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ABSTRACT
Background: Vascular endothelial growth factor (VEGF) is a critical regulator of malignant pleu-
ral effusion (MPE) in non-small-cell lung cancer (NSCLC). Bevacizumab (BEV) and apatinib (APA)
are novel VEGF blockers that inhibit lung cancer cell proliferation and the development of pleu-
ral effusion.
Methods: In this study, we established Lewis lung cancer (LLC) xenograft mouse models to
compare the therapeutic effect of APA and BEV in combination with cisplatin (CDDP) against
MPE. The anti-tumour and anti-angiogenic effects of this combination therapy were evaluated
by 18F-FDG PET/CT imaging, TUNEL assay and Immunohistochemistry.
Results: The triple drug combination significantly prolonged the overall survival of the tumour-
bearing mice by reducing MPE and glucose metabolism and was more effective in lowering
VEGF/soluble VEGFR-2 levels in the serum and pleural exudates compared to either of the
monotherapies. Furthermore, CDDPþAPAþ BEV promoted in vivo apoptosis and decreased
microvessel density.
Conclusions: Mechanistically, LLC-induced MPE was inhibited by targeting the VEGF-MEK/ERK
pathways. Further studies are needed to establish the synergistic therapeutic effect of these
drugs in NSCLC patients with MPE.

KEY MESSAGES

Combined treatment of MPE with apatinib, bevacizumab and cisplatin can prolong the survival
time of mice, reduce the content of MPE, decrease the SUVmax of thoracic tumour tissue, down-
regulate the content of VEGF and sVEGFR-2 in serum and pleural fluid, and promote the apop-
tosis of tumour cells. Angiogenesis and MPE formation can be inhibited by down-regulation of
HIF-1a, VEGF, VEGFR-2, MEK1 and MMP-2 molecular signalling pathway proteins.

Abbreviations: APA: Apatinib; BEV: Bevacizumab; CD31: Cluster of differentiation 31; CDDP:
Cisplatin; ERK: Extracellular signal-regulated kinase; ELISA: Enzyme-linked immunosorbent assay;
18F-FDG: 18F-fluorodeoxyglucose; HIF-1a: Hypoxia-inducible factor-1a; IPC: Indwelling pleural
catheter; LLC: Lewis lung cancer; MPE: Malignant pleural effusion; MEK: Mitogen-activated pro-
tein kinase kinase; MEK1: MAPK/ERK kinase 1; MMP-2: Matrix metalloproteinase 2; MVD:
Microvessel density; OS: Overall survival; NSCLC: Non-small cell lung cancer; PlGF: Placenta
growth factor; PET/CT: Positron emission computed tomography; ROI: Region of interest; SPF:
Specific pathogen free; sVEGFR-2: Soluble vascular endothelial growth factor receptor 2; SUVmax:
Maximum standard uptake value; TKI: Tyrosine kinase inhibitor; VEGF: Vascular endothelial
growth factor
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Introduction

Non-small-cell lung cancer (NSCLC) is the most prevalent
among all lung malignancies, and accounts for most
cancer-related deaths with an annual mortality rate of
1.6 million worldwide [1,2]. The first-line treatment
against NSCLC includes surgery, chemo-immunotherapy
or radiotherapy. Furthermore, several molecular therapies
targeting immune checkpoints, epidermal growth factor
receptor (EGFR), tyrosine kinases and cell cycle mediators
have been developed in recent years, Nevertheless, the
overall 5-year survival rate of NSCLC patients remains
less than 14% [3]. The Lewis lung cancer (LLC) cell line
was established from the lung tissues of C57BL/6 mice
implanted with primary Lewis lung carcinoma cells. LLC
is highly metastatic in immunocompetent mice and is
routinely used to evaluate the efficacy of chemothera-
peutic agents in vivo [4].

Malignant pleural effusion (MPE) is a common com-
plication of advanced NSCLC that significantly lowers
patient quality of life and shortens the overall survival
(OS) [5]. It can be cleared by thoracentesis, intra-pleu-
ral drug infusion, biological response modifiers and
drainage via simple puncture, although the final out-
comes are usually unsatisfactory. The molecular mech-
anisms underlying the induction of MPE are complex
and poorly understood. However, recent studies have
implicated angiogenesis to be an important factor
[6,7]. The metastatic pleural tumour cells infiltrate into
lymphatic vessels and block reflux absorption of the
pleural fluid, which triggers local inflammation in the
pleura. The ensuing increase in the levels of vasoactive
mediators such as vascular endothelial growth factor
(VEGF), tumour necrosis factor (TNF) and chemokine
ligand (CCL) 2, and the decrease in protective factors
like endostatin increase the permeability of the pleural
capillary walls, eventually leading to MPE [8].
Furthermore, the upregulation of oncogenic transcrip-
tion factors in the pleural exudates exacerbates inflam-
mation, vascular leakage, angiogenesis, tumour
dissemination, and drug resistance. The VEGF family
promotes endothelial cell proliferation and angiogen-
esis and is also associated with MPE in patients with
advanced NSCLC [9,10]. Pre-clinical and clinical studies
show that decreasing VEGF levels in NSCLC patients
can significantly control pleural effusion [6,11,12].
Therefore, VEGF-targeted therapies are a viable pallia-
tive strategy for patients with MPE.

