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A B S T R A C T   

Background and objective: Medical image visualization is a requirement in many types of surgery such as or-
thopaedic, spinal, thoracic procedures or tumour resection to eliminate risk such as “wrong level surgery”. 
However, direct contact with physical devices such as mice or touch screens to control images is a challenge 
because of the potential risk of infection. To prevent the spread of infection in sterile environments, a contagious 
infection-free medical interaction system has been developed for manipulating medical images. 
Methods: We proposed an integrated system with three key modules: hand landmark detection, hand pointing, 
and hand gesture recognition. A proposed depth enhancement algorithm is combined with a deep learning hand 
landmark detector to generate hand landmarks. Based on the designed system, a proposed hand-pointing system 
combined with projection and ray-pointing techniques allows for reducing fatigue during manipulation. A 
proposed landmark geometry constraint algorithm and deep learning method were applied to detect six gestures 
including click, open, close, zoom, drag, and rotation. Additionally, a control menu was developed to effectively 
activate common functions. 
Results: The proposed hand-pointing system allowed for a large control range of up to 1200 mm in both vertical 
and horizontal direction. The proposed hand gesture recognition method showed high accuracy of over 97% and 
real-time response. 
Conclusion: This paper described the contagious infection-free medical interaction system that enables precise 
and effective manipulation of medical images within the large control range, while minimizing hand fatigue.   

1. Introduction 

The Fourth Industrial Revolution refers to increasing inter-
connectivity and smart automation, where human-machine interaction 
(HMI) has become popular in our lives. HMI is a multidisciplinary field 
focused on the interaction and communication between users and 
computers through interfaces. Traditionally, interfaces consist of phys-
ical parts such as keyboards, mice, or touch screens. However, with 
significant developments in the field of machine vision, contactless in-
teractions have demonstrated great potential in HMI systems without 

the need for specific devices. 
Contactless HMI technology, which allows users to naturally and 

intuitively control machines, is an ideal solution for operating rooms. 
The operating room normally includes many pieces of equipment such 
as an operating table, operating room lights, monitor screens to keep 
track vital signs, a ventilator, sterile instruments for surgery or video 
screens for laparoscopy to see the surgery area. In the preoperative 
planning stage, such as in urological surgery [1], orthopaedic surgery 
[2], accurate diagnosis and surgical planning are important to enhance 
the detection of pathologies or anatomical relationships. These image 
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data can be X-ray radiography, magnetic resonance image (MRI) or 
computed tomography (CT), which are used in diagnosis procedures. 
During surgery, these medical images must available as a reference for 
the surgeon to eliminate risk such as “wrong level surgery” in spine 
surgery [3]. The requirements of imaging displays are also critical as-
pects mentioned in the World Health Organization guidelines for safe 
surgery 2009 including orthopaedic, spinal, thoracic procedures or 
tumour resections [4]. However, interacting with medical image data 
within a sterile environment is a challenging task because there is a 
potential risk of spreading the infection through direct contact with 
operating tools and control media, such as a mouse. Therefore, the use of 
these devices should be avoided, and physicians often need to change 
their position or obtain support from the surgical assistant. However, 
this approach is time-consuming, interrupts the workflow, and is inef-
fective. In this scenario, the application of gesture control to interact 
with medical data can effectively reduce the risk of infection trans-
mission in sterile environments. 

Patient images integrated into the hospital’s picture archiving and 
communication system (PACS) are generally displayed on monitors in 
the operating room, allowing physicians to navigate through a medical 
image viewer. The five basic functions include clicking, scrolling slices, 
zooming, and making pane and contract modifications. Some early 
studies have mentioned the concept of an HMI system for manipulating 
medical images [1,5,6]. An HMI system can be divided into three stages: 
image acquisition, hand or hand pose detection, and gesture recogni-
tion. In the image acquisition stage, images can be obtained from 
different types of cameras such as RGB [2,5], RGB-depth [1,7–11], and 
IR-depth camera [12–14] as shown in Table 1. The hand can then be 
segmented using a thresholding method based on depth or colour using 
deep-learning models. Finally, the hand gestures were determined and 
connected to a medical viewer. Several methods can be used, such as 
distance metrics and support vector machines (SVM), as well as hidden 
Markov models (HMM), artificial neural network (ANN) models, and 3D 
convolutional neural networks (3D CNN) [15]. 

