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A B S T R A C T

Background: Precise differential diagnosis between acute viral and bacterial infections is important to enable
appropriate therapy, avoid unnecessary antibiotic prescriptions and optimize the use of hospital resources. A
systems view of host response to infections provides opportunities for discovering sensitive and robust
molecular diagnostics.
Methods: We combine blood transcriptomes from six independent datasets (n = 756) with a knowledge-
based human protein-protein interaction network, identifies subnetworks capturing host response to each
infection class, and derives common response cores separately for viral and bacterial infections. We subject
the subnetworks to a series of computational filters to identify a parsimonious gene panel and a standalone
diagnostic score that can be applied to individual samples. We rigorously validate the panel and the diagnos-
tic score in a wide range of publicly available datasets and in a newly developed Bangalore-Viral Bacterial
(BL-VB) cohort.
Finding: We discover a 10-gene blood-based biomarker panel (Panel-VB) that demonstrates high predictive
performance to distinguish viral from bacterial infections, with a weighted mean AUROC of 0.97 (95% CI:
0.96�0.99) in eleven independent datasets (n = 898). We devise a new stand-alone patient-wise score (VB10)
based on the panel, which shows high diagnostic accuracy with a weighted mean AUROC of 0.94 (95% CI
0.91�0.98) in 2996 patient samples from 56 public datasets from 19 different countries. Further, we evaluate
VB10 in a newly generated South Indian (BL-VB, n = 56) cohort and find 97% accuracy in the confirmed cases
of viral and bacterial infections. We find that VB10 is (a) capable of accurately identifying the infection class
in culture-negative indeterminate cases, (b) reflects recovery status, and (c) is applicable across different age
groups, covering a wide spectrum of acute bacterial and viral infections, including uncharacterized patho-
gens. We tested our VB10 score on publicly available COVID-19 data and find that our score detected viral
infection in patient samples.
Interpretation: Our results point to the promise of VB10 as a diagnostic test for precise diagnosis of acute infec-
tions and monitoring recovery status. We expect that it will provide clinical decision support for antibiotic
prescriptions and thereby aid in antibiotic stewardship efforts.
Funding: Grand Challenges India, Biotechnology Industry Research Assistance Council (BIRAC), Department of
Biotechnology, Govt. of India.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Infectious diseases pose a significant health concern and kill over
17 million people in a year globally according to the World Health
Organization reports [1,2]. The current pandemic due to SARS-CoV-2
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Research in context

Evidence before this study

The treatment of infectious diseases, of late, has taken a new
dimension globally due to the emergence of antimicrobial resis-
tance (AMR). Inappropriate use of antibiotics is a major cause of
this problem. A solution to this problem is to find new markers
for precise differential diagnosis between bacterial and viral
infections and thereby guide the physician to avoid unneces-
sary antibiotic prescriptions. The current diagnostic strategies
rely mainly on pathogen-based detection techniques, which
suffer from several limitations. A clear alternative to this is
host-based markers. An example of this is Procalcitonin (PCT),
which is increasingly used in the clinic to diagnose gram-nega-
tive bacterial infections from other bacterial and fungal infec-
tions in clinical settings. However, elevated levels of PCT are
seen in many other clinical conditions as well, leading to its
sub-optimal performance as a diagnostic marker. On the other
hand, blood transcriptomes from different viral and bacterial
infections have shown the host response to be distinct in viral
and bacterial infections. A few studies report the use of such
information to identify RNA - based biomarker panels for differ-
entiating viral from bacterial infections. These clearly demon-
strate the promise of RNA panels. The key enabling factors that
will significantly aid in translating these biomarkers into the
clinic are (a) improvement in sensitivity and specificity, (b)
demonstrating sufficient generality � concerning the applica-
bility across different populations, and (c) making it accessible
as a simple readout to the clinician.

Added value of this study

We achieve all these factors by discovering a new robust 10-
gene biomarker panel that exhibits improved diagnostic accu-
racy and applicability across a wide range of bacteria and
viruses. To push it towards translation, we formulate a stand-
alone diagnostic score and demonstrate our score's diagnostic
utility with rigorous best practices in the field. We show that
VB10 can be used as a blood test for precise differential diagno-
sis of viral and bacterial infections through an extensive analy-
sis on a range of datasets. We demonstrate that VB10 exhibits
high diagnostic accuracy across different age groups, different
geographical locations, and across a broad spectrum of acute
infection, including COVID-19. We also show that VB10 can
monitor the recovery status, and moreover, as a clinical deci-
sion support tool.

Implication of all the available evidence

Our study demonstrates that VB10, a new standalone diagnos-
tic-score has high classification power for the differential diag-
nosis of acute viral and bacterial infections. It follows from this
that VB10 could guide a clinician in choosing an optimal treat-
ment plan, including deciding whether to prescribe antibiotics.
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has shown that the mortality rate due to a viral infection can be
alarmingly high [3]. A major challenge in treating them is in the accu-
rate diagnosis of whether it is of viral or bacterial etiology because a
wide variety of them present with common clinical manifestations.
This often leads to misdiagnosis and consequently trial-and-error
treatment plans [4,5]. Moreover, overuse of antibiotics leads to anti-
microbial resistance (AMR), which is a significant threat to human
health [6]. The highest mortality rate due to AMR in the world is
recorded in India, with about 416.75 deaths per 100,000 persons [7].
Accurate discrimination between bacterial and viral infections will
help enormously in guiding a clinician to select appropriate treat-
ment strategies, to optimally deploy hospital resources and in the
judicious use of antibiotics. In cases such as sepsis [8] and commu-
nity-acquired pneumonia [9], the decision of whether to prescribe
antibiotics can be a life-determining factor.

At present, the ‘gold standard’ diagnostic methods used in the
clinic are based on pathogen detection techniques [10,11]. However,
these methods suffer from several limitations, as they cannot be used
to detect uncultivable or uncharacterized pathogens. They also can-
not detect infections with low pathogen counts or discriminate
between live and dead organisms. Instead, a more promising
approach is to focus on host-based markers. Blood tests that measure
the hemogram, erythrocyte sedimentation rate and C-reactive pro-
tein are often used as broad indicators of infection during a clinical
examination [12,13]. However, they are at best only approximate
indicators as they are seen to vary in a wide variety of diseases and
lack both the sensitivity and specificity to discriminate between bac-
terial and viral infections. For example, procalcitonin is increasingly
used as a marker for detecting bacterial infections in case of sepsis
and lower respiratory tract infections, but its performance is limited
due to suboptimal sensitivity and specificity and hence does not
meet the requirement of an accurate actionable diagnostic test [14].
A reliable sensitive diagnostic test is needed to accurately determine
the nature of the infection and obtain a quantitative picture of the
disease burden. A need for such a diagnostic test has become even
more acute considering the currently ongoing COVID-19 pandemic.