Bevacizumab (tradename: Avastin; BEV), a recom-
binant humanized monoclonal antibody targeting
VEGF, was the first anti-angiogenic drug approved in
the United States to treat MPE [13,14]. It binds to
human VEGF (VEGF-A) and blocks the VEGF-VEGFR

pathway, thereby inhibiting the growth of new blood
vessels in the tumour and promoting tumour cell
apoptosis. The tyrosine kinase inhibitor (TKI) apatinib
(YN968D1, APA) selectively targets VEGFR-2 [15,16]
and has been approved for treating advanced or
metastatic chemo refractory gastric cancer in China
[17,18]. APA can effectively block the kinase activity of
VEGFR-2, c-kit and c-src, as well as the phosphoryl-
ation of VEGFR-2, c-kit and platelet-derived growth
factor receptor beta (PDGFRb) [19]. It can inhibit the
proliferation, migration and tubular formation of
human umbilical vein endothelial cells in vitro, and the
germination of aortic rings in rats [12,19–21]. In add-
ition, APA has shown satisfactory efficacy against solid
tumours with tolerable side effects [21–23].
Interestingly, the combination of APA with other che-
motherapeutic drugs can effectively inhibit the growth
of various human xenografts in animal models
[19,24,25]. However, the effect of APA either alone or
in combination with other anti-angiogenic drugs on
MPE has not been reported so far.

VEGFR-1 and VEGFR-2 are the main receptors of
VEGF that relay signals of cell proliferation, angiogen-
esis, and vascular permeability [26,27]. VEGFR-2-
dependent endothelial cell proliferation in NSCLC
tumours is directly correlated with MPE [28,29] and
can be controlled by intrathoracic administration of
cisplatin (CDDP). Several studies have reported benefi-
cial outcomes of the combination of traditional che-
motherapeutic drugs and anti-angiogenic drugs
against solid tumours [30–34]. We recently reported
the efficacy of the simultaneous angiogenesis block-
ade in NSCLC with BEV and APA [8], and the combin-
ation of BEV and CDPP is an effective and safe option
for clearing MPE [35,36]. Several studies have shown
that intrapleural anti-VEGF and/or anti-EGFR adminis-
tration reduced pleural fluid volume and the levels of
inflammatory mediators without affecting patient sur-
vival [37]. Furthermore, VEGFR-2 blockade alone is not
sufficient to achieve the maximum therapeutic effect
against MPE since tumour-derived VEGF can also
promote metastasis via the VEGF/VEGFR-1 signalling
pathway [38]. However, the therapeutic efficacy of
anti-angiogenic drugs in combination with CDDP, and
the underlying mechanisms, remain unclear [39,40]. To
this end, we evaluated the effects of the triple com-
bination of BEV, APA and CDDP on Lewis lung cancer
(LLC) cell-induced MPE in a mouse model. The novel
drug combination inhibited tumour angiogenesis and
growth by targeting the VEGF/VEGFR-related pathways
and can potentially improve the prognosis of NSCLC
patients with MPE.
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Materials and methods

Drugs and reagents

APA mesylate tablets (Aitan) were purchased from
Hengrui Co. Ltd. (Lianyungang, Jiangsu, China), BEV
from Roche Pharmaceutical Co. Ltd. (Shanghai, China),
and CDDP from Jiangsu Hansoh Pharma Group Co.
Ltd. (Lianyungang, Jiangsu, China). The optimum doses
and timing for APA [19,41], BEV and CDDP [13,42]
were determined based on previous reports and a pre-
liminary experiment was as follows: CDDP � 2mg/kg
per day once a week, APA � 200mg/kg per day daily,
and BEV � 5mg/kg twice a week.

Cell culture

LLC cell line was purchased from Otwo Biotech (cata-
log number: HTX1771; Shenzhen Inc., Guangdong,
China) and cultured in Dulbecco’s Modified Eagle’s
medium (DMEM, HyClone, Thermo Scientific, USA) sup-
plemented with 10% foetal bovine serum (Thermo
Fisher Scientific, Waltham, MA, USA) and 1% (v/v) anti-
biotics (100 units/mL penicillin G sodium and 100 lg/
mL streptomycin sulphate; Sigma-Aldrich, St Louis,
MO, USA) under 5% CO2 at 37 �C. The cell line was fin-
gerprinted within 6months of the experiments [43].

