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Abstract We report on the immunogenicity and clinical

effects in a phase I/II dose escalation trial of a DNA fusion

vaccine in patients with prostate cancer. The vaccine

encodes a domain (DOM) from fragment C of tetanus toxin

linked to an HLA-A2-binding epitope from prostate-spe-

cific membrane antigen (PSMA), PSMA27–35. We evalu-

ated the effect of intramuscular vaccination without or with

electroporation (EP) on vaccine potency. Thirty-two HLA-

A2? patients were vaccinated and monitored for immune

and clinical responses for a follow-up period of 72 weeks.

At week 24, cross-over to the immunologically more

effective delivery modality was permitted; this was shown

to be with EP based on early antibody data, and subse-

quently, 13/15 patients crossed to the ?EP arm. Thirty-two

HLA-A2- control patients were assessed for time to next

treatment and overall survival. Vaccination was safe and

well tolerated. The vaccine induced DOM-specific CD4?

and PSMA27-specific CD8? T cells, which were detectable

at significant levels above baseline at the end of the study

(p = 0.0223 and p = 0.00248, respectively). Of 30

patients, 29 had a measurable CD4? T-cell response and

PSMA27-specific CD8? T cells were detected in 16/30

patients, with or without EP. At week 24, before cross-

over, both delivery methods led to increased CD4? and

CD8? vaccine-specific T cells with a trend to a greater

effect with EP. PSA doubling time increased significantly

from 11.97 months pre-treatment to 16.82 months over the

72-week follow-up (p = 0.0417), with no clear differential

effect of EP. The high frequency of immunological

responses to DOM-PSMA27 vaccination and the clinical

effects are sufficiently promising to warrant further, ran-

domized testing.

Keywords Immunotherapy � Prostate cancer � DNA

vaccine � Electroporation � CD8? T cells

Introduction

Activating immunity against cancer in patients has been a

difficult goal [1] but randomized studies are now showing

encouraging results in solid tumors [2, 3], including
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prostate cancer [4]. Prostate cancer immunotherapy is

attractive at early biochemical detection of recurrence

since rising prostate-specific antigen (PSA), even without

radiologically measurable disease, identifies patients at risk

who have very small volume disease [5]. Vaccine targets,

like Muc-1 [6], PSA [7, 8], prostatic acid phosphatase

(PAP) [9] or prostate-specific membrane antigen (PSMA)

[10–12], have been identified as promising targets [13]. A

randomized phase III trial showed that prostate-associated

antigens can be effectively targeted by vaccination [4]. The

improved median survival of 4.1 months in late-stage

disease was not mirrored by PSA changes [4], an obser-

vation also made in other immunotherapy studies [14].

Although Sipuleucel-T sets a treatment paradigm, pro-

ducing a new patient-specific vaccine is a technical,

financial and logistical challenge. Overall benefit remains

small, indicating an unmet clinical need for better, ideally

non-toxic, treatments to improve outcomes [13].

Vaccination against cancer using exogenous peptide

has been tested widely and may confer clinical effect in

some settings [15–17]. However, CD8? T-cell responses

following vaccination using exogenous short peptides

appear transient [18] possibly due to the lack of T-cell

help. Viral vector–based vaccines may overcome this

problem and have shown promise in metastatic disease [8,

19] with effects also on PSA doubling time (PSA-DT) at

biochemical failure [6]. However, viral vectors will either

face pre-existing immunity or induce it on repeat injec-

tions. DNA vaccines avoid this problem and offer a novel

delivery vehicle for the induction of peptide-specific

responses.

We have designed DNA fusion-gene vaccines able to

deliver tumor-derived peptides, together with microbial

genes, to generate high levels of T-cell help [20]. Our

platform design includes a strongly immunogenic helper

domain (DOM), derived from fragment C (FrC) of tetanus

toxin, linked to a tumor-epitope sequence of choice [20]. In

pre-clinical models, DOM-epitope vaccines induce durable

tolerance-breaking epitope-specific CD8? T-cell immunity,

able to suppress a range of tumors [20].