To date, some applications of HMI have been reported. The two main 
commercial packages are Microsoft Kinect (MK) [1,6–9] and Leap Mo-
tion Controller (LMC) [12–14,16] as shown in Table 1. The MK is a 3D 
depth camera launched for the Xbox 360 console by Microsoft Corp., and 
it is used for manipulating the image viewer in the operating room. Lars 
et al. [1] applied image-processing methods, including thresholding and 
blob detection, to detect hands. Ruppert et al. utilised human 
body-shape tracking and a probabilistic template method to track 15 
joints. A mean filter was used to determine the cursor position. The hold 
method was used for clicking and rotating. However, reports indicated 
limitations in hand recognition, and mouse clicking was not performed 
well. Hotker et al. [17] adapted gestures from both Kinect driver and 
voice system to navigate an OsiriX medical image viewer. On the other 
hand, LMC is a vision-based position-tracking system developed by Leap 
Motion, Inc. Mewes et al. [13] and Sanchez-Margallo [18] used a Leap 
Motion Kit to directly control medical image viewers. Cho et al. [14] 
proposed a support vector machine (SVM) model and Naïve Bayer 
classifiers for classifying five gestures. The same group [16] also pro-
posed a capsule network and used IR images from Leap Motion to train 
the network. The five gestures included: hovering, grabbing, clicking, 
one peak, and two peaks. The model achieved an accuracy of 86.46%, 
surpassing both a conventional neutron network (CNN) and a “Very 
Deep Convolutional Neural Network” (VGG16) in terms of performance. 
In addition, many researchers have been working to develop hand 
gesture recognition for various applications such as general hand ges-
tures [19–22] and sign language [23–25] using graph and general deep 
neuron network. Miah et al. proposed a two-stream multistage graph 
with an attention mechanism to extract spatial-temporal information for 
multi-cultural sign language recognition such as Korean sign language 
[24], Pakistani sign language, and American sign language [23]. The 
approach achieved 63.25%, and 90,31% accuracy on Top-1, and Top-10 
accuracy respectively on Word-Level American Sign Language 100 

classes [26] (WLASL-100) by skeleton-based features. It is shown that 
multiple classes highly influence classification accuracy. Bockhacker 
et al. [2] introduced five gestures: scrolling through images, zooming, 
contract modification, and moving the ROI vertically and horizontally. 
VGG16 was used to classify images from the front user. The proposed 
method takes an average of 114 s to handle the scrolling of the trans-
verse plane of the CT images to display both pedicles of the fourth 
lumbar vertebra, and 109 s to manipulate the sagittal plane and zoom in 
to exclude the thoracic spine. Leap motion tracks have precise control by 
tracking a user’s hand and projecting onto a virtual interactive box. 
However, it can only operate within a small tracking range of less than 
0.75 m. Sanchez-Margallo [18] mentioned that the use of LMC was 
physically less demanding than the Kinect system during surgery. Rosa 
et al. [27] also reported that the Kinect system causes faster fatigues due 
to the wider movements when compared to using the LMC system. 

In this study, we proposed a novel contagious infection-free medical 
interaction system using hand pointing and gesture recognition 

Table 1 
Related studies for gestured-based infection-free medical interaction system.  

Citation Sensor Method Visualization Features 

Wachs et al. 
[5] 

RGB 
(Canon 
VC-C4) 

Hand tracking: 
color 
segmentation 

Gibson Image 
browser 

Gesture: left, 
right 
movement, 
zoom in/out 

Bockhacker 
et al.[2] 

RGB 
camera 

Gesture 
recognition: Very 
Deep 
Convolutional 
Neural Network 
(VGG16) 

mRay DICOM 
Viewer 

Gesture: Go 
left, up, right, 
down, change 
active window 

Ruppert 
et al.[1] 

Depth 
(MK) 

Hand tracking: 
OpenNI (Open 
Natural 
Interaction) 
Cursor detection: 
Centre of mass 
method 

InVesalius 
software 

Hand distance 
requirement: ~ 
0.5 m from 
camera 
Gestures: drag, 
click 

Ebert et al. 
[17] 

RGB- 
Depth 
(MK) 

Hand tracking: 
Blob detection 

OsiriX Gestures: pane, 
scroll, zoom 

Hötker et al. 
[7] 

RGB- 
Depth 
(MK) 

Kinect developer 
kit 

Unknown Gesture: Scroll 
up/down, 
zoom in/out 

Jacob et al. 
[9] 