Several reports have indicated the promise of molecular diagnos-
tics that are based on the host response to infections. The starting
point for most of these studies is the host blood transcriptomes
[15�17]. Blood, with its unique advantages of capturing the systemic
effect of a given infection and being a highly accessible tissue, serves
as an ideal source for obtaining transcriptome profiles from different
patients. Blood transcriptomes from multiple studies have shown the
host response to be distinct in viral and bacterial infections, which
have led to identification of gene panels of different sizes capable of
classifying samples with viral infections from those with bacterial
infections in different clinical scenarios [18�25]. The best of the pan-
els, while capable of sensitively distinguishing between viral and bac-
terial diseases, show low specificity, indicating the need for
identifying improved panels. A key factor in translating the bio-
markers into clinical use is to bring in improvement in specificity
and applicability across a wide variety of acute viral and bacterial
diseases.

Transcriptomes being unbiased genome-wide profiles, although
recognized to contain a wealth of information about the conditions,
present a huge challenge to identify minimal gene panels with high
classification power. Multiple studies have deposited clinical tran-
scriptomes in public repositories, making them available for indepen-
dent analysis using different approaches [26,27]. Most studies so far
have used statistical models to probe the data to identify distinguish-
ing gene panels. Statistical models are known to be critically sensitive
to the method adopted for applying correction factors to place differ-
ent datasets on a comparable framework and hence suffer from the
possibility of over-dependence and naive interpretation of the test
procedure’s p-value [28,29]. Heterogeneity in gene expression pro-
files due to differences in genetic and environmental backgrounds is
a well-recognized problem in the biomarker discovery field [30,31].
Since the clinical transcriptome data is large and heterogeneous, it is
important to interrogate the data with orthogonal methods to
explore new panels with improved diagnostic power and generality.
Network-based methods provide an excellent platform to address
these issues [32,33].

In this work, we seek to identify a RNA signature for accurately
differentiating viral from bacterial infections and formulating a diag-
nostic score to enable testing individual patient samples. To achieve
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this, we configure a computational pipeline involving genome-wide
protein-protein interaction networks and model the host response to
viral and bacterial infections using the publicly available blood tran-
scriptomes from multiple populations. We then apply a series of fil-
ters to discover a 10-gene panel that can robustly discriminate viral
from bacterial infections. We then formulate a standalone diagnostic
score which leads to a blood test to aid clinical decision-making for
antibiotic prescriptions. We demonstrate that our test is capable of
diagnosis in independent datasets as well as in a new pool of South
Indian patients with high accuracy and specificity. We also show that
our test is capable of accurately capturing disease recovery.

2. Methods

2.1. Systematic curation and preprocessing of publicly available
transcriptomes

We performed a comprehensive search in Gene Expression Omni-
bus [26] and ArrayExpress [27] using defined keywords to identify
transcriptome data containing blood samples from patients with viral
or bacterial infections. Next, we systematically screened these tran-
scriptome datasets and selected as per the guidelines defined in the
Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) checklist (Fig. S1). The raw data for the selected studies
were downloaded and an appropriate preprocessing procedure was
adopted using Bioconductor packages in R [34�37]. Affymetrix arrays
were background corrected using Robust Multi-array Average (RMA),
whereas Agilent and Illumina arrays were corrected using ‘normexp’
followed by quantile normalization and log2 transformation. Prepro-
cessed data were considered for the samples hybridized using custom
arrays. Probes that were below the detection limit in >80% of the
arrays were filtered out, and the rest were mapped onto the respec-
tive genes. Each dataset was preprocessed independently. Detailed
information of the publicly available whole blood transcriptome
datasets considered in the study is provided in (Table S1). We per-
formed differential gene expression analysis using the limma package
in R [38] by comparing 1) Viral vs. Healthy Control, 2) Bacterial vs.
Healthy Control, and 3) Viral vs. Bacterial for each dataset in the dis-
covery set independently.

2.2. Reconstruction of the human interactome

We constructed a knowledge-based genome-scale human pro-
tein-protein interaction network (hPPiN2), which is an improved ver-
sion of a previous network hPPiN from our laboratory [39]. This
network is built by considering experimentally determined structural
and functional interactions incorporated from resources such as the
Kyoto Encyclopedia of Genes and Genomes (KEGG) [40], OmniPath
[41], Signalink 2.0 [42], Harmonizome [43], RegNetwork [44], HTRIdb
[45], TRRUST [46] and TFCat [47]. In brief, the interactions from vari-
ous primary resources capture 1) regulatory interactions between
transcription factors and their targets, 2) metabolic enzyme-coupled
interactions, 3) the kinome network, 4) protein-protein complexes,
and 5) signaling interactions. The resultant of all interactions after
removing redundancy from (1-5) yielded a network of 20,183 nodes
that are interconnected by 255,486 edges. In total 215,206 were
directed, and 40,280 were bidirected, corresponding to binding inter-
actions. The nodes represent proteins and edges represent interac-
tions among the corresponding proteins.

2.3. Generating context specific networks

We used a sensitive network mining approach developed earlier
in our laboratory to generate context-specific networks, and mine
the top-ranked perturbed interactions (333,847). In brief, the differ-
ential transcriptome computed for viral and bacterial samples with
respect to the corresponding healthy controls was mapped on to the
hPPiN2 in the form of node and edge weights. The top-ranked acti-
vated paths (TAP) and top-ranked repressed paths (TRP) were com-
puted and combined to obtain a top perturbed network (TPN) for
each condition. To generate an activated network, the node weight of
node i in a diseased condition A was computed as:

Ni Að Þ ¼ FCi A=Bð Þ ð1Þ
Where FC was the fold change of gene i in diseased condition A

with respect to the reference condition B (antilog values were used
to compute fold changes). To generate the repressed network, the
node weight of node i in a diseased condition A was computed as:

Ni Að Þ ¼ FCi B=Að Þ ð2Þ
The edge weight Weij(A) in a given condition A for an edge e com-

prised of nodes Ni(A) and Nj(A) was calculated as

Weij Að Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
Ni Að Þ � Nj Að Þ

�r ð3Þ

Where Ni(A) and Nj(A) are the node weights of nodes i and j,
respectively. Lower the edge weight, higher is the edge activity.

2.4. Computing top perturbed networks

Wemined the weighted network as described before [33,39,48] to
obtain top-active and top-repressed paths that were combined to
obtain the top-perturbed network. The algorithm computes mini-
mum weight shortest paths, in which each path begins from a source
node and ends with a sink node, passing through interacting nodes in
such a way that the least-cost edge is incorporated in every step. The
shortest paths between all pairs of genes were computed using Dijk-
stra's algorithm implemented in the Zen library, Python2.7. For a
path of length n, the path cost was calculated as a summation of the
edge weights

P
We(A) of all edges forming the path, normalized over

the path length. All paths were sorted with respect to their path costs,
with the least-cost paths ranked the highest. Subsequently, paths
belonging to the top 0.05% were taken to constitute the top perturbed
network. To dissipate the concern of overfitting and evaluate the sen-
sitivity of the results with respect to the chosen threshold (i.e., 0.05),
TPNs constructed based on the cutoffs in and around the threshold
(i.e., 0.04 and 0.06) were evaluated. This analysis showed that the
cores are relatively stable around the chosen threshold in terms of
network size.

