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Abstract: Aiming at high network energy consumption and data delay induced by mobile sink
in wireless sensor networks (WSNs), this paper proposes a cluster-based energy optimization al-
gorithm called Cluster-Based Energy Optimization with Mobile Sink (CEOMS). CEOMS algorithm
constructs the energy density function of network nodes firstly and then assigns sensor nodes with
higher remaining energy as cluster heads according to energy density function. Meanwhile, the direc-
tivity motion performance function of mobile sink is constructed to enhance the probability of remote
sensor nodes being assigned as cluster heads. Secondly, based on Low Energy Adaptive Clustering
Hierarchy Protocol (LEACH) architecture, the energy density function and the motion performance
function are introduced into the cluster head selection process to avoid random assignment of cluster
head. Finally, an adaptive adjustment function is designed to improve the adaptability of cluster head
selection by percentage of network nodes death and the density of all surviving nodes of the entire
network. The simulation results show that the proposed CEOMS algorithm improves the cluster
head selection self-adaptability, extends the network life, reduces the data delay, and balances the
network load.

Keywords: mobile sink; energy optimization; cluster head selection; adaptive adjustment function

1. Introduction

Wireless Sensor Networks (WSNs) are composed of thousands of sensor nodes, which
are characterized by small size, low cost and low power consumption. Therefore, WSNs
are widely used in military reconnaissance, climate and environment monitoring, natural
disaster warning and treatment, intelligent medical technology and other fields [1–3].
WSNs can be divided into static wireless sensor networks (static WSNs) and mobile
wireless sensor networks (mobile WSNs) according to the types of sensor nodes [4,5]. In the
static WSNs, the location of sensor nodes is fixed once it’s deployed. Since nodes with
limited energy nearby the static sink node may be assigned as cluster head frequently,
leading to high energy consumption of those nodes, thus may cause premature death of
those sensor nodes. In mobile WSNs, sensor nodes can move according to specific mission,
thus mobile sink may be introduced to alleviate energy consumption of nodes nearby sink
node [6–10].

Supposing links between mobile sink and other nodes in a time slot are unchange-
able, mobile WSNs can be simplified to static WSNs in this time slot, thus efficient and
energy-saving routing algorithms based on static WSNs may be extended to mobile
WSNs [11–13]. The Low Energy Adaptive Clustering Hierarchy Protocol (LEACH) pro-
posed by Heinzelman et al. [14,15] is the most classic hierarchical routing algorithm. This
algorithm divided network nodes into different clusters firstly, and then used periodically
replacing cluster heads to balance network Energy consumption, leading to network life cycle
prolongation. In addition, A Hybrid, Energy-Efficient, Distributed Clustering Approach
(HEED) [16], A Stable Election Protocol for Clustered (SEP) [17], and LEACH-Centralized
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(LEACH-C) [18] have also been proposed to reduce energy consumption, balance network
resources, and extend the network life cycle.

1.1. Related Work

Since mobile sink may change topology of data transmission in mobile WSNs, using
traditional routing algorithms of static WSNs in mobile WSNs may deteriorate energy bal-
ance of mobile WSNs, result in a short network life cycle. Some scholars proposed routing
protocols which use mobile sink to balance energy consumption of network. According to
distance with mobile sink or residual energy, a node may be assigned as a rendezvous point
to collect data of nearby nodes and then to communicate with mobile sink [19,20]. Using
mobile data collector and hierarchical clustering technique, Zhang et al. proposed a data
collection routing algorithm which assigns node with maximum density as cluster head
to avoid long-distance transmission energy consumption, leading to network resources
balance [21]. Zhu et al., proposed a data collection algorithm based on tree clusters tech-
nique, which selected specific rendezvous points and sub-rendezvous points according to
the remaining energy of the node and the number of multi-hops respectively, and collected
the data of each rendezvous point by mobile sink [22]. Although using mobile sink leading
to network life prolongation, above algorithms may introduce mutual interference of data
transmission, resulting in data deviation and data delay. Moreover, randomly selecting
cluster heads may cause some nodes be assigned as cluster heads frequently, leading these
nodes to dead premature, thus degrading the performance of the whole network.