RGB- 
Depth 
(MK) 

Hand gesture 
detection: HMMs 
(Hidden Markov 
Models) 

OsiriX Gestures: Zoom 
in/out, 
brightness 
changes, 
rotation 

Ogura et al. 
[12] 

Infrared 
(LMC) 

Leap Motion 
development kit 

AZEWIN 
viewer 

Hand distance 
requirement: 
~0.07 – 0.3 m 
from camera 
Gestures: 
swipe, drag, 
drop. click 

Mewes et al. 
[13] 

Infrared 
(LMC) 

Leap Motion 
development kit 

Unknown Hand distance 
requirement: 
~0.5 m from 
camera. 
Gestures: 
Translate, 
zoom, slicing 

Cho et al. 
[14] 

Infrared 
(LMC) 

Leap Motion 
development kit, 
SVM model 

Surgeons 
control 
clinical 
software- 
PACS 

Gesture: 
Hover, grab, 
click, one peak, 
two peak 

Lee et al. 
[16] 

Infrared 
(LMC) 

Leap Motion 
development kit, 
Basic-DCNNs 
model, VGG-16 
Model, CapsNet 
model 

2D/3D PACS Gesture: 
Hover, grab, 
click, one peak, 
two peak  
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techniques for precise control, large working range, and less demand for 
hand movement. Our main contributions are summarized as follows:  

• We developed an integrated HMI framework using remote hand 
control for the operating room with key modules and workflow of the 
machine vision system.  

• We proposed a depth enhancement algorithm and combined it with a 
deep learning hand-posed detecting model to effectively describe 3D 
hand skeletons during the hand recognition process.  

• We proposed a teleport hand-pointing technique that combined 
projection and ray-pointing techniques based on the relative position 
remote hand and camera in a designed system to naturally control 
and reduce fatigue during manipulation with less hand movement.  

• We proposed robust minimal gestures and a control menu concept to 
activate the functions in user interfaces. Finally, various experiments 
were conducted to demonstrate the efficiency and performance of 
the proposed method. 

2. System design 

The contactless HMI system was developed based on the basic re-
quirements of an operating room, as shown in Fig. 1. Generally, physi-
cians remain around the operating bed, which is approximately 1000 
mm in width and 2000 mm in length. Our system includes an Intel 
Realsense D435 camera, which is attached to a frame on the side of the 
roof and captures the user’s hand movements. To cover the operating 
bed area, the required height of the camera is approximately 1000 mm 
from the operating bed, and one or two monitors can be used to display 
and manipulate the medical data. A popular Radiant DICOM viewer was 
used for the demonstration. Furthermore, an in-house HMI program and 
DICOM viewer were installed on the same computer. 

When the HMI system recognized a user’s hand, it allows the user to 
manipulate medical images through a DICOM viewer. Instead of 
selecting a specific function in the tool bar, a control menu concept was 
proposed to directly connect common functions using a keyboard 
shortcut. When the user’s hand is opened, the menu is displayed at the 
current cursor position, as shown in Fig. 2a. Considering that the opened 
cursor position is at the centre, a threshold circle is created to divide the 
inside and outside areas. The currently selected menu is within the inner 
circle. Outside the circle, the area is divided into four subareas: right, 
bottom, left, and top. If the cursor continues to move out of the subarea, 

the respective function hovers with different illustrations, as shown in 
Fig. 2b. Finally, the hand is closed to select a function. 

3. Methodologies 

The data flow is illustrated in Fig. 3. The process begins by contin-
uously acquiring the input data from an RGB-D camera. Subsequently, 
the acquired image is analysed using a hand landmark detector, 
enabling real-time hand detection and tracking of hand poses. Subse-
quently, two algorithms, namely hand pointing and gesture detection, 
are continuously employed to identify the precise cursor position and 
specific gestures. Finally, the outputs are combined to generate appro-
priate actions in real time. The integrated system ensures that the user’s 
gestures and cursor movements are seamlessly connected to the desired 
actions within the medical viewer interface. This section provides a 
detailed description of the three primary algorithms: hand landmark 
construction (Section 3.1), a hand pointing system (Section 3.2) and 
hand gesture recognition (Section 3.3). 

