0355 (7)       | 0.0412 (7)  | 0.0352 (7)  | -0.0016 (6)  | 0.0105 (6)  | 0.0041 (6)   |
| C2           | 0.0404 (7)       | 0.0438 (8)  | 0.0347 (7)  | -0.0027 (6)  | 0.0111 (6)  | 0.0021 (6)   |
| C3           | 0.0526 (9)       | 0.0554 (9)  | 0.0407 (8)  | -0.0105 (7)  | 0.0093 (7)  | -0.0024 (7)  |
| C4           | 0.0449 (8)       | 0.0561 (10) | 0.0555 (10) | -0.0134 (7)  | 0.0062 (7)  | 0.0057 (7)   |
| C5           | 0.0443 (8)       | 0.0637 (10) | 0.0559 (10) | -0.0092 (7)  | 0.0187 (7)  | 0.0121 (8)   |
| C6           | 0.0468 (8)       | 0.0558 (9)  | 0.0408 (8)  | -0.0046 (7)  | 0.0182 (7)  | 0.0061 (7)   |
| C7           | 0.0375 (7)       | 0.0438 (8)  | 0.0295 (6)  | -0.0014 (6)  | 0.0125 (5)  | 0.0014 (6)   |
| C8           | 0.0372 (7)       | 0.0455 (8)  | 0.0336 (7)  | -0.0006 (6)  | 0.0126 (6)  | 0.0031 (6)   |
| C9           | 0.0414 (8)       | 0.0452 (8)  | 0.0386 (7)  | -0.0096 (6)  | 0.0176 (6)  | -0.0036 (6)  |
| C10          | 0.0502 (9)       | 0.0640 (10) | 0.0421 (8)  | -0.0040 (8)  | 0.0187 (7)  | 0.0028 (7)   |
| C11          | 0.0735 (12)      | 0.0798 (12) | 0.0428 (9)  | -0.0143 (10) | 0.0257 (8)  | 0.0046 (8)   |
| C12          | 0.0809 (13)      | 0.0801 (13) | 0.0603 (11) | -0.0246 (11) | 0.0483 (10) | -0.0144 (10) |
| C13          | 0.0583 (10)      | 0.0676 (11) | 0.0788 (13) | -0.0100 (9)  | 0.0425 (10) | -0.0138 (10) |
| C14          | 0.0472 (8)       | 0.0547 (9)  | 0.0572 (9)  | -0.0036 (7)  | 0.0224 (7)  | -0.0012 (7)  |
| C15          | 0.0365 (7)       | 0.0430 (8)  | 0.0362 (7)  | -0.0008 (6)  | 0.0100 (6)  | 0.0037 (6)   |
| C16          | 0.0421 (8)       | 0.0440 (8)  | 0.0320 (7)  | -0.0008 (6)  | 0.0090 (6)  | 0.0008 (6)   |
| C17          | 0.0445 (8)       | 0.0480 (8)  | 0.0278 (7)  | -0.0012 (6)  | 0.0129 (6)  | 0.0000 (6)   |
| C18          | 0.0591 (10)      | 0.0625 (10) | 0.0397 (8)  | -0.0102 (8)  | 0.0113 (7)  | -0.0080(7)   |
| C19          | 0.0394 (8)       | 0.0531 (9)  | 0.0398 (7)  | -0.0045 (7)  | 0.0115 (6)  | -0.0019 (7)  |
| C20          | 0.0554 (10)      | 0.0456 (9)  | 0.0834 (12) | -0.0115 (7)  | 0.0291 (9)  | 0.0012 (8)   |
| C21          | 0.0583 (10)      | 0.0596 (11) | 0.0838 (13) | 0.0024 (8)   | 0.0294 (10) | 0.0088 (9)   |
| Geometric po | arameters (Å, °) |             |             |              |             |              |
| O1—C19       |                  | 1.1894 (18) | C10–        | -C11         | 1.38        | 35 (2)       |
| O2—C19       |                  | 1.3211 (18) | C10–        | -H10         | 0.93        | 300          |
| O2—C20       |                  | 1.4564 (18) | C11–        | C12          | 1.37        | 71 (3)       |
| N1-C17       |                  | 1.3733 (16) | C11–        | -H11         | 0.93        | 300          |
| N1—C1        |                  | 1.3868 (17) | C12-        | C13          | 1.30        | 58 (3)       |
| N1—C7        |                  | 1.3917 (16) | C12-        | -H12         | 0.93        | 300          |
| N2—C7        |                  | 1.3270 (17) | C13–        | C14          | 1.38        | 34 (2)       |
| N2—C2        |                  | 1.3818 (17) | C13–        | -H13         | 0.93        | 300          |
| C1—C6        |                  | 1.3887 (19) | C14-        | -H14         | 0.93        | 300          |
| C1—C2        |                  | 1.3973 (19) | C15–        | C16          | 1.43        | 328 (19)     |
| C2—C3        |                  | 1.397 (2)   | C15–        | C19          | 1.49        | 992 (19)     |
| C3—C4        |                  | 1.368 (2)   | C16–        | C17          | 1.34        | 177 (19)     |
| С3—Н3        |                  | 0.9300      | C16–        | -C18         | 1.50        | )36 (19)     |
| C4—C5        |                  | 1.397 (2)   | C17–        | -H17         | 0.93        | 300          |
| C4—H4        |                  | 0.9300      | C18–        | -H18A        | 0.90        | 500          |
| C5—C6        |                  | 1.373 (2)   | C18–        | -H18B        | 0.90        | 500          |
| С5—Н5        |                  | 0.9300      | C18-        | -H18C        | 0.96        | 500          |