To tackle problems caused by mobile sink such as cluster head uneven distribution,
data redundancy and delay, researchers proposed some clustering routing algorithms. Jing
et al. proposed an improved LEACH protocol (ILEACH) [23] to select nodes as cluster
heads according to remaining energy of node, thus enhance selected probability of nodes
with high remaining energy. Sharma et al. also proposed an improved LEACH algorithm
called Distance Based Cluster Head (DBCH) [24], which selects node as cluster head
following some criterion such as distance between node and the sink node, the maximum
and minimum distance between nodes and sink node, the remaining energy and so on.
Integrating underlying factors related to energy balance of WSNs such as the remaining
energy of the node, the distance between the node and the sink node, and the average
distance of all nodes with the sink node together, Darabkh et al. proposed an improved
algorithm called LEACH-Distance Based Thresholds (LEACH-DT) [25].

Obviously, reasonable use of information of location and velocity related to mobile
sink to select cluster-head may contribute to balance energy consumption of WSNs [26].
Using mobile sink technique, Wang et al., proposed a stable election protocol based on
improved SEP [11,17]. This algorithm classified sensor nodes firstly and then constructed
threshold function of cluster head selection based on the remaining energy and initial
energy of nodes. Kushal et al., clustered sensor nodes according to the location of nodes
firstly and then assigned cluster head of each cluster according to the remaining energy of
nodes and the distance between nodes [27]. Moreover, using location information of mobile
sink broadcasted by itself, Kushal’s method constructs the shortest multi-hop between
cluster head and mobile sink to reduce energy consumption of WSNs. We can find that
above algorithms use remaining energy information and location information of nodes to
balance distribution of cluster heads, thus extending life cycle of WSNs and reducing data
transmission delay. However, supposing the velocity of the mobile sink is unchangeable,
above algorithms may unsuitable in the scene of mobile sink variable-speed moving.

1.2. Contributions

Summarizing, the current energy-saving algorithms focus less on energy consumption
and transmission delay caused by mobile sink moving in WSNs. This paper overall
considers multi-factors related to energy balance of WSNs including remaining energy rate
of WSNs, density of nodes, location changing of mobile sink and mortality rate of nodes
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to propose a new network energy optimization algorithm called Cluster-Based Energy
Optimization with Mobile Sink (CEOMS). The contributions of this paper are as follows:

(1) The energy density function containing variables such as residual energy rate and den-
sity nearby sensor nodes is constructed to assign nodes with high remaining energy
as cluster heads. Compared with the traditional clustering algorithm, proposed algo-
rithm fully considers the remaining energy of network nodes and the neighborhood
density of nodes, thus extending the network life.

(2) The motion performance function containing variables such as velocity of mobile
sink, distance between mobile sink and node is constructed to enhance probability
of the remote node be assigned as cluster head. Since fully considering underlying
factors related to network energy balance such as moving distance and direction of
mobile sink, the proposed algorithm has better ability to balance network energy than
that of the traditional clustering algorithm.

(3) The cluster head selection contains two independent functions, including energy den-
sity function and motion performance function. Moreover, the adaptive adjustment
function is introduced to adjust the weight parameters of the energy density function
and the motion performance function. The three functions constitute the adaptive
cluster head selection threshold, which can avoid nodes’ premature decay, leading to
network life extending.

1.3. Paper Organization

The content of this paper is organized as follows. Section 2 gives the network model
of the algorithm and motion model of mobile sink; Section 3 elaborates principle and
implementation process of the CEOMS algorithm; Section 4 verifies the feasibility and
effectiveness of the CEOMS algorithm through simulation. Section 5 summarizes the paper.

2. System Model

Based on classical clustering routing LEACH protocol, the system model in WSNs with
mobile sink is constructed in this paper. Besides, the motion model of mobile sink is also presented.