Establishment of LLC xenograft model of MPE and
treatment regimen

In this study, we were established a MPE mouse
model with LLC cell lines according to the standard
model [43–45]. For more details, 98 male C57BL/6
mice (age 6–8weeks) were purchased from Dashuo
Animal Laboratory Centre (Chengdu, China) and
housed in specific-pathogen-free (SPF) conditions at
21 ± 1 �C, 40 ± 10% relative humidity and a 12-h light/
dark cycle, with ad libitum access to water and food.
The MPE xenograft model was established by injecting
200 lL LLC cell suspension (1� 106 cells/mL) into the
right thoracic cavity of each mouse anaesthetised with
1% pentobarbital (50mg/kg) through the right axillary
front and the sixth costal space [43]. Nine days later,
the mice were intrathoracically injected with different
combinations of BEV and CDDP [45] and given oral
gavage of APA or intra-lumen injection of normal
saline for eight consecutive days (n¼ 14 each, n ¼
n1þ n2) [46]. The specific treatment groups were as
follows: (1) Control – intra-lumen injection of 0.1mL
normal saline on day 10 and tube feeding with 0.5mL
from days 11 to 17, (2) CDDP � 2mg/kg CDDP on day
10, (3) APA – normal saline on day 10 and 200mg/kg

APA from days 11 to 17, (4) BEV - normal saline on day
10 and 5mg/kg BEV on days 11 and 15, (5) CDDPþAPA
group: 2mg/kg CDDP on day 10 and 200mg/kg APA
from days 11 to 17, (6) CDDPþ BEV group: 2mg/kg
CDDP on day 10 and 5mg/kg BEV on days 11 and 17,
and (7) CDDPþAPAþ BEV group: 2mg/kg CDDP on day
10, 200mg/kg APA from days 11 to 17, and 5mg/kg
BEV on days 11 and 15. Six mice were randomly selected
from each group (n1) for overall survival analysis, and
the remaining 8 (n2) were monitored twice a day for
changes in body weight and euthanized on the day 19.
The general conditions of the animals, including eating,
activity, appearance, and response to external stimuli,
were observed twice a day. We carried out euthanasia
through excessive anaesthesia. The specific method was
to closely observe the condition of the mice after intra-
peritoneal injection of pentobarbital (150mg/kg). When
the voluntary breathing disappeared, the voluntary
heartbeat was suspended, and the eyeball pupil was
fixed and dilated, the mice were determined to be dead.
On day 19, mice (n2) were euthanized under anaesthe-
sia. After euthanasia, all samples, blood, pleural exudates
and tumour tissues, were collected, and the volume of
bilateral pleural effusion was measured. The tumour-
bearing mice were dissected and the gross findings
were photoed. Three days after the detection of tumour
growth, all the remaining mice underwent PET/CT to
observe the MPE formation and calculate the rate of
MPE formation at this time point; The observation was
repeated on the 18th day, and the rates of MPE forma-
tion were also calculated. As previously described [8],
the pleural effusion in the bilateral thoracic cavity was
gently extracted using a syringe and the fluid volume
was recorded. All procedures were conducted as per the
guidelines of the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (NIH
Publications No. 8023, revised 1978), and approved by
the Institutional Animal Care and Treatment Committee
of Southwest Medical University, Luzhou, Sichuan, China.

18f-FDG micro-positron emission tomography
(PET)/computed tomography (CT) imaging

The metabolic status of the tumour tissues was ana-
lysed on day 18 in the n2 group by 18F-FDG micro-
PET/CT using the Inveon micro PET/CT animal scanner
(Siemens, Munich, Germany). Briefly, the mice were
fasted for at least 8 h before the scan and anaesthe-
tized by an intraperitoneal injection of 1% pentobar-
bital at the dose of 50mg/kg [47]. Fifteen minutes
later, the animals were checked for depth of anaesthe-
sia by a toe pinch to verify no response and then
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were injected with 18F-FDG. Each mouse was then
injected with 0.1–0.2mL of 150–200 lCi 18F-FDG
through the tail vein and placed in the centre of the
PET/CT ring field of view 30–40min later. After induc-
tion of anaesthesia, mice were placed in a supine pos-
ition, with their heads fixed [47]. Whole body scans
were performed in the 2D mode with 10min per bed
position. Other scanning parameters were 80 kV, 500
lA and 1.5mm slice collimation. The tumour region of
interest (ROI) in the chest cavity of each mouse was
delineated, and the maximum standardized uptake
value (SUVmax) was calculated using the single hottest
pixel within the tumour. The PET/CT images and data
were analysed by two nuclear medicine experts.