| С6—Н6                   | 0.9300               | C20—C21                                               | 1.488 (3)                |
|-------------------------|----------------------|-------------------------------------------------------|--------------------------|
| С7—С8                   | 1.4214 (19)          | C20—H20A                                              | 0.9700                   |
| C8—C15                  | 1.3722 (19)          | C20—H20B                                              | 0.9700                   |
| C8—C9                   | 1.4926 (19)          | C21—H21A                                              | 0.9600                   |
| C9—C14                  | 1.383 (2)            | C21—H21B                                              | 0.9600                   |
| C9—C10                  | 1.384 (2)            | C21—H21C                                              | 0.9600                   |
| C19—O2—C20              | 118.17 (12)          | C13—C12—H12                                           | 120.0                    |
| C17—N1—C1               | 130.26 (11)          | C11—C12—H12                                           | 120.0                    |
| C17—N1—C7               | 123.15 (11)          | C12—C13—C14                                           | 120.04 (16)              |
| C1—N1—C7                | 106.58 (10)          | C12—C13—H13                                           | 120.0                    |
| C7—N2—C2                | 104.76 (11)          | C14—C13—H13                                           | 120.0                    |
| N1-C1-C6                | 131.99 (13)          | C9—C14—C13                                            | 120.62 (16)              |
| N1-C1-C2                | 105.00(11)           | C9—C14—H14                                            | 119 7                    |
| C6-C1-C2                | 122.99 (13)          | C13—C14—H14                                           | 119.7                    |
| $N_{2} - C_{2} - C_{3}$ | 129 47 (13)          | C8-C15-C16                                            | 122 51 (12)              |
| $N_{2} = C_{2} = C_{1}$ | 111 30 (12)          | C8 - C15 - C19                                        | 122.51(12)<br>118.60(12) |
| $C_{3}$ $C_{2}$ $C_{1}$ | 119.21 (13)          | $C_{16}$ $C_{15}$ $C_{19}$                            | 118.88 (12)              |
| $C_{4}$ $C_{3}$ $C_{2}$ | 117.93 (14)          | $C_{17}$ $C_{16}$ $C_{15}$ $C_{17}$ $C_{16}$ $C_{15}$ | 118.34(12)               |
| C4-C3-H3                | 121.0                | $C_{17} - C_{16} - C_{18}$                            | 119.87 (12)              |
| $C_2 C_3 H_3$           | 121.0                | $C_{15}$ $C_{16}$ $C_{18}$                            | 117.07(13)               |
| $C_2 = C_3 = H_3$       | 121.0<br>122.03(15)  | $C_{15} = C_{10} = C_{18}$                            | 121.79(13)<br>120.08(12) |
| $C_3 = C_4 = C_3$       | 1122.03 (13)         | C16_C17_H17                                           | 120.08 (12)              |
| $C_{5} = C_{4} = H_{4}$ | 119.0                | N1 C17 H17                                            | 120.0                    |
| $C_{5}$                 | 119.0<br>121.30 (14) | $C_{16} C_{18} H_{18A}$                               | 120.0                    |
| $C_{0}$                 | 121.50 (14)          | C16 C18 U18D                                          | 109.5                    |
| C6-C5-H5                | 119.4                |                                                       | 109.5                    |
| C4—C5—H5                | 119.4                | H18A - C18 - H18B                                     | 109.5                    |
|                         | 110.34 (14)          | C16-C18-H18C                                          | 109.5                    |
| С5—С6—Н6                | 121.7                | H18A-C18-H18C                                         | 109.5                    |
| CI - C6 - H6            | 121.7                | H18B-C18-H18C                                         | 109.5                    |
| N2—C/—N1                | 112.36 (11)          | 01 - 019 - 02                                         | 124.91 (14)              |
| N2                      | 129.73 (12)          | 01                                                    | 124.47 (14)              |
| NI                      | 117.91 (11)          | 02-019-015                                            | 110.62 (12)              |
| 015-08-07               | 117.99 (12)          | 02                                                    | 108.91 (14)              |
| C15—C8—C9               | 122.73 (12)          | O2—C20—H20A                                           | 109.9                    |
| C7—C8—C9                | 119.27 (12)          | C21—C20—H20A                                          | 109.9                    |
| C14—C9—C10              | 118.86 (14)          | O2—C20—H20B                                           | 109.9                    |
| C14—C9—C8               | 120.66 (13)          | C21—C20—H20B                                          | 109.9                    |
| C10—C9—C8               | 120.48 (13)          | H20A—C20—H20B                                         | 108.3                    |
| C9—C10—C11              | 120.09 (16)          | C20—C21—H21A                                          | 109.5                    |
| С9—С10—Н10              | 120.0                | C20—C21—H21B                                          | 109.5                    |
| С11—С10—Н10             | 120.0                | H21A—C21—H21B                                         | 109.5                    |
| C12—C11—C10             | 120.43 (17)          | C20—C21—H21C                                          | 109.5                    |
| C12—C11—H11             | 119.8                | H21A—C21—H21C                                         | 109.5                    |
| C10-C11-H11             | 119.8                | H21B—C21—H21C                                         | 109.5                    |
| C13—C12—C11             | 119.93 (15)          |                                                       |                          |
| C17—N1—C1—C6            | -2.2 (2)             | C15—C8—C9—C10                                         | 109.59 (17)              |
| C7—N1—C1—C6             | 178.59 (15)          | C7—C8—C9—C10                                          | -71.49 (18)              |
| C17—N1—C1—C2            | 179.46 (13)          | C14—C9—C10—C11                                        | 0.7 (2)                  |