2.5. Network visualization and enrichment analysis

We visualized all networks in Allegro Spring-Electric layout using
Cytoscape 3.2.0, and compute the network properties using Networ-
kAnalyzer plugin [49]. We used Reactome with default parameters
for pathway enrichment analysis [50] and the resultant hits with q-
value � 0.01 were considered to be significant. The highly curated
gene-disease association reported for viral (C0042769), and bacterial
infection (C0004623) were retrieved from DisGeNET [51]. These
genes were considered as a gold standard gene set (GSGS) to perform
overlap analysis with the top perturbed networks. We used a hyper-
geometric test for computing the overlap significance [52].

2.6. Evaluation of classifier performance

The classification models were built using the discovery set and
their predictive performance were tested on the validation meta
cohorts using Logistic Regression (LR). The area under the receiver
operating characteristic curve (AUROC) with confidence intervals (CI)
(95%) was estimated using the DeLong method for each dataset using
the pROC package in R [53]. For comparison with other signatures,
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the weighted mean AUROC, sensitivity and specificity with 95% CI
was calculated for each model [54,55]. The weighted mean AUROC
was computed by calculating AUROC weighted by the number of
samples in the respective dataset.

2.7. Ethics

Ethical approval for this study was obtained from the Institutional
Ethics Committee at MS Ramaiah medical college, Bangalore, India
(ECR/215/Inst/KA/2013/RR-16), and IISc (11-15032017), Bangalore,
India. Written informed consent was obtained from all study partici-
pants before sample collection.

2.8. Bangalore � Viral Bacterial (BL-VB) cohort

This is an observational cohort on adults with acute infections
(2018�2019) from MS Ramaiah medical college, Bangalore, India,
and matched healthy controls from the health centre (primary care
centre within the university), Indian Institute of Science (IISc), Banga-
lore, India.

Patients with acute infection-associated diseases, enrolled at an
intensive care unit, MS Ramaiah Medical hospital were screened for
bacterial and viral infections, and blood samples were collected.
These patients were grouped into confirmed viral, confirmed bacte-
rial and indeterminate infection groups based on clinical and micro-
biological investigation results prior to the targeted validation of the
proposed signature panel. Briefly, patients with viral infections were
diagnosed based on serological tests, and bacterial infections were
diagnosed by bacterial culture tests. Patients with inconclusive diag-
nosis based on the microbiological investigations (culture and serol-
ogy negative) were categorized as indeterminate infections. Age
matched healthy controls were recruited from the Health Centre, IISc
based on the following inclusion criteria: a) no febrile illness (within
a month), b) not on medications (within a month) and c) no history
of acute or chronic inflammatory diseases. Blood samples were then
obtained from these healthy controls and screened for tuberculosis
and HIV in addition to a routine hemogram. Table 1 provides the clin-
ical characteristics of patient groups in Bangalore - Viral Bacterial (BL-
VB) Cohort. Detailed information on the Clinical characteristics of
patients recruited for BL-VB Cohort is presented in Table S2.

2.9. Signature validation

Whole blood samples (2 ml) were collected for targeted gene
expression validation using nanostring and qRT-PCR. These samples
were mixed with RNAlater (Thermo Fisher Scientific) and stored at
-70 °C. Later, RNA was extracted from blood using RiboPure-Blood kit
(ThermoFisher scientific) following the manufacturer’s protocol,
which is followed by DNase treatment and quantification using
NanoDrop Light UV-Vis Spectrophotometer (Thermo Fisher Scien-
tific). Ncounter based RNA quantification was performed based on
the manufacturer’s protocol to quantify gene expression using the
Table 1
The clinical characteristics of patient groups in Bangalore - Viral Bacterial (BL-VB). IQR

Clinical characteristics Bacterial

No. Of Samples 16
Age (Years)Median (IQR) 54 (46�59)
Gender Male (M), Female (F) 10M, 6F
Total Leucocyte Count (Cells/cu.mm) Median (IQR) 12500 (8400 - 158
Neutrophils % Median (IQR) 72.9 (64.55�86.3)
Lymphocytes % Median (IQR) 15.2 (9.15�23)
Monocytes % Median (IQR) 6.8 (5.93�7.7)
Erythrocyte Sedimentation Rate in mmMedian (IQR) 60 (43.75�90)
custom-made codeset. This custom panel contained 13 genes (includ-
ing internal housekeeping control genes - ALAS1, POLR2A, and SDHA),
which showed expression level changes upon viral and bacterial
infection. The counts were renormalized to housekeeping genes
using nSolver software (nanostring technologies) (Data file S1). The
expression of these genes in a subset of samples in the BL- VB cohort
was independently validated using qRT-PCR. Towards this, first-
strand cDNA synthesis was performed using 600 ng of total RNA with
iScript cDNA synthesis kit (Bio-Rad). Gene expression was analyzed
with real-time PCR using iTaq Universal SYBR Green Supermix (Bio-
Rad) on the CFX384 instrument (BioRad). Calculation ofDCt and Rela-
tive Copy Number (RCN) for all genes were performed using geomet-
ric mean of Ct values of the three control genes (ALAS1, POLR2A, and
SDHA). The list of primers used for the experiment was provided in
Table S4.

2.10. Statistical analysis

Genes with � §1.5-fold change with q-value � 0.01 computed
using moderated t-statistics, followed by the False Discovery Rate
(FDR) correction using the Benjamini�Hochberg method [56] were
considered to be statistically significant differentially expressed
genes (DEGs). For all two group comparisons, we used the Student’s
t-test for computing statistical significance and differences with p-
value � 0.05 of were considered to be significant. All statistical analy-
ses were performed using R version 3.6.3.

2.11. Role of funders

The funders did not have any role in the study design, data collec-
tion, analysis, interpretation, writing or submission of the manu-
script. The corresponding author had complete access to the data and
hold final responsibility for the decision to submit for publication.

3. Results

3.1. Description of the blood transcriptome datasets used in the study

We have obtained 56 publicly available whole blood transcrip-
tome datasets from 19 different countries, consisting of 4,259 sam-
ples belonging to patients with viral or bacterial infections and
healthy controls (Table S1). Of these, seven datasets contained tran-
scriptome profiles of follow-up patients. In all, six datasets that con-
tained viral, bacterial, and matched healthy controls in the same
experiment, which we selected for biomarker discovery (Discovery
Set) (Fig. 1a) and the remaining 50 datasets were used for validation
purposes. About eleven datasets that contain both viral and bacterial
infections in the same experiment were considered in the Validation
Set-1 (Fig. 1a). All other datasets containing either bacterial or viral
samples were considered for independent validation (Validation Set-
2). Further, we have used the datasets with follow-up information to
study if our test could provide insights on disease recovery. We
� Inter Quartile Range.