2.1. Network Model

WSNs composed of sensor nodes, mobile sink, satellites, Internet, control center and
users is shown in Figure 1. This figure is a typical example of WSNs applied to smart
urban planning [28,29]. The sensor nodes are randomly distributed in the monitoring area,
and the mobile sink moves according to a specific motion model and collects data from
all sensor nodes. However, when all sensor nodes send data directly to the mobile sink,
some nodes farther away from the mobile sink consume more energy. Therefore, this paper
proposes a distributed network model to collect data based on LEACH architecture.

Figure 1. WSNs architecture.
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It can be clearly seen from Figure 1 that all sensor nodes are divided into different
clusters. There is a sensor node in each cluster as the cluster head to collect and process
the monitoring data of the sensor nodes in the cluster. Then, the cluster heads send the data
to the mobile sink. Finally, the mobile sink sends data to the control center and users via
satellites and Internet.

Moreover, six assumptions related to model of WSNs are as follows:

(1) Position of each sensor node with unique ID is fixed once deployed.
(2) Sensor nodes are equipped with GPS device and are location-aware.
(3) Each sensor node has limited energy, and their initial energy is the same.
(4) The propagation channels are symmetric, i.e., two nodes can communicate using

the same transmission power.
(5) The mobile sink has unlimited energy, powerful information processing ability , data

storage capacity and can move according to a specific motion model.
(6) Each sensor node has a fixed number of transmission power levels, and there is no

error in signal transmission [16].

2.2. Motion Model of Mobile Sink

Assume that in a two-dimensional monitoring area, the motion model of mobile sink
is as following:

x(t + 1) = Fx(t) + ΓW(t) (1)

F =


1 sin(ωt)

w 0 − 1−cos(ωt)
w

0 cos(ωt) 0 − sin(ωt)
0 1−cos(ωt)

w 1 sin(ωt)
ω

0 sin(ωt) 0 cos(ωt)

, Γ =


t2

2 0
t 0
0 t2

2
0 t

 (2)

where x(t) = [x(t) ẋ(t) y(t) ẏ(t)]T is the state of mobile sink at time t; x(t), ẋ(t), y(t), ẏ(t)
are the coordinate and speed of the mobile sink in x and y direction at time t; F is the state
transition matrix; Γ is noise coefficient matrix; W(t) ∼ N(0, Q(t)) is the Gaussian noise
with covariance Q(t); t is sampling time; ω is angular velocity.

The mobile sink moves according to the above motion model and collects monitoring
data of all sensor nodes [1]. When the mobile sink has collected all the data of sensor nodes,
it indicates that the one round is completed. As shown in Figure 2, at the beginning of
the rth round, the mobile sink is located at (x(r), y(r)) to start collecting monitoring data.
When the mobile sink collects data from all the nodes, the rth round completes. Then,
the mobile sink starts the r + 1th round data collection, as shown in Formula (3).

Figure 2. Motion model.



Sensors 2021, 21, 2523 5 of 18

As can be seen from the Figure 2, the position of mobile sink can be described as:[
x(r + 1)
y(r + 1)

]
=

[
x(r)
y(r)

]
+

[
∆x
∆y

]
(3)

where, (x(r + 1), y(r + 1)) is the coordinate position of the mobile sink at the beginning of
the r + 1th round; (∆x, ∆y) is the position change of the mobile sink from the rth round to
the r + 1th round.

3. CEOMS Algorithm

In this section, this paper selects some nodes nearby each sensor node according
to energy consumption model to form neighborhood set of this node and then design
energy density function related to this set. Moreover, the threshold of cluster head selector
is determined by energy density function and motion performance function which is
constructed by motion parameters of mobile sink. Finally, the threshold of cluster heads
selector may be adaptive adjusted according to mortality of nodes.