Immunohistochemistry

The tumour nodules were fixed in 10% neutral formal-
dehyde, embedded in paraffin, and cut into 5-lm-
thick sections. For immunohistochemical analysis, the
tumour sections were dewaxed and soaked in 0.01M
sodium citrate (pH 6) for 24 h, and heated in a pres-
sure cooker heated for 90 s. After blocking non-specific
reactions with 2% normal mouse serum (Santa Cruz
Biotechnology, Santa Cruz, CA) for 30min at room
temperature (RT), the sections were incubated in lev-
amisole (Vector Laboratories, Burlingame, CA) to
quench endogenous alkaline phosphatase. The slides
were then rinsed with PBS, and incubated overnight
with rabbit anti-hypoxia-inducible factor (HIF)-1a
(1:100, Bioss Biotechnology Co. Ltd., Beijing, China),
anti-VEGF (1:200, Abcam Trading Co. Ltd., Shanghai,
China), anti-VEGFR-2 (1:200, Abcam Trading Co. Ltd.,
Shanghai, China), anti-MEK1 (1:300, Abcam Trading Co.
Ltd., Shanghai, China), anti-cluster of differentiation 31
(CD31) (1:200, Abcam Trading Co. Ltd., Shanghai,
China), and anti- matrix metalloproteinase (MMP)-2
(1:100, Proteintech Group Inc., Wuhan, China) primary
antibodies at 4 �C. Normal anti-rabbit IgG, normal pre-
immune anti-goat IgG, or tris-buffered saline were
used as negative controls. After washing once, the sec-
tions were sequentially probed with biotinylated goat
anti-rabbit IgG and horseradish peroxidase-labelled

anti-goat secondary antibody (1:200, Aspen medical
products Co. Ltd., California, USA) for 50min at RT,
rinsed four times with PBS, and incubated with DAB
substrate (ZLI-9033, ZSGB Biotechnology Co. Ltd.,
Beijing, China) until the desired colour was achieved
(Table 1). Subsequently, the sections were counter-
stained with haematoxylin, dehydrated through an
ethanol gradient and xylene, and fixed with neutral
glue. All sections were visualized under the Axioplan 2
microscope (Zeiss, Toronto, ON, Canada) and the
images were analysed using Zeiss Axiovision software
(Zeiss; New York, NY, USA). Five random, non-overlap-
ping fields per section were observed at 100� and
400� magnification using a MicroPublisher imaging
system (Q-IMAGING, Surrey, BC, Canada), and the
immuno-positive areas were evaluated by two inde-
pendent pathologists. All sections were counterstained
in haematoxylin nuclear fast red for 10min. The
expression intensities of the different proteins were
calculated as a/b� 100% � c [48], where a, b and c
respectively indicate the positively stained area, total
area and average grey level of each section at 400�
magnification. The microvessel density (MVD) was cal-
culated as the mean area occupied by microvessels in
five CD31þ hotspots at 100� magnification. In add-
ition, the number of microvessels was counted in
these areas at 400�, and the average was calculated
[49]. The images were separately analysed by two
pathologists.

Enzyme-linked immunosorbent assay (ELISA)

The levels of soluble VEGFR-2 (sVEGFR-2) and VEGF in
the blood and pleural exudates were evaluated using
specific sandwich ELISA kits according to the manufac-
turer’s instructions (Wuhan, Boster Biological
Technology, China). The absorbance [optical density
(OD) value] of each well at 450 nm was measured
within 10min of adding the stop solution provided in
the kit, and the values were normalized to that of the
blank. A standard curve was then plotted according to
the concentration of the standards and the corre-
sponding OD values, and the amount of sVEGFR-2 and

Table 1. Detailed profiles of used antibodies.
Antibody name Supplier Clone Catalogue No. Dilutions Incubation Time/Temp.

CD31 Abcam Rabbit polyclonal ab28364 1:200 Overnight at 4 �C
HIF-1a Bioss Rabbit polyclonal bs-0737R 1:100 Overnight at 4 �C
VEGF Abcam Rabbit polyclonal ab52917 1:200 Overnight at 4 �C
VEGFR-2 Abcam Rabbit polyclonal ab194806 1:200 Overnight at 4 �C
MEK1 Abcam Rabbit polyclonal ab178876 1:300 Overnight at 4 �C
MMP-2 Proteintech Group Rabbit polyclonal 10373-2-AP 1:100 Overnight at 4 �C
HRP labelled goat Anti-rabbit IgG Aspen Goat anti-rabbit IgG AS-1107 1:200 60min at 37 �C

CD31: cluster of differentiation 31; HIF-1a: hypoxia-inducible factor-1a; HRP: horseradish peroxidase; MEK1: MAPK/ERK kinase 1; MMP-2: matrix metallo-
proteinase 2; VEGF: vascular endothelial growth factor; VEGFR-2: vascular endothelial growth factor receptor 2.
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VEGF was calculated using a regression equation. The
lower limit of detection for sVEGFR-2 was 300 ng/L
and that for VEGF was 12.5 ng/mL. The ELISA reader
and washer used in this study were Stat-Fax 2100 and
Stat-Fax 2600 (USA), respectively.