In mice expressing the HLA-A0201* transgene, the

DOM-epitope vaccine design incorporating an epitope

from PSMA (PSMA27 VLAGGFFLL) [20, 21] induced

high levels of specific CD8? T cells able to kill tumor cells

[22]. We have now vaccinated patients with biochemically

recurrent prostate cancer and, to optimize human transla-

tion, also evaluated delivery with electroporation (EP). EP

has been reported to increase the potency of DNA vaccines

by increasing antigen levels and stimulating local inflam-

mation [23], and its use is rapidly expanding in both

infectious diseases and cancer vaccination. We found that

this approach was safe, well tolerated and significantly

increased antibody induction [24].

We report here the effect of our DOM-epitope vaccine

on T-cell immunity and clinical outcome. The vaccine

reproducibly induces T-cell immunity to PSMA27 and

significantly increases PSA-DT, and in spite of the small

sample size, we identified a trend to increased time to next

treatment compared to a control group of unvaccinated

HLA-A2- patients. Taken together, these data support

further randomized testing of the vaccine.

Patients and methods

Patient population and regulatory information

Patients with biochemically recurrent prostate cancer, ris-

ing PSA (\50 ng/mL, PSA-DT [3 months) without

radiological evidence of distant disease by CT scan, bone

scan and/or MRI were eligible. Pelvic nodal enlargement

up to 2 cm was allowed. Tumor PSMA expression was

confirmed immunohistochemically at Southampton Cellu-

lar Pathology Laboratory. Other inclusion and exclusion

criteria have been reported previously [24]. Patients were

HLA-typed in NHS laboratories. The vaccine encodes an

HLA-A2-restricted epitope; only HLA-A2? patients were

vaccinated. HLA-A2- patients who fulfilled all other entry

criteria formed the control group and were followed for the

evaluation of time to next treatment and survival only.

Regulatory approval for the study was given by the UK

Medicines and Healthcare Regulatory Authority (MHRA),

the Gene Therapy Advisory Committee and local Research

Ethics committees. The study was registered in the data-

base of gene therapy trials in the UK. All patients gave

written informed consent to participate in the study

between March 2005 and February 2008 at the University

Hospitals Southampton and the Royal Marsden Hospital.

Study design

The study was a phase I/II, open-label, non-randomized,

two-center, dose escalation study. DOM-PSMA27 vaccine

[20, 22, 24] was injected into the thigh muscle 5 times at 0, 4,

8, 24 and 48 weeks. HLA-A2? patients were recruited to two

study arms (Fig. 1). In arm I, patients received DNA intra-

muscularly (i.m.), and in arm II, vaccine was delivered i.m.

with EP using an Elgen Twinjector device [25] as described

[24]. In each arm, the dose was escalated, with 5 patients per

group: in arm I (without EP)—level 1: 800 lg, level 2:

1,600 lg, level 3: 3,200 lg per dose and in arm II (with

EP)—level 1: 400 lg, level 2: 800 lg, level 3: 1,600 lg. If in

the absence of safety concerns the immunological data

supported this, patients were allowed to cross over between

arms of the study after the first 3 vaccinations and receive the

dose of the matched level in the opposite arm.
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Follow-up on study was at weeks 0, 2 and 4 following

vaccination, monthly to week 32 and then 2 monthly to

week 72. At each visit, PSA levels were measured. For

safety evaluation, full blood counts, clotting, serum bio-

chemistry, LDH (lactate dehydrogenase), CK (creatine

kinase) and autoimmune profiles of serum were monitored.

PBMC were stored in liquid nitrogen for immunological

assessment.

Clinical follow-up

PSA values were available up to the date of consent, and

during the 72-week study follow-up for the vaccinated

cohort; ethical permission to collect time-point-matched

PSA values for the unvaccinated patients was not obtained.