3.1. Construction of Energy Density Function Based on Neighborhood Nodes

Assume that N sensor nodes are randomly deployed in a monitoring area. Kopt is
the number of nodes to be selected as cluster heads in each round. The desired percentage
of cluster heads against the all nodes can be described as:

Popt = Kopt
/

N (4)

3.1.1. Construction of Sensor Node Neighborhood Set

As it is known, the energy consumption of data communication is higher than that
of sensing data and data processing. This paper uses first order radio model to described
energy consumption of node, as shown in the Figure 3 [30].

Figure 3. First order radio model.

Assuming that each packet has k bit data, the energy consumption of transmitting k bit
data ETX and the energy consumption of receiving k bit data ERX can be expressed as follows:

ETX(k, d) = ETX−elec(k) + ETX−amp(k, d) =
{

kEelec + kε f sd2 d 6 d0
kEelec + kε f sd4 otherwise

(5)

ERX(k) = ERX−elec(k) = kEelec (6)

where, ETX−elec, ERX−elec and ETX−amp are the energy consumption of transmitter, the en-
ergy consumption receiver and energy consumption amplifier, respectively. ε f s and εmp are
coefficient amplify of free space and coefficient amplify of multi-path, respectively. Eelec
is the energy consumption of 1 bit data processing related to node, k is bits of data, d is
the distance between transmitter and receiver, d0 is the critical communication distance.
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d0 =
√

ε f s

/
εmp (7)

It is clearly that energy consumption exponentially increases with distance between
the transmitter and the receiver. Thus, the communication range of the node si may be
constrained lower than d0 to save energy of WSNs. So, the neighboring node threshold
Tsi

(
sj
)

of the node sj described in Formula (8) is introduced to determine whether or not
node sj should be put in neighborhood set of the node si.

Tsi

(
sj
)
=

{
sj ∈ Θ dij 6 d0
sj /∈ Θ dij > d0

(8)

where, Θ is the neighborhood region of node si, dij is distance between node si and node
sj. Nodes located in the neighborhood region Θ of node si join neighborhood node set N,
as shown in Figure 4.

Figure 4. Neighborhood node set.

3.1.2. Construction of Energy Density Function

In order to enhance the probability of nodes with high remaining energy to be assigned as
cluster heads, the neighborhood nodes remaining energy rate fe(si) is introduced as Formula (9).

fe(si) =
(
Er(si)− Eavg

)/
Eavg (9)

Eavg = ∑
sj∈N

Er
(
sj
)/

n′ (10)

where, Er(si) is the remaining energy of the sensor node si, n′ is the number of neighbor-
hood nodes of the sensor node si, Eavg is the average remaining energy of the neighborhood
node of the sensor node si.

To describe relation between energy consumption of cluster head and nodes density
inside cluster, the neighborhood nodes density function fρ(si) is introduced here.

fρ(si) = 1
/(

n′ + 1
)

(11)

Combining fe(si) and fρ(si), the energy density function feρ(si) of node si can be
described by Formula (12).

feρ(si) = fe(si) · fρ(si) =
[(

E(si)− Eavg
)/

Eavg
]
·
[
1
/(

n′ + 1
)]

(12)
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3.2. Construction of Motion Performance Function

Although the position of sensor nodes remains unchangeable once they are randomly
deployed, the distance between the sensor node and the mobile sink changes with mobile sink
moving, leading to the energy consumption changing of the node, as shown in Figure 5.

Figure 5. Energy intensity distribution.

In Figure 5, when the location of mobile sink is (x(r− 1), y(r− 1)), some nodes near
the mobile sink will consume less energy during data transmission. When the mobile sink
moves to (x(r), y(r)) , the relative distance between the sensor node and the base station
changes, leading to changes in the energy consumption of the nodes.

This paper introduces relative distance ∆dsi to describe distance changing between
node and mobile sink.

∆dsi = d(r)− d(r− 1) (13)

d(r) =
√
(x(r)−xsi )

2 + (y(r)−ysi )
2 (14)

d(r− 1) =
√
(x(r− 1)−xsi )

2 + (y(r− 1)−ysi )
2 (15)

where, (xsi , ysi ) is the axis position coordinates of the sensor node si. d(r), d(r− 1) are
shown in Figure 6.