Terminal deoxynucleotidyl transferase dUTP nick
end labelling (TUNEL) assay

Pleural tumour tissues were stained using a TUNEL kit
(Roche Applied Science, Indianapolis, IN, USA) accord-
ing to the manufacturer’s protocol, and imaged and
analysed using Image J in a blinded manner. The
TUNEL-positive apoptotic cells were counted in at
least five random fields (magnification: 200�), and the
relative percentage was calculated. The experiment
was repeated thrice.

Statistical analysis

All statistical analyses were performed using SPSS soft-
ware version 23.0 (SPSS Inc., Chicago, IL, USA) and
GraphPad Prism software version 7.0 (GraphPad
Software Inc., La Jolla, CA, USA). All tests were
repeated three times or more. Quantitative data are
expressed as mean± standard deviation. Multiple
groups were compared by one-way analysis of vari-
ance (ANOVA), and the average number of pairwise
comparisons was determined by Tukey’s test.
Spearman’s rank correlation coefficient test was used to
determine the association between two variables.
Survival duration and rate were evaluated by the
Kaplan–Meier method, and the log-rank test was used to

compare survival curves. For all tests, two-sided p values
less than .05 were considered statistically significant.

Results

CDDPþAPAþBEV prolonged survival and
decreased LLC growth and pleural effusion

The effects of BEV, CDDP, APA and their different com-
binations were tested in an LLC-induced MPE model.
The grouping, therapeutic regimens and subsequent
analyses are outlined in Figure 1.

As shown in Figure 2(A), on day 19, the body weight
of the mice treated with BEV (20.40±0.26g), APA
(20.21±0.24g) or CDDP (19.50±0.24g) alone was signifi-
cantly higher than that of the mice treated with normal
saline (Control: 18.00±0.24g; p< .01). Combining CDDP
with either APA (21.00±0.16g) or BEV (20.80±0.28g)
further improved the body weight of tumour-bearing
mice (p< .01 compared to control), although no signifi-
cant difference was observed between the CDDPþAPA
and CDDPþ BEV groups (p¼ .67). The highest average
body weight was observed in the CDDPþAPAþ BEV
group (21.53±0.28g). Consistent with this finding, the
drug triad also significantly prolonged the median sur-
vival of tumour-bearing mice to 30days compared with
only 20days observed in the control group (Figure 2(B)).
Furthermore, APA (25days), BEV (25days) and CDDP
(22days) monotherapies also prolonged survival (p< .01
compared to Control), although the individual drugs
were less effective compared to their combination
(p< .01). Finally, pleural effusion volume was also signifi-
cantly lower in the CDDPþAPAþ BEV group
(0.59±0.06mL) compared with that in the CDDPþ BEV

Figure 1. BEV, APA and CDDP treatment regimen. Each arrow corresponds to the individual drug. APA: apatinib; BEV: bevacizu-
mab; CDDP: cisplatin; PET/CT: Fluorine-18-fluorode oxyglucose (18F-FDG) micro-positron emission tomography/com-
puted tomography.
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(0.78±0.04mL), CDDPþAPA (0.79±0.04mL), APA
(1.05±0.11mL), BEV (1.01±0.08mL) and CDDP
(1.32±0.06mL) groups. CDDPþAPA and CDDPþ BEV
had a similar effect on MPE as that observed with body
weight (p¼ 1.00). Taken together, the combination of
BEV, APA and CDDP significantly decreased tumour
growth and pleural effusion and prolonged the survival
of the tumour-bearing mice compared to the individ-
ual drugs.

The triple combination therapy reduced glucose
metabolism in LLC xenografts

The metabolic effects of different therapies were eval-
uated by 18F-FDG PET/CT (Figure 3) with SUVmax as the
quantitative index for radioactive uptake [50]. The SUVmax

values for BEV (3.58±0.18), CDDP (4.03±0.18) and APA
(3.36±0.17) monotherapies were significantly lower than
that for the control group (4.49±0.29). The different

combinations of APA, BEV and CDDP further lowered the
SUVmax values, with the lowest was observed for
CDDPþAPAþ BEV (2.41±0.33). No significant differences
were observed between the CDDPþAPA and
CDDPþ BEV groups (2.71±0.34 vs 2.76±0.39; p¼ 1.00).
Taken together, the combination therapy inhibited the
growth of tumour nodules in the pleural cavity by effect-
ively reducing glucose metabolism.