3.1. Hand landmark detection and virtual-world landmark construction 

The cursor position and manipulation of gestures at the interface of 
the medical viewer require accurate positioning of hand landmarks. 
Many studies have used deep learning models, such as Openpose [28], 
Mmpose [29], Mediapipe[30], and Leap motion frameworks [31] to 
detect and track 3D hand poses. Currently, there are two main ap-
proaches to estimate 3D hand poses such as model-based and model-free 
methods [32]. The model-based approach uses a unified hand model 
such as MANO[33] and fitting hand deep learning model to derive the 
3D hand pose. In contrast, a model-free approach directly obtains hand 
landmarks by regressing heatmaps [34]. Both methods are trying to 
regress 2D hand landmarks and minimize depth error from a single 
image, however it is still not good enough and vibration problems often 
appear during real-time streaming. In this task, instead of using only the 
depth or RGB image, our approach is to combine the enhanced ground 
truth depth map and 2D hand landmarks regressed by the Mediapipe 
model to obtain a better depth accuracy and less vibration. Compared to 
Openpose and MMpose, Mediapipe has shown high accuracy and run-
time performance in hand pose detection [35,36]. Therefore, it was 
chosen because of its robustness, lightweight nature, and open-source 
framework for hand-pose estimation and tracking. A general flowchart 

Fig. 1. Schematic configuration of HMI contactless system for the operating room.  
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depicting this process is shown in Fig. 4. The camera continuously 
captures raw data, including RGB and depth images. First, the colour 
image was placed in the Mediapipe hand detector, which comprises two 
models: palm detection and hand landmark modelling. The palm de-
tector detects the hand position described by the hand-bounding boxes 
from the RGB image. Subsequently, the hand-bounding boxes are 
cropped and fed into the hand landmark model. This is a regression 
model inside the detected hand regions that returns 2.5D landmarks, 
which include the pixel coordinates (x, y) and relative depth. However, 
the accuracy of the relative depth was found to be insufficient for 
implementing the pointing technique; therefore, only 2D coordinates 
were used. Second, the depth image was used to determine the depth 
value of each hand landmark. However, the depth at the hand position 
tends to be unstable, and the hand vibrates. Therefore, a preprocessing 
process is applied. The preprocessing process is described in the pseu-
docode shown in Table 2. A temporal filter is used to improve depth data 
persistence. Subsequently, a hole-filing filter is applied to fill in the 
missing values within the depth image. When hand-bounding boxes are 
detected, the corresponding depth area is cropped, and the erode 
morphology method is applied to enhance the depth map of the hand 
area. Subsequently, a Gaussian filter is applied to improve the depth of 
the surface. The intrinsic matrix of the stereo camera is used to obtain 
the 3D world coordinates of the hand pose. The 3D coordinates (x, y, z) 
are calculated at the specific pixel coordinates of the hand landmark. 
Finally, virtual hand skeletons are obtained by combining all hand 
poses, resulting in visualization, as shown in Fig. 4. The entire procedure 
of the algorithm is shown in pseudo-code in Table 3. 

3.2. Hand pointing system 

The positioning of the hand, cursor, and their movements play a 
crucial role in enhancing the user experience. Regarding pointing 
technique, the projection and ray pointing technique are commonly 
used to determine the cursor position. The projection approach con-
siders the rays to be parallel to each other and perpendicular to the 

screen; therefore, the cursor is the projected point of a given point from 
the hand onto the monitor. This method allows precise control of the 
cursor. However, it requires broader movements of the hand, which 
causes faster fatigue during control. On the other hand, the ray-pointing 
approach considers a ray passing through a vector at a given point. The 
cursor is an intersection point between the ray and the monitor plane. 
This method allows control of the cursor based on hand direction vector 
without requiring large hand movement; however, it is very sensitive 
and requires a high accuracy of the hand direction vector to eliminate 
vibration problems. Both techniques have advantages and disadvan-
tages, a key factor here being the trade-off between hand movement and 
cursor sensitivity. Therefore, in this HMI system, we proposed imple-
menting a teleportation system to ensure smooth cursor movement that 
aligns naturally with the user’s hand direction without wider movement. 
The main concept of the teleporting method is based on two pointing 
techniques: projection and ray pointing, as shown in Fig. 5. In the 
camera frame, the monitor can be considered as a plane with one point P 
and a given unit normal vector to the plane n→, while the hand pointing 
direction can be modelled by two hand landmark coordinates, A and B. 
Assuming that point A is the ray origin, the coordinate of the projected 
point Á  is calculated as follows: 

Aʹ = A − dAAʹ n→ (1)  

where dʹ
AA = PA̅→• n→ is a distance between A and A′. The intersection 

coordinate is calculated as follows: 

I = A+ dAI AB̅→ (2)  

dAI =
PA̅→• n→

u→• n→
(3)  

u→=
AB̅→

⃒
⃒
⃒AB̅→

⃒
⃒
⃒

(4) 

Fig. 2. Control menu concept. a) menu starts, the cursor inside circle, b) cursor moves to the top direction, the top submenu is hovered.  