Viral Indeterminate Healthy Controls

14 8 18
34.50 (27.75�52.75) 51 (46�54. 75) 30 (24.45�32)
7M, 7F 4M, 4F 12M, 6F

75) 5300 (3450 - 8525) 11300 (8800 - 12905) 6650 (5875�8075)
65.2 (55.5�71.83) 76.2 (56.73�88.65) 57.15 (51.68�60.73)
22.65 (14.75�32.75) 18.05 (5.78�30.88) 32.8 (24.43�37.88)
8.95 (5.13�10) 5.85 (2.98�9.3) 6.95 (5.9�8.03)
32 (20�39.75) 98 (45�110) 5.5 (4�8.75)



Fig. 1. (a) A flowchart describing the publicly available whole blood transcriptome datasets considered in this study. A total of 4259 whole blood samples belonging to 56 datasets
from 19 different countries were considered in this study. Datasets with follow-up information are starred in blue. (b) A flowchart summarizing Bangalore � Viral Bacterial Cohort
(BL-VB) generated in this study for external validation. (c) The biomarker discovery pipeline. A funnel describing multiple filters to discover a biomarker panel for accurate discrimi-
nation between viral and bacterial infections. The numbers in each step correspond to the number of genes that successfully pass the filter to finally yield a panel of 10 genes.
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further evaluated the performance of the signature panel in a newly
developed Bangalore-Viral Bacterial cohort (BL-VB) from a South
Indian population (Validation Set-3). This cohort contains blood sam-
ples from 18 healthy controls and 38 patients belonging to 16 con-
firmed bacterial, 14 confirmed viral, and 8 indeterminate infection
cases (Fig. 1b). Detailed information on the clinical characteristics of
patients recruited for BL-VB Cohort is given in Table S2.

3.2. Discovery of a 10-gene panel (Panel-VB) to discriminate between
viral and bacterial infections

Briefly, our computational pipeline consists of computing
response networks, sensitively mining them to identify top-ranked
perturbations and then a series of filters to identify a common viral
subnetwork, a common bacterial subnetwork, and symmetric com-
ponents between the two. Each step in the pipeline serves as a filter
and retains only those genes that satisfies the criteria (Fig. 1c) and
result in a biomarker signature that can distinguish viral from bacte-
rial infections.

In applying the filters, our first goal was to identify the prominent
host responses and to investigate the extent of their similarity in
whole blood transcriptomes across different viral diseases, and sepa-
rately among different bacterial diseases. Our discovery set contained
whole blood transcriptomes of 354 patients with confirmed viral
infections belonging to six different studies. Differential analysis by
comparing the transcriptome profile of acute viral infection patients
with their respective healthy controls in different datasets indicated
that the number of Differentially Expressed Genes (DEGs) with Fold
Change � 1.5 & q-value � 0.01 approximately ranged from 406 to
1750. Further, an overlap analysis identified 147 common DEGs
(DEGsetV) among these datasets (Data file S2), suggestive of substan-
tial similarity in the host response to individual viral infections. Simi-
larly, for bacterial infections, our discovery set contained whole
blood transcriptomes of 190 samples from the same six studies. The
DEG (Fold Change � 1.5 & q-value � 0.01) analysis indicated the
number of DEGs to be in the range of 1411�2603 for different bacte-
rial infections and about 599 to be common DEGs (DEGsetB) among
them (Data file S3), again indicative of commonalities in host
response to bacterial infections. Further, to identify the host
responses varying between bacterial and viral infection samples,
dataset wise differential analysis was performed by comparing viral
infection samples with respect to the dataset matched bacterial infec-
tion samples. This analysis resulted in DEGs (Fold Change � 1.5 & q-
value � 0.01) ranging from 210 to 1095 for different bacterial vs viral
comparisons and about 221 to be common DEGs (DEGsetVB) in at
least 50 % of such comparisons in discovery datasets (Data file S4). A
comparison between these three categories indicated that about 49
are common between DEGsetV and DEGsetVB, and 103 of them are
common between DEGsetB and DEGsetVB (Fig. S2a). Hierarchical
clustering of discovery datasets using the resultant of ((DEGsetV \
DEGsetVB) [ (DEGsetB \ DEGsetVB)), which yields 141 genes, is
shown in Fig. S2b, indicating the transcriptome alterations to be suffi-
ciently characteristic of each category.

Next, to prioritize the candidate biomarkers from the resultant
141 genes based on their biological relevance for the given disease,
we apply our network analysis pipeline to each viral and bacterial
disease. This requires (a) a comprehensive knowledge-based molecu-
lar interaction network, (b) a method to integrate the transcriptome
data into the network, and (c) a sensitive network mining method to
extract top-ranked perturbations that occur in different diseases. To
address these, we first upgraded our previous human protein-protein
interaction network (hPPiN) [39] through adding thousands of signal-
ing and regulatory interactions, curating their directionality, and
pruning the previous network to remove any redundant information.
This resulted in construction of hPPiN2, which contains 20,183 nodes
(proteins) and 255,486 edges (interactions among proteins) (Data file
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S5). Using this as a base network, we then construct condition-spe-
cific networks by mapping the transcriptome data from the discovery
datasets onto hPPiN2 in the form of node and edge-weights using the
Eqs. (1)�(3) (described in methods). Our method then sensitively
extracts the edge-sequences connecting the nodes (also known as
paths) that show the highest alterations in each viral or bacterial dis-
ease to an appropriate healthy control cohort. A connected set of
such alterations result in a response network which serves as an
excellent model to describe the biological response in the host to the
given disease [33,39]. The top-active and the top-repressed edges
forming separate subnetworks together constitute the top-perturbed
networks for each disease. An intersection of all top-perturbed net-
works across viral diseases yields a common viral response core
(Fig. 2a, Data file S6) and likewise an intersection of all top-perturbed
networks across bacterial diseases yields a common bacterial
response core (Fig. 2b, Data file S7). A unique feature of these per-
turbed networks is that they contain the most influential DEGs and
the genes bridging them directly or indirectly that include influential
constitutively expressed genes. This viral response core was observed
to contain 1,043 nodes, of which 62 belong to DEGsetV. Similarly, the
bacterial response core was found to contain 1393 nodes, of which
287 belong to DEGsetB.