# supplementary materials

| C7 N1 C1 C2      | 0.20(14)     | C8 C0 C10 C11   | -170.20(14)  |
|------------------|--------------|-----------------|--------------|
| $C/=N_1=C_1=C_2$ | 0.20 (14)    |                 | -1/9.29 (14) |
| C/-N2-C2-C3      | -1//./6(15)  | C9—C10—C11—C12  | -1.2(3)      |
| C7—N2—C2—C1      | 0.44 (16)    | C10-C11-C12-C13 | 0.5 (3)      |
| N1-C1-C2-N2      | -0.40 (15)   | C11-C12-C13-C14 | 0.7 (3)      |
| C6—C1—C2—N2      | -178.98 (13) | C10-C9-C14-C13  | 0.5 (2)      |
| N1-C1-C2-C3      | 178.00 (13)  | C8—C9—C14—C13   | -179.52 (14) |
| C6—C1—C2—C3      | -0.6 (2)     | C12-C13-C14-C9  | -1.2 (3)     |
| N2—C2—C3—C4      | 178.25 (15)  | C7—C8—C15—C16   | -0.4 (2)     |
| C1—C2—C3—C4      | 0.2 (2)      | C9—C8—C15—C16   | 178.50 (13)  |
| C2—C3—C4—C5      | 0.3 (2)      | C7—C8—C15—C19   | 179.67 (12)  |
| C3—C4—C5—C6      | -0.5 (3)     | C9—C8—C15—C19   | -1.4 (2)     |
| C4—C5—C6—C1      | 0.1 (2)      | C8-C15-C16-C17  | 0.7 (2)      |
| N1-C1-C6-C5      | -177.72 (14) | C19—C15—C16—C17 | -179.38 (13) |
| C2—C1—C6—C5      | 0.4 (2)      | C8-C15-C16-C18  | -178.70 (14) |
| C2—N2—C7—N1      | -0.31 (15)   | C19-C15-C16-C18 | 1.2 (2)      |
| C2—N2—C7—C8      | 179.29 (14)  | C15-C16-C17-N1  | -0.1 (2)     |
| C17—N1—C7—N2     | -179.25 (12) | C18—C16—C17—N1  | 179.34 (13)  |
| C1—N1—C7—N2      | 0.07 (15)    | C1—N1—C17—C16   | -179.97 (13) |
| C17—N1—C7—C8     | 1.10 (19)    | C7—N1—C17—C16   | -0.8 (2)     |
| C1—N1—C7—C8      | -179.58 (12) | C20—O2—C19—O1   | -8.9 (2)     |
| N2-C7-C8-C15     | 179.97 (14)  | C20—O2—C19—C15  | 171.09 (13)  |
| N1-C7-C8-C15     | -0.45 (19)   | C8-C15-C19-O1   | 105.81 (18)  |
| N2               | 1.0 (2)      | C16-C15-C19-O1  | -74.1 (2)    |
| N1—C7—C8—C9      | -179.42 (12) | C8—C15—C19—O2   | -74.15 (16)  |
| C15—C8—C9—C14    | -70.36 (19)  | C16—C15—C19—O2  | 105.95 (15)  |
| C7—C8—C9—C14     | 108.56 (16)  | C19—O2—C20—C21  | -106.00 (16) |
|                  | 100.50 (10)  | 01) 02 020 021  | 100.00 (10   |

# Hydrogen-bond geometry (Å, °)

| D—H···A                                        | <i>D</i> —Н | $H \cdots A$ | $D \cdots A$ | D—H··· $A$ |
|------------------------------------------------|-------------|--------------|--------------|------------|
| C17—H17···N2 <sup>i</sup>                      | 0.93        | 2.31         | 3.2092 (18)  | 164        |
| Symmetry codes: (i) $x$ , $-y+1/2$ , $z-1/2$ . |             |              |              |            |



Fig. 1