The triple combination therapy inhibited
angiogenesis in tumour tissues

Tumour growth and angiogenesis were also evaluated
in terms of the MVD. As shown in Figure 4(A), the
combination therapy significantly decreased the intensity
of CD31þ staining in the tumour tissues compared to
the monotherapies and untreated control. Consistent
with this, the MVD in the pleural tumour nodules was
significantly decreased in the CDDPþAPAþ BEV

Figure 2. Combination therapy decreased MPE and prolonged survival of tumour-bearing mice. (A) The body weight of tumour-
bearing mice in the indicated treatment groups. The data are shown as the mean± SD. (B) Kaplan–Meier survival curves for the
differentially treated mice. (C) Bilateral pleural effusion volume in the differentially treated mice. Data are expressed as mean± SD.�� p< .01 vs CDDPþAPAþ BEV. APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; LLC: Lewis lung cancer; n.s.: not significant;
SD: standard deviation.
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(2.80±0.83), CDDPþ BEV (7.60±0.87) and CDDPþAPA
(7.04±1.12) groups compared to that in each of the
monotherapy groups and the control group
(21.13±1.55). The MVD was highest in the untreated
controls, followed by the CDDP, BEV, APA, CDDPþ BEV,
CDDPþAPA and CDDPþAPAþ BEV groups in that
order. Taken together, BEV and APA in combination with
CDDP synergistically inhibited tumour angiogenesis,
resulting in significant tumour regression.

The combination of APA or BEV with CDDP
synergistically induced apoptosis of tumour cells

As shown in Figure 5, the apoptotic index of pleural
tumour nodules was markedly higher in the
CDDPþAPAþ BEV group compared with that in other
groups. The percentage of TUNELþ apoptotic tumour
cells was highest in mice treated with the drug triad, fol-
lowed by CDDPþAPA, CDDPþ BEV, BEV, APA and
CDDP in that order (Figure 5(A)) and were significantly
higher compared that in the untreated controls (p< .01).
Furthermore, the apoptosis rate was significantly higher
in the CDDPþAPAþ BEV group compared to the rest
(8.85±1.23%, p< .01 vs. all). The combination of APA or

BEV with CDDP increased apoptosis compared to either
monotherapy (p< 0.01). Therefore, the combination of
an angiogenesis blocker with CDDP can synergistically
induce apoptosis in the tumour cells.

The drug triad downregulated VEGF/sVEGFR-2
level in tumour-bearing mice

To gain further insights into the mechanisms underlying
the anti-angiogenic effects of BEV, APA and CDDP, we
next analysed the levels of VEGF and sVEGFR-2 in the
serum and pleural fluid of the tumour-bearing mice. As
shown in Figure 6(A), VEGF levels in the serum
(22.85±2.20ng/mL; p< .01 vs. all) and pleural exudates
(31.96±3.04ng/mL; p< .05 vs. all) of mice in the
CDDPþAPAþ BEV group were the lowest compared to
that in other treatments groups. Consistent with this, the
level of sVEGFR-2 was the highest in the untreated control
group in the serum and pleural fluid, followed by the
CDDP, BEV, APA, CDDPþ BEV, CDDPþAPA and
CDDPþAPAþ BEV groups in that order. There was a sig-
nificant difference between other groups with
CDDPþAPAþ BEV (p< .05). Taken together,
CDDPþAPAþ BEV achieved simultaneous inhibition of

Figure 3. Combination therapy reduced glucose metabolism in LLC xenografts. (A) Representative 18F-FDG PET images of the indi-
cated groups on day 18. (B) SUVmax values in the indicated treatment groups. The arrow shows the location of the internal
tumours. Data are expressed as mean± SD. �� p< .01 vs CDDPþAPAþ BEV. 18F-FDG PET/CT: Fluorine-18-fluorode oxyglucose
(18F-FDG) micro-positron emission tomography/computed tomography; APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; SD:
standard deviation; LLC: Lewis lung cancer; n.s.: not significant; SUVmax: maximum standardised uptake value.
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VEGF and sVEGFR-2 in the serum and pleural fluid, which
decreased neo-angiogenesis and growth.

The triple drug combination therapy
synergistically inhibited the VEGF/MAPK/ERK
pathway in pleural tumour nodules

The MAPK pathway is a critical oncogenic pathway
and the target of multiple chemotherapeutic drugs
[51]. Therefore, we next analysed the expression levels
of the downstream VEGF-induced mitogen-activated
protein kinase kinase (MEK)/extracellular signal-regu-
lated kinase (ERK) signalling pathway. As shown in
Figures 7 and 8, the triple drug combination therapy

synergistically inhibited the in situ levels of HIF-1a,
VEGF, VEGFR-2, MEK1 and MMP-2 proteins compared
the control group (p< .01), as well as the monother-
apy groups (p< .01). Interestingly, HIF-1a, VEGF,
VEGFR-2 and MMP-2 expression was similar between
the CDDPþAPA and CDDPþ BEV groups (p> .05).
These findings indicate that BEV, APA and CDDP inhib-
ited angiogenesis in LLC xenografts by blocking the
MAPK/ERK and Ras/Raf/MEK/ERK pathways.