Figure 6. Change of relative distance.

Moreover, the motion performance function fd(si) described in Formula (16) is also
introduced to normalize ∆dsi .

fd(si) = arctan(∆dsi )
/
(π/2) (16)
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It is found that fd(si) is positive relation with ∆dsi , thus fd(si) will increase with ∆dsi ,
vice versa.

3.3. Construction of Adaptive Adjustment Function

Now, feρ(si) , fd(si)and Popt are combined to construct initial cluster head selection
threshold T′(si) described in Formula (17).

T′(si) = αPopt + β feρ(si) + γ fd(si) (17)

where, α, β, γ are the weight parameters of T′(si).

3.3.1. Data Transmission

Once initial cluster head selection threshold T′(si) is determined, the LEACH protocol
is used to cluster the nodes and to transmit data. The details are shown in Figure 7.

It can be clearly seen in Figure 7, the entire process of cluster construction and data
transmission is divided into four stages. In the first stage, multiple sensor nodes are
randomly deployed in the WSNs monitoring area, and the positions of the nodes remain
unchanged, as shown in Figure 7a.

In the second stage, T′(si) of each node should be compared with Trand(si), which is
a rand number uniformly distributed random in the [0, 1]. Then, described in Formula (18),
if Trand(si) < T′(si) , then cluster head indicator T′c related to this node was set to be 1 and put
this node into cluster head set C , else cluster head indicator T′c related to this node was set to be
0 and put this node into non-cluster head set C′. The details are shown in Figure 7b.

T′c =
{

1 Trand(si) < T′(si)
0 Trand(si) > T′(si)

(18)

In the third stage, each cluster head broadcasts a message to all nodes, and each node
chooses to join corresponding clusters according to the strength of received signal, as shown
in Figure 7c. When all sensor nodes join the cluster, each sensor node informs its selection
through the carrier sense multiple access (CSMA) MAC protocol. Moreover, mobile sink
can act as cluster heads of some nodes nearby mobile sink, and then each cluster head
creates a time division multiple access (TDMA) schedules for its cluster members.

In the fourth stage, the data transmission process of WSNs is shown in Figure 7d.
The sensor nodes generate monitoring data in each round and send data to the cluster
heads within the allocated transmission time. Cluster members are dormant at the non-
allocated transfer time. While the cluster heads are always active to collect data of all nodes
in the cluster. Once the cluster head collects all the data completely, it would fuse these
data and then forward the fused data to the mobile sink. The current round will be over
once all data are collected by the mobile sink completely.
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(a) Random distribution of the nodes (b) Selection of cluster heads

(c) Construction of the cluster (d) Data transmission process

Figure 7. Cluster construction and data transmission.

3.3.2. Construction of Adaptive Adjustment Function Based on Node Death Percentage

Since energy consumption of the sensor nodes increase with working time of WSNs,
leading to surviving sensor nodes reducing. Thus, parameters related to cluster head
selection threshold should be adjusted to balance energy of WSNs. This paper embeds
an adjustment function g(Pdead) described in Formula (20) into the sigmoid function [31]
described in Formula (19).

y = 1
/(

1 + e−x) (19)

g(Pdead) = 1
/(

1 + e(20Pdead−10)
)

(20)

where,

Pdead = Ndead/N (21)

here, Pdead is the percentage of nodes death; Ndead is the number of nodes death; N is
the total number of sensor nodes. It is found that the number of node deaths increases with
Pdead. The curve of g(Pdead) is shown in Figure 8.
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Figure 8. Curve of adaptive adjustment function.

Adaptive cluster head selection threshold T(si) described in Formula (22) can be
designed by combining Popt, feρ(si), fd(si) and g(Pdead).