Fig. 3. Data flowchart of HMI system.  
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Fig. 4. Flow chart of virtual world landmark construction.  

Table 2 
Pseudo code of depth pre-processing step.  

Algorithm: Depth enhancement 

Input: Depth image from camera 
Output: Enhanced depth image 
1. Get depth image from camera. 
2. Apply temporal filter to increase persistency 
3. Apply hole filling filer to remove missing value 
4. Crop hand bounding box ROI 
5. Apply erode morphological transformation 
6. Apply Gaussian blur to increase smoothness 
7. Return enhanced depth image  
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where dAI is the distance from A to the intersection point and u→ is the 
unit hand pointing direction vector. After calculating the projection and 
intersection points, the teleporting point T is calculated as follows: 

T = Aʹ+ f(I − Aʹ) 0 ≤ f ≤ 1 (5)  

where f is a sensitivity coefficient which allows the user to easily control 
the cursor sensitivity. 

To reflect the expected position on the monitor appropriately, the 
cursor coordinates were converted from real-world coordinates to pixel 
coordinates. Therefore, a simple calibration process is used to determine 
the scale values. 

Scale = hm/hr (6)  

Here, hm , hr are the height of the monitor in millimetres and the height 
resolution of the monitor in pixels, respectively. 

When moving the cursor, a vibration problem occurs because of the 
vibration effect on hand-pose detection. Many filters can be used to 
reduce the vibration problem, such as the moving average filter, expo-
nential moving average filter, Kalman filter, and One Euro filter. 
Because the moving process requires a smooth and non-lagging problem, 
a One Euro filter is applied in both the x and y directions. The One Euro 
filter is a powerful low-pass filter algorithm for real-time noisy signals 
[37]. It utilises an adaptive smoothing factor to balance the trade-off 
between jitter and lag. Therefore, it does not exhibit lag at high 
speeds and reduces jitter at low speeds. 

Regarding the calibration process, we simply point a hand at the 
centre of the main monitor after setting camera and monitor location 
and press a certain key to save the hand location as a reference origin. 
This process only needs to be done once and that information can be 
reused to determine the cursor position the next time. 

3.3. Hand gesture recognition 

Based on the hand-tracking method, hand gestures were developed 
to communicate between the hand and the functions of the DICOM 
viewer. The viewer requires functions such as clicking, dragging, 
scrolling images, zooming in, zooming out, rotating, and panning. 
Recognition of target hand states and hand actions is required to activate 
these functions as shown in Fig. 6. Two approaches are categorised 
based on the input data: hand states are defined based on a single image, 
while hand actions are detected based on a series of historical images. 

Four natural hand gestures were developed following the mini-
malism concept: fist, palm, one, and two. An intuitive landmark geom-
etry constraint algorithm was developed to determine the hand status 
based on the detected hand landmarks of each frame as shown in Fig. 7a. 
First, the palm position is selected as the pivot joint and the relative 
distances of the metacarpophalangeal joint (MCP), proximal interpha-
langeal joint (PIP), distal interphalangeal joint (DIP), and fingertip are 
calculated as d1, d2, d3, and d4, respectively. By applying the con-
straints defined in Eq. 7 to the order of these distances, each finger can 
be differentiated as either closed or open. 

finger status =
{

1 (open) : ifd1 < d2 < d3 < d4
0 (close) : other (7) 

A template is then created as a list consisting of four single-finger 
statuses to determine the status of the entire hand as follows: 

hand status =

⎧
⎪⎨

⎪⎩

fist : if template = [0,0, 0,0, 0]

palm : if template = [1, 1, 1,1, 1]

one : if template = [0, 1,0, 0,0]or[1, 1,0, 0,0]

two : if template = [0,1, 1,0, 0]or[1,1, 1,0, 0]

(8) 