Discussion

The aim of our study was to analyse the possible syn-
ergistic effect of the combination of BEV, APA and

Figure 4. Combination therapy suppressed LLC tumour angiogenesis in vivo. (A) Representative images showing CD31 immunos-
taining in the tumour tissues of the differentially treated mice (original magnification, �400). The yellow arrow indicates positively
stained areas. (B) MVD in the pleural tumour nodules of the indicated groups. Data are expressed as mean± SD. �� p<.01 vs
CDDPþAPAþ BEV. APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; CD31: cluster of differentiation 31; LLC: Lewis lung cancer;
MVD: microvessel density; n.s.: not significant.
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CDDP against NSCLC complicated with MPE. The com-
bination therapy induced apoptosis in LLC cells and
reduced the volume of pleural effusion in tumour-
bearing mice, which significantly prolonged their sur-
vival. Mechanistically, the drug triad suppressed
NSCLC growth and angiogenesis by inhibiting the
VEGF-induced MAPK/ERK signalling pathway. This is
the first study to identify the therapeutic value of
combining BEV, APA and CDDP in NSCLC.

VEGF plays a vital role in promoting angiogenesis
and the pleural invasion of VEGF-overexpressing
tumour cells initiates MPE formation [52]. At present,

MPE clearance mainly relies on intra-pleural adminis-
tration of antineoplastic agents, thoracentesis, pleu-
rodesis, and the use of an indwelling pleural catheter
(IPC) [53,54]. Although the exact mechanism of MPE
formation is unclear, there is evidence implicating dir-
ect invasion of tumour cells into the pleura, tumour-
induced blockade of blood and lymphatic capillaries,
obstruction of lymphatic circulation by lymph node
metastasis, and increased permeability of pleural capil-
lary walls induced by tumour-secreted cytokines.
Studies show that VEGF-dependent angiogenesis and
increased capillary permeability are the main factors

Figure 5. Combination of bevacizumab, apatinib and cisplatin increased apoptosis in mouse xenografts. (A) Representative images
of TUNEL-stained (green) sections counterstained with DAPI (blue). Original magnification, �200. (B) Percentage of TUNEL-positive
cells in the pleural tumour nodules. �� p< .01 vs CDDPþAPAþ BEV. APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; n.s.: not
significant; TUNEL: terminal deoxynucleotidyl transferase dUTP nick end labelling.

Figure 6. Combination therapy synergistically down-regulated VEGF/sVEGFR-2. Bar graphs showing VEGF (A) and sVEGFR-2 (B) lev-
els in the serum and pleural exudates of the differentially treated mice. � p< .05, �� p< .01 vs CDDPþAPAþ BEV; # p< .05, ##

p< .01 vs CDDPþ BEV. APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; n.s.: not significant; sVEGFR-2: soluble vascular endothe-
lial growth factor receptor 2; VEGF, vascular endothelial growth factor.
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inducing MPE [55]. VEGF promotes vascular leakage by
opening the intercellular junctions and creating a fen-
estration on the endothelial lining [55], and its levels

are significantly higher in malignant as opposed to
benign pleural exudates [56]. VEGFR-1 and VEGFR-2
overexpression also aggravate MPE and tumour

Figure 7. Representative images showing immunostaining for HIF-1a, VEGF, VEGFR-2, MEK1 and MMP-2 in the tumour tissues of
the indicated groups (original magnification, �400). APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; HIF-1a: hypoxia-inducible
factor-1a; MEK1: MAPK/ERK kinase 1; MMP-2: matrix metalloproteinase 2; VEGF: vascular endothelial growth factor; VEGFR-2: vas-
cular endothelial growth factor receptor 2.

Figure 8. Combination therapy targets the VEGF-induced MAPK/ERK signalling pathway in tumour nodules. Horizontal bars show
mean± SD of cells positive for HIF-1a, VEGF, VEGFR-2, MEK1 and MMP-2. �� p< .01 vs CDDPþAPAþ BEV; # p< .05 vs
CDDPþ BEV. APA: apatinib; BEV: bevacizumab; CDDP: cisplatin; HIF-1a: hypoxia-inducible factor-1a; MEK1: MAPK/ERK kinase 1;
MMP-2: matrix metalloproteinase 2; n.s: not significant; SD: standard deviation; VEGF: vascular endothelial growth factor; VEGFR-2:
vascular endothelial growth factor receptor 2.

1366 Z. XIANG ET AL.



angiogenesis via autophosphorylation and endothelial
cell signal transduction [57,58]. Thus, reducing VEGF
levels can effectively control pleural effusion. BEV and
APA are novel angiogenesis blockers that respectively
target VEGF-A and VEGFR-2 [17,59]. Studies increas-
ingly show that an anti-angiogenic drug combination
can significantly reduce MPE and recurrent ascites for-
mation by targeting VEGFR-2 [29,60]. Furthermore,
intrapleural injection of the platinum-based CDDP is
routinely used to kill tumour cells and control MPE
since the drug cannot cross the pleural barrier easily
and therefore accumulates over time to therapeutically
high concentrations. However, the combination of BEV
and CDDP can clear MPE with an 80% effectivity rate
compared to 47.8% of CDDP alone [36].