We tested whether the genes in the two response cores were
reflecting the known host biology in these diseases by carrying out a
pathway enrichment analysis. Towards this, we have identified a set
of 215 pathways significantly (q-value � 0.01) enriched in the viral
response core (Data file S8) and 183 pathways enriched in the bacte-
rial response core (Data file S9). DDX58(RIG-I)-mediated induction of
interferon-alpha/beta, cytosolic sensors of pathogen-associated DNA,
and antiviral response mediated by IFN-stimulated genes were some
key active pathways in viral infections, while the pathways related to
the host cell cycle, transcription and translation, surveillance machin-
ery (Nonsense-Mediated Decay), and selenocysteine metabolism
were enriched in the most repressed set. Further, the network analy-
sis reveals that the viral core has a giant connected component con-
taining STAT1, ISG15, EIF2AK2, NOV(CCN3), and LAP3. On the other
hand, the bacterial response core was centered around STAT3, PPARG,
and CEBPB and was significantly enriched with inflammatory pro-
cesses such as Toll-Like Receptor (TLR) Cascade, neutrophil degranu-
lation, Interleukin-4, and Interleukin-13 signaling. At the same time,
pathways such as Programmed cell Death 1 (PD-1) signaling, TCR sig-
naling, Wnt, and Notch Signaling were enriched in the repressed set
primarily centered around LEF1 and ETS1. All of these are indeed
known to be important in their respective categories, for which there
are multiple lines of evidence in the literature. For example, the role
of interferon-mediated host antiviral defense [57] and the gene
expression changes in the host transcriptional and translational land-
scapes to subvert host immune response are some known host
responses upon viral infections [58,59]. The role of TLRs in pathogen
recognition [60,61], neutrophils on extracellular bacterial clearance
[62,63], and PD-1 mediated T-cell impairment upon bacterial infec-
tion [64] are some known host immune mechanisms observed in
bacterial infections. Our response networks correctly capture these
known mechanisms in their respective cores.

We then tested specifically if the gold standard genes of viral and
bacterial infections retrieved from DisGeNET are captured in the
respective response networks and found that there is indeed a signif-
icant overlap between the gold standards and genes in the viral
(Enrichment score of 2.9, p-value: 5.7E�041) and bacterial (Enrich-
ment score of 3.2, p-value: 2.10E�23) response cores. The response
networks are significantly more enriched with the gold standard
genes as compared to the initial DEGsetV (Enrichment score of 2.1 &
p-value: 9.3E�05) and DEGsetB (Enrichment score of 1.8 & p-value:
9.70E�03), illustrating the biological significance of the network
models and their power to prioritize crucial DEGs. We thus establish
that our response networks are good models to understand the host
response to these infections and serve as excellent platforms to iden-
tify biomarkers.

From the above analysis, we retained those genes that are com-
mon to DEGsetV, DEGsetVB and the viral response core, which results
in a set of 25 genes, of which we select top five genes (IFI27, IFI44,
ISG15, MX1, EPSTI1, referred to as Panel-V), based on a statistical
threshold for differential gene expression across all discovery data-
sets. Similarly, the next filter retains those genes that are common to
DEGsetB, DEBsetVB and the bacterial response core to shortlist 59
genes, from which we select five genes (MMP9, HK3, GYG1, DNMT1,
and PRF1, referred to as Panel-B), using the same statistical threshold
as for the Panel-V. Finally, we combine Panel-V and Panel-B to obtain
a 10-gene panel (Panel-VB) and rigorously test its classification per-
formance. The filtering in this step selects those genes that satisfy the
following criteria (a) significantly perturbed in bacterial or viral dis-
eases as compared to their controls, (b) significantly perturbed
between viral and bacterial diseases. The genes in the resulting panel
(Panel-VB) have known direct or indirect associations with viral or
bacterial diseases (Table S4), indicating their biological significance.

3.3. Performance evaluation of Panel-V, Panel-B and Panel-VB

First and foremost, we evaluated the performance of Panel-V and
Panel-B to distinguish between (i) viral and healthy controls and (ii)
bacterial and healthy controls in the discovery and independent vali-
dation datasets.

Panel-V showed a clear separation of viral and healthy controls
with a weighted mean AUROC of 0.96 (95% CI: 0.95�0.98) (Fig. S3a)
and Panel-B showed a clear separation of bacterial and healthy con-
trols with a weighted mean AUROC of 0.98 (95% CI: 0.97�0.99) (Fig.
S4a) in the discovery dataset. Next, we tested the performance of
Panel-V in the three independent validation sets (Validation Set-1,
Validation Set-2, and Validation Set-3) comprising 1,386 Viral and
580 matched controls and find the panel to have high classification
power with a weighted mean AUROC of 0.95 (95% CI: 0.92�0.97)
(Figs. S3b�d). Similarly, we tested the performance of Panel-B in Vali-
dation Set-1, Validation Set-2 and Validation Set-3 comprising 1,096
bacterial and 526 matched controls which showed a weighted mean
AUROC of 0.96 (95% CI: 0.94�0.98) (Figs. S4b�d). This analysis clearly
indicates that Panel-V and Panel-B are reflective of viral and bacterial
infections and that the combined 10-gene panel (Panel-VB) to be a
potential biomarker signature (Panel-VB) to distinguish between
viral and bacterial infections.

For Panel-VB, we performed the following tests to evaluate its
predictive performance in the datasets containing both viral and bac-
terial infections such as (a) Discovery Set, (b) Validation Set-1, and (c)
Validation Set-3 (an independent validation cohort generated from a
South Indian population (BL-VB) containing 16 bacterial and 14 viral
samples). ROC analysis of Panel-VB in Discovery showed weighted
mean AUROC of 0.97 (95% CI: 0.95�0.98) with a weighted mean sen-
sitivity 0.84 (95% CI: 0.78�0.91) and specificity of 0.95 (95% CI:
0.93�0.97) (Fig. 3a). In case of Validation Set-1, Panel-VB showed
weighted mean AUROC of 0.97 (95% CI 0.96�0.99) with a weighted
sensitivity 0.93 (95% CI: 0.89�0.96) and specificity of 0.97 (95% CI:
0.95�0.99) (Fig. 3b). Next, we tested the performance of our signa-
ture (Panel-VB) in our BL-VB cohort. We found a clear separation of
viral from bacterial diseases (AUROC: 1) (Fig. 3c), indicating that the
signature performs well for the studied South Indian population as
well.