The second approach uses historical images to determine the pushing 
and rotating actions, as shown in Fig. 8. The pushing detection algorithm 
is based on the change in fingertip position along the pointing direction 
using the following equation: 

dpush = DDʹ̅→
• uCD
̅→ (9)  

push status =
{

push forward : ifdpush ≥ μdCD
not pushing : ifdpush < μdCD

(10)  

where DD́
̅→

is the change vector of the fingertip, as shown in Fig. 8a, and 
uCD
̅→ denotes the unit normal pointing direction vector. The empirical 
coefficient μ = 1/3 is multiplied by a finger distance to determine if the 
user’s hand is being pushed forward. The push status is accumulated to 
make a clicking decision by comparing it with a user-defined pushing 
sensitivity coefficient. Regarding rotation detection, the cursor when the 
user performs a counterclockwise and clockwise rotation action is as 
shown in Fig. 8b. Historical data are gathered to recognise a rotation 
gesture including the x- and y-coordinates of the cursor. These data are 
then converted into one-dimension datasets and trained using a long 
short-term memory (LSTM) model. A list of historical cursor positions 
was fed into the trained model to predict each frame. 

Table 3 
Pseudo code of virtual hand landmark construction.  

Algorithm: Virtual hand landmark construction 

Input: Depth image from camera 
Output: 3D hand landmarks 
1. Get RGB and depth image from camera. 
2. Apply Mediapipe hand detector on RGB image 
3. Apply preprocessing process on depth image 
4. Get 2D hand landmark and intrinsic matrix of camera 
5. Deprojection of 2D pixel coordinate on depth image to obtain world coordinates 
6. Gather and return the 3D hand world landmarks  

Fig. 5. Configuration of hand pointing system.  
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4. Results and discussions 

4.1. HMI integrated system 

The HMI system integrated individual modules into a compact 
package. The field-of-view (FOV) of the pointing system was followed by 
the depth FOV of the camera at 87◦ × 58◦. The preferred vertical range 
from the camera to the user’s hand was 300–1200 mm, and the 
preferred horizontal range was 600–2200 mm. Regarding the hand 
reconstruction accuracy, our proposed method showed better accuracy 
than using the original depth value, as shown in Table 4. This is because 
the accuracy of the depth value depends on the distance between the 
camera and the user’s hand, which decreases as the distance increases. If 
the distance is less than 600 mm, there is no problem with the depth 
value as the hand area is still large. However, if the depth exceeds 
600 mm, the accuracy of the depth is reduced. In such situations, the tip 
depth value cannot be observed, resulting in a poor reconstruction of 

virtual hand and incorrect pointing ray. Conversely, our proposed 
techniques show good performance. This large working range is suitable 
for positioning the surgeon. In addition, the system allows the control of 
the sensitivity coefficient to customise the sensitivity for each user. 

In terms of gesture recognition, we utilised a hand gesture recogni-
tion image dataset (HaGRID) sample of 30k 380p [38] to validate the 
performance of the combined hand tracking model and landmark ge-
ometry constraint algorithm. This was an RGB sample dataset that 
included 18 gestures under various conditions such as different light 
conditions, distances from the camera to the hand, and hand positions. 
Although the dataset was not specifically collected from the operating 
room, it showed similar gestures; therefore, four proposed gestures were 
extracted from the original data and used to make a prediction. All four 
gestures exhibited a good accuracy exceeding 97%, as listed in Table 5. 

Besides that, although the system can show a large working area, it 
also has limitations because of hardware specifications. Normally, image 
resolution has limitations in the number of pixels, if an object is far from 

Fig. 6. Gesture recognition targets.  

Fig. 7. Hand state recognition a) Landmark geometry constraint algorithm and b) finger state template.  
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the camera, the depth map cannot include all the positions of the object 
and usually causes a large error. If we think about the improvement of 
hardware specifications, it will raise another problem regarding capture 
speeds. It is always a trade-off; therefore, we believe that it is not a good 
approach. Recently, there have been some potential methods using deep 
learning architecture for depth reconstruction from monocular cameras. 
It means that we can apply this method to predict the depth of infor-
mation instead of directly capturing it. This can be a novel approach to 
extend the detection scope. 