The decrease in MPE relieves the squeezing of
lungs and reduces severe hypoxia, which increases
food intake in mice [8,61,62]. Previous studies have
shown that the drug combination can inhibit the
growth of transplanted tumours in mouse models
without significant weight loss and toxicity, and pro-
long survival [63,64]. In our study as well, combining
CDDP with either APA or BEV maintained the body
weight of tumour-bearing mice, which can be attrib-
uted to the higher food intake compared to the
untreated control animals. Tumour growth inhibition
is accompanied by reduced 18F-FDG uptake, which is
indicative of lower glucose metabolism and better
prognosis in vivo [65–67]. Studies have correlated a
lower SUVmax of tumour masses to slower tumour
growth and a better clinical outcome [68,69]. We
found that the different drug combinations signifi-
cantly reduced 18F-FDG uptake by the tumours com-
pared to the monotherapies.

Soluble VEGFR-2 (sVEGFR2) contains the extracellu-
lar domain of the VEGFR-2 receptor but lacks the tyro-
sine kinase domain and is activated in the hypoxic
tumour microenvironment [70,71]. W. Xu et al. [72]
found that the plasma sVEGFR-2 levels in renal cancer
patients decreased significantly following surgical
resection and adjuvant treatment with VEGFR-target-
ing TKIs. Consistent with this, the combination treat-
ment significantly decreased VEGF and sVEGFR-2
levels in the serum and pleural exudates of LLC xeno-
graft-bearing mice, which likely translates to decreased
neo-angiogenesis, normalised tumour blood vessels,
and a more balanced tumour microenvironment.

The combination of BEV, APA and CDDP inhibited
neo-angiogenesis in the LLC xenografts by blocking
the MAPK/ERK and Ras/Raf/MEK/ERK pathways, and
had a more pronounced effect on HIF-1a and MMP-2

than either drug alone. HIF-1 is the key activator of
hypoxia-induced angiogenesis and is regulated by the
tumour suppressor gene von Hippel Lindau (VHL).
Under normoxic conditions, HIF-1a is rapidly degraded
by the ubiquitin-proteasome pathway under the con-
trol of VHL. However, hypoxia or VHL deletions/muta-
tions results in the heterodimerization of HIF-1a and
HIF-1b, which then translocates to the nucleus and
activates VEGF transcription [73]. MMP-2 is an onco-
genic protein that degrades extracellular matrix pro-
teins and triggers mediates matrix remodelling and
vascularization [74]. It lies downstream of the VEGF
signalling cascade and plays an important role in the
invasion and metastasis of tumour cells. Studies show
that binding of VEGF with VEGFR-2 receptor induces
dimerization of the latter, which promotes tumour
angiogenesis by activating the C-RAF-MEK-MAPK path-
way [75,76]. VEGF/VEGFR-2 interaction also increases
microvascular permeability, and the proliferation, inva-
sion, migration and survival of endothelial cells
[77,78]. As shown in Figure 9, CDDP, APA and BEV
simultaneously target different intermediates in the
VEGF-induced MAPK/ERK signalling pathway and
NRF2-dependent antioxidant response pathways,
which enhances the anti-tumour effect.

The present study has some limitations that ought
to be considered. The small sample size and short
study duration may have affected the results. In add-
ition, we did not analyse the molecular and cellular
mechanisms underlying the synergistic action of BEV,
APA and CDDP. Further studies are needed to deter-
mine the long-term and short-term toxicity profiles of
these drugs, as well as the mechanistic basis of their
action. Some in vitro studies have shown that inhib-
ition of VEGF signalling effectively stimulates anti-
tumour immunity and enhances the efficacy of TKIs
and immune checkpoint blockade [76,79,80]. For
example, the combination of BEVþAtezolizumab
achieved a promising objective response ratio in renal
cell carcinoma [81]. Simultaneous blockade of PD-L1
and VEGF can suppress formation of blood and lymph-
atic vessels in the tumours, and promote immune cell
adhesion, trafficking and activation [82]. At the same
time, the study also needs further protein/mRNA
expression analysis to corroborate the results of immu-
nohistochemistry. Furthermore, other possible drug
combinations, such as anti-PD-L1 and anti-VEGF
should also be tested in NSCLC. Therefore, clinical
studies with larger cohorts are needed to fully investi-
gate the therapeutic efficacy of BEV, APA and CDDP in
NSCLC patients.
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In summary, the combination of BEV, APA and
CDDP prolonged survival of LLC tumour-bearing mice
by reducing MPE and glucose metabolism. A better
understanding of this combination will define new
approaches to enhance drug efficacy in the treatment
of NSCLC patients with MPE by possible moderation
of VEGF/MAPK/ERK pathways.
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