3.4. VB10 score formulation

The Panel-VB is clearly seen to be sufficient to separate viral and
bacterial infection samples from the predictive performance analysis.
Indeed, a clear clustering pattern in the discovery set was observed
where all viral datasets were grouped into one category and bacterial



Fig. 2. Networks depicting the ‘response cores’ in (a) viral and (b) bacterial infections. The networks in each case correspond to the top-ranked perturbations in infection as com-
pared to healthy controls. The viral core consists of 1043 nodes and 1,151 edges, of which 62 belong to DEGsetV (46-up, 15-down, FC > § 1.5, q � 0.01) while the bacterial core con-
sists of 1393 nodes, 1845 edges of which 287 belong to DEGsetB (104-up, 183-down, FC > § 1.5, q � 0.01). The hubs are labeled by their respective functional categories (from
Reactome) obtained through a pathway enrichment analysis of the hub gene and its first neighbors using a hypergeometric test (q � 0.01).
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Fig. 3. ROC curves showing the predictive performance of Panel-VB in (a) Discovery Set, (b) Validation Set-1 and (c) Validation Set-3 (BL�VB Cohort). Summary confusion matrix,
weighted mean AUROC, weighted mean sensitivity and specificity computed for the respective meta-set is shown in the below panel. AUROC - Area Under the Receiver Operating
Characteristics Curve.

8 S. Ravichandran et al. / EBioMedicine 67 (2021) 103352
into another category (Fig. 4a). As a critical next step towards transla-
tion into the clinic, we devised a new score (VB10), which captured
the essence of the variation of the gene panel. The expression of the
genes in the Panel-VB was combined into a single VB10 score for each
patient as described in Eq. 4.

VB10 ¼ GM PanelBUPð Þ � GM PanelVUP ; PanelBDOWNð Þ½ �

� NPanelBUP

NPanelVUP þ NPanelBDOWN

� �
ð4Þ

where GM refers to the geometric mean of normalized gene expres-
sion values, PanelBUP and PanelBDOWN refer to the upregulated and
downregulated Panel-B genes respectively and PanelVUP refers to
upregulated Panel-V genes (as compared to healthy controls). NPa-
nelBUP, NPanelVUP and NPanelBDOWN indicate the number of genes in
the respective set and were used in Eq. (4) to factor in the number of
genes considered for computing the score, as per the scaling method
described earlier [24]. A stepwise calculation of VB10 -score for a rep-
resentative bacterial and viral sample is shown in Fig. 4b.

3.5. VB10 blood test � a diagnostic score to aid clinical decisions

VB10, a standalone score forms the basis for the VB10 blood test, as
it can be evaluated in individual samples, alleviating the need to com-
pare with healthy controls. The expression of the genes in the Panel-
VB was combined into a single VB10 score for each patient. The score
is devised such that a positive value indicates a bacterial infection
whereas a negative value indicates a viral infection (Fig. 5a and b).
The global validation of VB10 score in the publicly available blood
transcriptomes showed a weighted mean AUROC of 0.94 (95% CI:
0.91�0.98), indicating that the score, presented as a single number
retains the classification power of the gene signature (Fig. S5a).
Further, in the South Indian Cohort (BL-VB) containing 16 con-
firmed bacterial and 14 confirmed viral infection samples, VB10

scores showed AUC of 1 with sensitivity of 0.94 and specificity of 1
(Fig. 5c). Finally, we have computed probabilities for the VB10 score
using the 2996 publicly available whole blood transcriptome samples
belonging to patients with viral and bacterial infections and provide
a measure of confidence to interpret a score report of any given sam-
ple (Fig. 5d). Our analysis indicates that a VB10 score of >0.5 indicates
a bacterial infection with a probability >0.8, whereas a VB10 score
>1.0 indicates a bacterial infection with a probability >0.9. Similarly,
a VB10 score of �0.5 or lower indicates a viral infection with a proba-
bility of >0.95 whereas a VB10 score of �1.0 or lower indicates a viral
infection with an even higher probability (of 0.97). This brings out a
question of what range of scores are seen in healthy subjects. To
address this, we plotted the distribution of VB10 scores for the pool of
1,093 healthy controls present in our study datasets. The plot clearly
indicates that a majority of the healthy samples show VB10 scores
ranging from �0.25 to +0.5 (Fig. S5b), centered around a median
value of 0 indicating them to be of neither viral nor bacterial infec-
tions (Fig. 5d).

3.6. Performance of VB10-score in different clinical scenario

Next, we analyze how our score performs in a range of clinical
scenarios,

(a) Indeterminate infection � samples with unconfirmed diagno-
sis: In a few cases, based on the clinical presentation, the sam-
ple can only be labeled as a suspected bacterial or suspected
viral, but the diagnosis is often unconfirmed. From the BL-VB
cohort, we had 8 samples of this nature and refer to them as the
indeterminate infection category. All 8 were culture negative.



Fig. 4. VB10- score formulation. (a) A heatmap showing the differential transcriptome profile of Panel-V and Panel-B genes in the Discovery Set. The figure shows a clear and dis-
tinct clustering of known viral and bacterial samples. ‘lmfitted’ coefficients of viral and bacterial differential transcriptomes with reference to their matched controls from the respec-
tive discovery datasets were used for generating the heatmap. HK3, GYG1 and MMP9 constitute PanelBUP; DNMT1 and PRF1 form PanelBDOWN, whereas IFI27, IFI44, MX1, ISG15 and
EPSTI1 form PanelVUP. (b) An illustration showing the stepwise computation of VB10- score for a sample bacterial and viral cases.
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For these samples, we measured the transcript abundances
using the nanostring technology (and subsequently confirmed
through qRT-PCR for a subset of these samples) (Table S5). Our
VB10 score identified 6 of them as clearly bacterial and 2 of
them as viral (Fig. 5c; Table S6), which were consistent with
subsequent clinical investigations including hemograms, serol-
ogy tests and response to antibiotic treatment.

(b) Recovery- We tested if our score is capable of reflecting recov-
ery from infection. From the pool of datasets included in this
study, eight datasets (bacterial: GSE42827, GSE72946 &



Fig. 5. Evaluation of the VB10-Score. (a) A waterfall plot showing the VB10 -scores in 1270 publicly available bacterial infection samples from 37 datasets, with samples from each
dataset sorted by their VB10 scores and each dataset was indicated by different color (legend in the inset). (b) A similar plot for 1726 publicly available viral infection samples. The
36 datasets are indicated in different colors (legend in the inset) and samples in each are sorted by their VB10 scores. (c) A similar plot for VB10 � Scores in the BL-VB Cohort (38 sam-
ples: Bacterial, Viral, and indeterminate infection category). Color coding is based on the infection category. Sample labels are shown in the x-axis. Those in green represent samples
with clinically unconfirmed diagnosis. (d) Joint Probability Density computed from the VB10-Scores of publicly available viral (represented in cyan) and bacterial (red) infection sam-
ples. The numbers in the circle correspond to the samples belonging to that bin. Distribution of VB10-Score for the healthy controls is provided in the inset.
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Fig. 6. Performance of VB10 -Score in different clinical scenarios. (a) Boxplot showing the VB10 -scores in the acute infection and the respective recovery data for the publicly avail-
able viral and bacterial infection samples, with the significance computed using the student t-test. (b) A waterfall plot showing the VB10 -scores in the publicly available COVID-19
samples (n = 167) from four different datasets. Each dataset is represented by different color, corresponding to samples infected with COVID-19. . Peripheral blood mononuclear cell
(PBMC) and bronchoalveolar lavage fluid (BALF) patient samples from CRA2002390 dataset are shown in different colors. Samples in each study are sorted by their VB10 scores.
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GSE13015 and viral: E-MTAB-5195, GSE25001, GSE50628,
GSE51808 & GSE61821) contained clinical parameters indica-
tive of recovery. We find that our VB10 score in these datasets
showed the expected trend in all cases (Fig. 6a), indicating that
the score captured the recovery status from the infection.