T(si) = g(Pdead)
[
αPopt + β feρ(si) + γ fd(si)

]
(22)

Observing Formula (22), it can be found that the adaptive cluster head selection
threshold T(si) is positively correlated with the desired percentage of cluster head Popt,
the motion performance function fd(si) and the energy density function feρ(si). As the
network runs, the cluster head selection threshold T(si) decreases with the increase of
the number of dead nodes. Moreover, when the construction of the adaptive cluster head
selection threshold is completed, the adaptive cluster head selection threshold T(si) is
calculated for all sensor nodes in the network to select the cluster head in each round. Then,
nodes selected as the cluster head are added to the cluster head set C, and the nodes not
selected as the cluster head are added to the non-cluster head set C′.

The symbolic instructions in the adaptive cluster head selection threshold building
steps above are shown in Table 1.

Table 1. Symbolic representation in adaptive cluster head selection threshold construction steps.

Symbol Definition Symbol Definition

Popt Desired Percentage of Cluster Head Tsi

(
sj

)
Neighboring Nodes Threshold

fe(si) Neighborhood Nodes Remaining Energy Rate feρ(si) Neighborhood Nodes Density Function
fρ(si) Neighborhood Nodes Density fd(si) Motion Performance Function
T′(si) Initial Cluster Head Selection Threshold α, β, γ Weight Parameters of T′(si)

Trand(si) Rand Number Uniformly distributed in [0, 1] Pdead Percentage of Nodes Death
Ndead Number of Nodes Death N Total Number of Nodes

g(Pdead) Adjustment Function T(si) Adaptive Cluster Head Selection Threshold

3.4. CEOMS Algorithm

From above description, it can be concluded that proposed CEOMS algorithm com-
bines underlying factors related to energy balance WSNs including energy, density of
nodes and motion parameters of mobile sink to adaptive adjust threshold of cluster head
selection. The flow chart of CEOMS algorithm is shown in Figure 9.
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Figure 9. Cluster-Based Energy Optimization with Mobile Sink (CEOMS) algorithm flow chart.

Pseudo code of the CEOMS algorithm is shown in the Algorithm 1.

Algorithm 1 CEOMS algorithm

1: Initialization, set rmax ( Maximum number of rounds of the algorithm)
2: for r = 1 : rmax do
3: Calculate neighborhood nodes threshold Tsi

(
sj

)
according to Formula (7)

4: if sj ∈ Θ then
5: sj joins the neighborhood set N of node si
6: end if
7: for ∀sj ∈ N do
8: Calculate energy density function feρ(si) according to Formula (11)
9: end for
10: Calculate motion performance function fd(si) according to Formula (14)
11: Calculate initial cluster head selection threshold T′(si) according to Formula (15) and (3)
12: Calculate adaptive adjustment function g(Pdead) according to Formula (18)
13: Construct the adaptive cluster head selection threshold T(si) according to Formula (20)
14: Perform cluster head selection and data transfer
15: if r < rmax then
16: r = r + 1, return to Step 3
17: end if
18: end for

4. Simulation Results and Analysis
4.1. Experimental Parameters

Assume that WSNs composed of N sensor nodes were randomly distributed in the mon-
itoring area SM. The initial position of the mobile sink was located in the monitoring area
with coordinates (0 m, 0 m). The moving trajectory of mobile sink is shown in Figure 10.
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Figure 10. Moving trajectory of the mobile sink.

Simulation parameters related to the experiment are shown in Table 2.

Table 2. Experimental parameters.

Name Symbol Value

Area of Monitor SM 300 m × 300 m
Number of Sensor Nodes N 100

Initial Position of Mobile sink (xMS, yMS) (0 m, 0 m)
Angular Velocity ω 0.0025, −0.0025, 0.0019, −0.0019 rad/s

Initial Energy of Node E0 1 J
Communication Energy Consumption ETX/ERX 50 nJ/bit

Energy Consumption of Signal Amplification in Free Space ε f s 10 pJ/bit/m2

Energy Consumption of Signal Amplification in Multipath εmp 0.0013 pJ/bit/m2

Energy Consumption of Data Fusion EDA 5 nJ/bit/packet
Sampling Rate of Sensor Nodes Rd Accumulative every 3 s for 5 min