4.2. Usability study validation 

To validate the performance of the proposed HMI system, we per-
formed five common functions, namely, click, image browser control, 
zoom, drag, and brightness control. The experiment is similar to the 
designed system in that it includes two monitors, one monitor shows the 
DICOM viewer and monitoring windows on another monitor as shown in  
Fig. 9. The camera is set on the topside and in front of monitors and the 
hand inside the region of the camera is shown on the right-hand side in 
Fig. 9. In this study, the CBCT head dataset was used to simulate control 
process such as zoom, drag, and change brightness. Regarding the 
computational demand for system, we suggest the following hardware 
computational cost based on our system: GPU: Intel core i7–7700, 32 GB 
RAM memory and GPU GeForce RTX 2070. These functions were used to 
manipulate the CBCT data in the Radiant DICOM viewer. The distance 
from the camera to hand is approximately 500 mm, and the sensitivity 
coefficient is set to 0.5. Figs. 9 and 10 show examples of the zoom and 

Fig. 8. Action recognition: a) pushing detection and b) rotation detection.  

Table 4 
Comparison of the Mediapipe + original depth and Mediapipe + our proposed method with respect to distance from camera to user hand.  

Distance from 
camera to 
user hand (mm) 

300 600 900 1200 

Mediapipe (2D) + depth map 

Mediapipe (2D) + proposed 
method 

Table 5 
Gesture recognition accuracy.  

Gesture Fist Palm One Two 

Number of testing images 1324 4154 1252 5413 
Accuracy 98.34% 99.93% 97.36% 98.31%  
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pane functions, respectively. To perform each function, users are 
required to follow three steps. First, they need to open the menu by a 
palm gesture, then select the submenu by moving the cursor in the 
respective direction and changing to any other gesture, and finally using 
two fingers to activate and control the function. The time required to 
activate each function was less than 1 s, although it may vary depending 
on the user skill. In addition, the rotation gesture can be customised to 
control the image layer or to zoom in or out in either a clockwise or 
counterclockwise direction. These functions can be used to select a re-
gion of interest from CT scans or X-ray images. Users can scroll through a 
series of images and select corresponding images. Subsequently, the 
image should be zoomed in or panned to find an abnormal position on 
the CT image. Besides that, the click function allows the user to select 
any button in software with touch graphical user interface design. With 
this HMI system, users can efficiently and conveniently manipulate 
medical images using natural gestures without experiencing any 

discomfort. 

5. Conclusion 

In this paper, we presented a method for developing a contagious 
infection-free medical interaction system to manipulate a DICOM viewer 
in an operating room. We proposed the depth enhancement algorithm 
and combined it with deep learning hand recognition model to recon-
struct virtual hand landmarks. A hand-pointing system is developed to 
define the cursor based on the proposed teleport method with the pro-
posed sensitivity coefficient for reducing hand fatigue. We developed a 
hand gesture recognition algorithm by combining the hand landmark 
detector and landmark geometry constraint algorithm. Five common 
functions are used in the prototype system to validate the performance 
of the proposed HMI system. The following conclusions were drawn: 

Fig. 9. Zoom function. a) open menu, b) select zoom sub menu, and c) zoom control.  
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− The performance of depth enhancement algorithm shows that pre-
processing of depth is a crucial step that reduces jitter during hand 
pointing and enhances 3D hand landmark reconstruction.  

− Hybrid pointing technique can be applied to increase movement 
range of cursor with less hand movement compared to projection 
method. This can reduce hand fatigue during the interaction process.  

− Many steps can affect the inference performance of system, therefore 
a minimalism concept for hand gestures can be applied to optimize 
the integrated system, and the landmark geometry constraint algo-
rithm can be used to boost the recognition speed of the static hand 
gestures.  

− Functions may vary from medical imaging viewers; the control menu 
concept can be used as a customised way to allow users to manipu-
late medical images naturally and effectively. 

Limitation and potential future work: Current work is only limited 

for one hand, the main reason of this limit is to optimize the processing 
time and tracking instead of multi hand, besides that the multi-hand 
occlusion remains a challenge for our approach. In terms of multi- 
hand situation, one potential solution is applying a hand tracking 
method to recognize the new hand or lost hand during manipulation. In 
an occlusion situation, deep learning with a transformer architecture 
can be a potential solution to improve hand detection accuracy. By 
borrowing ideas from a multimodal approach with different input 
sources, our system can potentially be used to integrate the voice control 
system to allow natural interactions between users and machines. This 
study is limited to medical applications but can be expanded to other 
fields such as hologram control, interactions in future automobiles or 
exhibition models. 

Fig. 10. Pane function a) open menu, b) select pane sub menu and c) pane control.  
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