(c) Performance evaluation of VB10 in Non-infectious controls:
Non-infectious controls are the most relevant control group
since they represent the population in whom testing would
occur. Hence, we evaluated the performance of VB10 in discrim-
inating Viral/ Bacterial from non-infectious controls (asthma,
COPD, non-infectious sepsis/SIRS). Our results show that VB10

significantly differentiates (a) bacterial from pathological
matched controls and (b) viral from pathological matched con-
trols with AUC-ROC of 0.83 (95% CI 0.81 � 0.85) and 0.89 (95%
CI 0.88 � 0.90), respectively in the validation cohorts (Fig. S6a,
6b, 6c).

(d) Performance evaluation of VB10 in different age groups - Dif-
ferentiating between bacterial and viral infections among
different age groups of patients is often a critical require-
ment in the clinic. The publicly available datasets that we
have analyzed in this study included several neonatal,
infant, pediatric and adult samples. We find that our VB10

score in the validation datasets (Validation Set-1 and Set-2)
show high diagnostic accuracy to distinguish bacterial from
viral infections in neonates with AUROC of 0.99 (95% CI
0.95�1), infant with AUROC of 0.95 (95% CI 0.93�0.98),
pediatric with AUROC of 0.91 (95% CI 0.88�0.95) and adult
with AUROC of 0.96 (95% CI 0.95�0.97) (Fig. S7). This
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strongly indicates that the score performs well in all age
groups.

(e) Disease spectrum - We analyzed how our score fares for differ-
ent bacterial and viral diseases and hence analyzed the disease
spectrum covered by the available data. The datasets that we
have analyzed, put together were associated with about 12 dis-
eases which includes acute respiratory infections, bronchiolitis,
chronic obstructive pulmonary disease, chronic kidney disor-
der, dengue fever, febrile illness, gastroenteritis, infective endo-
carditis, leptospirosis, meningitis, pneumonia, and sepsis. The
bacterial etiologies included Staphylococcus, Streptococcus, Chla-
mydophila, Burkholderia, Leptospira, Neisseria, Acinetobacter,
Escherichia coli, Citrobacter, Pseudomonas and Proteus, while the
viral etiologies included Influenza, Respiratory Syncytial Virus,
Adenovirus, Human coronavirus, Human metapneumovirus,
Human Herpesvirus 6, Enterovirus, Cytomegalovirus, Rhinovi-
rus and Dengue virus. Samples from these, form a part of the
data analyzed in Fig. 5a and b. It is clear from the figures that
the VB10 score shows high performance across different viral
and bacterial etiologies in a broad class of disease. In this study,
we have excluded atypical bacterial (eg., Mycobacterium tuber-
culosis and salmonella) for two main reasons (i) the immune
response elicited by the host towards these pathogens are
markedly different from the acute viral and bacterial infections
and (ii) there are clear tests available for diagnosing these and
therefore, clinically there is no compelling requirement for
including these in the general VB10 score.

(f) COVID-19: At present, there is an ongoing pandemic due to
SARS-CoV-2 infection (COVID-19) that has been causing a very
large number of deaths globally and considerable disruption to
normal activities world over [65,66]. We evaluated if our score
could be useful in detecting COVID-19 infections using the pub-
licly available patient transcriptome data capturing host
response to SARS-CoV-2. Towards this, we considered four pub-
licly available bulk transcriptome datasets (CRA002390,
GSE150316, GSE156063 and GSE152418) containing 167
COVID-19 samples from different sample sources [67,68]. Raw
counts of the respective datasets were normalized by size fac-
tors using DESeq2 package in R [69]. Next, we computed
patient-wise VB10-score by taking the fold variation in expres-
sion of the genes in our panel-VB. We find that the score clearly
indicates a viral infection in almost all cases and with > 0.95
probability (Fig. 6b). This suggests that the VB10 score could be
tested for differentiating between COVID-19 infections from
common bacterial respiratory infections.
3.7. Benchmarking against prior biomarker panels with associated
diagnostic scores

Among the various panels that have been reported so far
[18,20,22�24,70,71], only two of them contains < 10 genes and have
diagnostic scores associated with them. The scores enable testing the
biomarkers on individual samples and increase their readiness for
Table 2
Assessment of genes in prior signatures in the current biomarker discovery pipeline. A cros

Viral Markers

Sweeney7 Herberg2
Biomarkers IFI27 JUP LAX1 IFI44L Bioma

Transcripts common across discovery datasets x x x x Transc
Transcripts mapped onto hPPiN�V2.0 x x x x Transc
Viral Response Core x X X X Bacter
DEGsetV (V Vs HC) x X X x DEGse
DEGsetVB (V Vs B) x x x x DEGse
Panel -V x X X X Panel
implementation in the clinic. We report a rigorous comparison of the
performance of our VB10 score, the underlying Panel-V, B and VB in
2,996 samples from 56 datasets with the two prior panels and their
scores. The first is a seven gene based bacterial/viral metascore (here-
after this gene panel (and score) will be referred to as Sweeney7
(Sweeney7-Score)) that the authors have used for distinguishing viral
from bacterial infections in sepsis [24]. The second, the Disease Risk
Score (DRS) based on FAM89A and IFI44L (hereafter this gene panel
(and its score) will be referred to as Herberg2 (Herberg2-Score)) [18],
which the authors have used for a similar purpose in pediatric febrile
illness. 2 genes IFI27 and HK3 from the Sweeney7 panel are also a
part of our Panel-VB, while there is no overlap with the Herberg2
panel. To test how our Panel-VB fares in comparison to these panels,
we computed standard classification metrics of all three signatures
for the validation datasets. We found that Panel-VB fared well in
terms of accuracy, sensitivity, specificity, and AUC in comparison to
the other two signature panels (Table S7). The performance of the
sub-panels Panel-V and Panel-B in the Validation Set-1 and Valida-
tion Set-2 datasets are clearly better as compared to the correspond-
ing panels from the previous two signatures (Tables. S8, S9). Score
level comparison demonstrates VB10 score is performed in par with
Sweeney7-Score and better than Herberg2-Score in terms of specific-
ity (Data file S10).