Length of Control Signal l1 100 bit
Length of Monitor Data l2 4000 bit

Weight Parameters of T′(si) α, β, γ 0.85, 1, 0.2
Optimal Probability of Cluster Heads Popt 0.1
Maximum number of running rounds rmax 1800

4.2. Simulation Results and Analysis

This paper used some indicators including survival time of network nodes, total
remaining energy, and the balance of network energy consumption to verify the feasibility
and effectiveness of the proposed CEOMS algorithm by comparative experiment related to
some algorithms such as the ILEACH algorithm [23], DBCH algorithm [24] and LEACH-DT
algorithm [25]. For a fair comparison, the performances of the four algorithms above were
compared under the same environment conditions using MATLAB2019a equipped with
Windows 10-64bit on Intel(R) Core (TM) i5-6500H CPU and 8 GB RAM.

4.2.1. Survival Time Analysis of Network Nodes

When the monitoring data of all sensor nodes were collected, it indicated that one
round had been completed, and then the next round would be entered. In each round,
different algorithms had different energy consumption optimization strategies. Therefore,
in each round, the remaining energy of the nodes was different, resulting in a different
number of surviving nodes. The variation trends of survival nodes of the four algorithms
are shown in Figure 11.
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Figure 11. The number of surviving nodes.

It can be seen from Figure 11 that there were 100 survival nodes at the beginning
of the network. With the continuous running of the network, the corresponding curves
of the four algorithms all showed a downward trend. With the increase of energy con-
sumption, the number of surviving nodes decreased and death nodes gradually appear.
The round of first death node with respect to ILEACH, DBCH, LEACH-DT and CEOMS
algorithm were 99th, 73th, 104th and 144th, respectively. Compared with the other three
algorithms, first death node time of CEOMS algorithm was extended by 45.4%, 97.3%
and 38.5%, respectively. The round of all death nodes with respect to ILEACH, DBCH,
LEACH-DT and CEOMS algorithm were 1111th, 1225th, 1199th and 1645th, respectively.
Compared with the other three algorithms, the life cycle of the CEOMS algorithm extended
by 48.1%, 34.2% and 37.1%, respectively. The relationship between the number of node
deaths and the number of running rounds of the four algorithms is shown in Figure 12.

Figure 12. The relationship between node death ratio and the number of rounds.

As can be seen from the above Figure 12, compared with the other three algorithms,
the CEOMS algorithm took into account the remaining energy of nodes and the mortality
of nodes when selecting cluster heads, so CEOMS algorithm had the longest working time
and could effectively extend the network life cycle.
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4.2.2. Analysis of Total Remaining Energy of Nodes

With the running of WSNs, the total remaining energy of WSNs reduced gradually.
Total remaining energy of all nodes of the four algorithms versus the rounds increasing are
plotted in Figure 13.

Figure 13. Change trend of total residual energy.

In this figure, the number of nodes was set to be 100 and initial energy of each node
was set to be 1 J. It can be found that the curve corresponding to CEOMS algorithm
was higher than other three algorithms, which indicated that the total residual energy of
WSNs corresponding to CEOMS algorithm was greater than that of other three algorithms.
When the total remaining energy of the WSNs was 0, the round of running of ILEACH
algorithm, DBCH algorithm, LEACH-DT algorithm and CEOMS algorithm was 1111th,
1225th, 1199th and 1645th, respectively, which indicated the entire network running time of
CEOMS algorithm was the longest. Different from the other three algorithms, the CEOMS
algorithm took the average remaining amount of neighborhood nodes and the current
remaining energy as key factors when selecting cluster heads. So, the CEOMS algorithm
could effectively save the network energy and prolong network lifetime.

4.2.3. Comparative Analysis of Remaining Energy Distribution of Network Nodes

It is clear that remaining energy of the node was in relation to the position of the mobile
sink. In the 300th round, the difference of remaining energy of each node between four
algorithms and classic LEACH is shown in Figure 14, respectively.
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(a) The difference of ILECH (b) The difference of DBCH

(c) The difference of LEACH-DT (d) The difference of CEOMS

Figure 14. The difference of remaining energy distribution.