As clear from the discussion so far, different computational
approaches yield different panels, as their identification is based on
different perspectives. This in fact illustrates the need for probing
transcriptome datasets with independent approaches. Our network
approach uses an unbiased screening of the transcriptome to identify
the panels and yet, most of the genes in the Sweeney7 and Herberg2
panels were absent in our final list. We carried out a systematic eval-
uation at each step of the pipeline to determine the step at which
they were eliminated (Table 2). Except for HK3 and IFI27 from Swee-
ney7, all other genes failed to satisfy at least one of the three filters.
Besides IFI27, other viral markers from both these panels were not
present in our viral response core and were not significantly differen-
tially expressed in all the viral diseases. The bacterial markers from
these panels, although formed a part of our bacterial response core,
failed to show significant differential expression in comparison with
healthy controls as well viral vs bacterial comparisons.

Overall, our signature, which was independently derived and dif-
ferent from the first two, shows high accuracy and improved specific-
ity as compared to Sweeney7 and improved in both sensitivity and
accuracy as compared to Herberg2.
4. Discussion

Whole blood transcriptomes in different diseases have consis-
tently indicated high promise as diagnostic biomarkers. This holds
for the problem being investigated in this work, which is to discrimi-
nate bacterial from viral infections, as several studies have described
distinct host response patterns to these two disease classes [15�17].
The next logical step is to push towards translation and facilitate their
clinical use. Several critical issues must be addressed before a
s(X) indicates not meeting the criteria.

Bacterial Markers

Sweeney7 Herberg2
rkers HK3 TNIP1 GPAA1 CTSB FAM89A

ripts common across discovery datasets x x x x x
ripts mapped onto hPPiN � V2.0 x x x x x
ial Response Core x x x x X
tB (B Vs HC) x X X X X
tVB (V Vs B) x X X X X
-B x X X X X
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biomarker discovery can translate to clinical use, which include (a)
establishing the need for a biomarker and defining the context, (b)
establishing the ability of the biomarker to achieve acceptable diag-
nostic accuracy (given the clinical context of interest), (c) demon-
strating sufficient generality - in particular a biomarker should show
high accuracy in a population where it is intended to be used and (d)
making it accessible as a simple readout to the clinician, for it to be a
candidate for routine clinical use. Our work meets all these require-
ments. The need for a biomarker to distinguish between viral and
bacterial infections is acute and evident from the growing burden of
AMR. The clinical context is clear too as a good biomarker can assist
the clinician in deciding whether to prescribe antibiotics and have a
far-reaching effect on making therapy more effective and safer. The
need is the highest in developing countries like India [7,72].

In this work, we have discovered a 10 gene marker panel and
tested its performance for detecting viral and bacterial infections,
and discriminating between them with high accuracy, sensitivity,
and specificity. Based on the panel, we develop a new diagnostic
score and show that our score can correctly detect if the infection in a
given sample is due to viral or bacterial etiologies in more than 2,996
cases in all. An ultimate test to assess the clinical utility of the diag-
nostic score is to measure its ability to guide decision-making in
terms of whether or not to prescribe antibiotics. In this study, we do
this retrospectively and show that if we were to use our score as a
diagnostic test, we would be able to match the diagnosis and the
decision made by a clinician in almost all cases. A current limitation
is that our score has not been tested for identifying co-infections. To
test it in co-infection scenarios, we would require information on the
primary infection and the superinfection for each sample. Such infor-
mation is not available for the datasets that are publicly available,
and it was therefore not included in our objectives. However, the
individual panels (Panel-V and Panel-B) are likely to be useful in
detecting the co-infection status.

Genetic heterogeneity and biological variability are major factors
that limit the progression of candidate biomarkers to the clinic. Our
method that includes the use of networks to model the host response
to infections as an early step, largely addresses these limitations. Net-
work-based biomarker selection methods have been shown to be
naturally resistant to batch variation, making them highly effective
with high reproducibility [28,73]. Evaluation of our signature on mul-
tiple ethnicities and populations, especially including those where it
is intended to be used, addresses the problem posed by genetic het-
erogeneity. Identifying a specific gene panel and studying large
meta-datasets from multiple cohorts alleviate the problem of biologi-
cal variability, which can be due to a multitude of confounding fac-
tors. A biomarker must show variations at a level over and above the
variations due to these confounders. A single gene as a biomarker is
rarely sufficient for catering to a wide cross-section of people or mul-
tiple populations as it is unlikely to be a clear DEG in all patients.
Instead, the combined effect of a panel of genes has higher promise
as a biomarker, since in any given patient, at least some genes in the
panel are highly likely to exhibit expected variations.

Finally, focusing on mechanistically relevant genes in the panel
reduces the chance of failure in predicting clinical behavior. Our
multi-gene biomarker Panel-VB comprises MX1, EPSTI1, ISG15, IFI27
and IFI44 as being characteristic of viruses while five others are char-
acteristic of bacterial infections, comprising GYG1, MMP9, HK3,
DNMT1 and PRF1. The role of guanosine triphosphate (GTP)-metabo-
lizing (MX1), Interferon Alpha Inducible Protein 27 (IFI27) and Inter-
feron Induced Protein 44 (IFI44) in cellular antiviral response against
a wide range of RNA and DNA viruses is well established [57,74]. Epi-
thelial Stromal Interaction 1 (EPSTI1), an IL-28A-mediated interferon-
inducible gene is known to mediate antiviral activity through RNA-
dependent protein kinase (PKR) genes [75]. Glycogenin 1 (GYG1),
involved in glycogen synthesis, is known to be a part of a neonatal
immune-metabolic network associated with bacterial infections
[76,77]. Matrix metalloproteinase 9 (MMP9), a member of a family of
proteolytic enzymes is known to perform multiple roles in the
immune response to infection and has been paradoxically linked to
the degradation of the extracellular matrix, gelatinases, and collec-
tins, leading to a loss of its innate immune functions including aggre-
gation of bacteria and phagocytosis [78,79]. Hexokinase 3 (HK3), that
is selectively expressed in hematopoietic cells and subsets of immune
cells is an innate immune receptor, acts as an innate sensor during
bacterial infection. It recognizes sugars from bacterial peptidoglycans
and dissociates it from the mitochondrial outer membrane, triggering
the downstream activation of inflammasome [80]. DNA methyltrans-
ferase 1 (DNMT1) is involved in maintenance and propagation of DNA
methylation patterns to the newly synthesized strands. DNA methyl-
ation is known to be a transcriptional regulator of the immune sys-
tem and have a critical role in T cell development, function, and
survival [81]. Perforin 1 coded by PRF1 is essential for secretory gran-
ule-dependent cell death, and combat pathogen load in a variety of
infections [82].

Overall, we present a new RNA based biomarker signature and a
new blood test to distinguish between viral and bacterial infections
that can guide a physician in choosing an optimal treatment plan
including a decision of whether to prescribe antibiotics. In a clinical
setting, we believe this test will help enable the judicious use of anti-
biotics and reduce the AMR burden.
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