It can be found that WSNs which used CEOMS algorithm had a larger surface fluc-
tuation, which meant using the CEOMS algorithm could save the energy of the nodes.
Moreover, at the 100th, 300th, 500th, 800th and 1000th round, the percentage of energy
saving related to the four algorithms is described in the Figure 15.

Figure 15. Energy saving percentage of four algorithms.

It can be found that the curve corresponding to the CEOMS algorithm was higher than
other three curves. It also demonstrates that the CEOMS algorithm had superior in energy
saving.
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4.2.4. Analysis of Variance of Nodes Remaining Energy

In WSNs, static sink node will lead to excessive load and unbalanced energy consump-
tion of nodes near the sink node. The proposed CEOMS algorithm introduced mobile sink
and considered the influence of motion parameters on the selection of cluster heads to
design motion performance function to alleviate the imbalance of energy consumption.
Now, variance of nodes remaining energy (Figure 16) was introduced here to describe
the balance degree of WSNs.

Figure 16. The variance of remaining energy of four algorithms.

Figure 16 shows that the initial remaining energy variance of four algorithms was 0,
which meant the initial energy distribution of WSNs was entirely uniform. With the run-
ning of WSNs and changing of mobile sink location, the curve corresponding to CEOMS
algorithm was always under the curves corresponding to other three algorithms. More-
over, variance of residual energy of ILEACH, DBCH, LEACH-DT and CEOMS algorithm
reduced to 0 at the 1111th, 1225th, 1199th and 1645th round, respectively, which indi-
cated the CEOMS algorithm not only effectively balanced network load but also extended
network life.

4.2.5. Applicability Analysis of Network Lifetime

In order to further verify the applicability of the proposed CEOMS algorithm to
prolong the life cycle of the network, the location of the network nodes was randomly
generated for many experiments. Figure 17 shows the network life cycle of the ILEACH
algorithm, DBCH algorithm, LEACH-DT algorithm, and CEOMS algorithm when the node
position was randomly generated.

Figure 17. Network life cycle of the four algorithms.
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Several experiments were performed by randomly generating node positions. From
the results of the five experiments shown in Figure 16, the total death times (network life
cycles) of nodes in the network corresponding to the CEOMS algorithm were: 1642 rounds,
1671 rounds, 1743 rounds, 1674 rounds and 1697 rounds. Compared with the network life
cycle data of the ILEACH algorithm, the DBCH algorithm and the LEACH-DT algorithm,
the CEOMS algorithm had the longest network life cycle, indicating that the CEOMS
algorithm could effectively extend the network life cycle and had applicability.

5. Conclusions

Some factors including remaining energy and density within the neighborhood radius
of sensor nodes, the location and velocity of mobile sink and the number of dead nodes
may impact on energy balance of WSNs. This paper proposed a novel cluster-based energy
optimization algorithm—CEOMS, to select cluster head by comprehensively considering
above factors impact on energy balance of WSNs. The proposed algorithm firstly intro-
duced the energy density function by considering the residual energy rate and density
within the neighborhood radius of nodes to reduce the randomness of the cluster head se-
lection. Secondly, the motion performance function was designed based on the variables of
the motion parameters of the mobile sink, which effectively balanced the network load and
reduced the data delay. Finally, an adaptive adjustment function related to node mortality
was proposed to adjust the factors of the cluster head selection threshold, which prolonged
the network life. The energy density function, motion performance function and adaptive
adjustment function worked together to improve the self-adaptability of cluster head,
balance network load, reduce the data delay and prolong the network life cycle.

In addition, the proposed algorithm only uses a mobile sink, which will lead to partial
data loss and delay when the monitoring area is large. Therefore, in the future work, how to
apply multiple mobile sink to collect data in WSNs should be taken into consideration [32].
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