PSA values used to calculate the PSA-DT were evaluated

by a study-independent, blinded reviewer. Using only

evaluable PSA values, PSA-DT was calculated using an

algorithm calculator (http://mskcc.org/applications/nomo

grams/prostate/PsaDoublingTime.aspx). PSA-DT was cal-

culated for each patient for the period pre-study, for

6-month periods on study and for the overall 72-week

study period (calculated up to week 72 or until treatment).

Time to next treatment and survival (assessed up to 31/12/

2010) were recorded for all patients.

Immunological evaluations

MIATA (Minimal Information About T-cell Assays;

http://www.miataproject.org) guidelines were used to

report immunological data on T-cell responses [26, 27]

(Online Resource 1). PBMC were isolated from heparin-

ized blood samples collected at each study visit. Recovery

and viability were calculated using a manual hemocytom-

eter and trypan blue exclusion. PBMC were cryopreserved

and stored in LN2 vapor phase (Section 1, Online Resource

1). PBMC were assessed for immunological responses

using assays validated to GCP for laboratories, and labo-

ratory compliance was verified by external audit [28].

ELISPOT

PBMC from all follow-up time-points from each patient

were assessed for IFNc production in response to stimu-

lation with recombinant FrC protein (20 lg/mL) [28] or

PSMA27 (VLAGGFFLL) peptide (10 lg/mL, Protein

Peptide Research, UK). The validated ELISPOT method

used is described in detail in Section 2, Online Resource 1.

Cultured ELISPOT

PSMA27-specific CD8? T cells were cultured in vitro for

8 days. As cell number was limiting, samples from

different time-points were pooled and cultured in the fol-

lowing groups: baseline, weeks 8, 10 and 12, weeks 16, 20

and 24, weeks 26, 28 and 32 and weeks 50, 52 and 60.

Cells were cultured with 10 lg/mL PSMA27 peptide or

with a pool of viral peptides or a control peptide, HIV. IL-2

was added on days 3 and 6 and cells were harvested,

washed and rested overnight on day 8. Following re-stim-

ulation with 10 lg/mL peptide, IFNc production was

measured by ELISPOT. Full details are provided in Sec-

tion 2, Online Resource 1.

Statistical analysis

Median values are presented throughout, where appropriate

with 25 and 75 % interquartile box with ranges. Signifi-

cance was determined by either a two-sided, nonparametric

Wilcoxon signed rank test or a Mann–Whitney test. A

value of p \ 0.05 was considered significant.

Results

Patient demographics

Sixty-four patients were eligible for the study (Fig. 1;

Table 1). Thirty-two HLA-A2? patients were vaccinated

and 32 HLA-A2- patients formed the control group for

clinical follow-up. Two patients with adverse events (AE)

after two vaccinations were replaced per study protocol and

included in the safety but not in the immunological analyses

(Fig. 1). One patient received three vaccinations before

disease progression and commenced androgen suppression

but remained evaluable for immune responses. After the

initial 3 vaccinations with either DNA or DNA ? EP, all but

4 patients went on to receive booster vaccines with EP

(weeks 24 and 48). Twenty-nine patients completed vacci-

nation and 72-week study follow-up (Fig. 1).

Safety and adverse events

Safety evaluation in the first two dose groups has been

reported [24]. Full data for all patients on the study and a

summary of AEs recorded are listed in Online Resource 2.

The vaccine was safe and well tolerated. Most AEs were

grade 1 or 2 and ranged from injection site reactions to flu-

like symptoms, back pain and nail changes. Vaccination

was discontinued due to AEs in two patients: one experi-

enced grade 3 worsening of a pre-existing psoriasis, with

causality assessed as likely vaccine related, and a second

grade 3 AE was identified as worsening of pre-existing

Parkinson’s disease, assessed as unlikely to be vaccine

related. Two serious AEs were observed: one patient

developed grade 2 peripheral edema and a second was
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admitted for a TURP. Both events resolved fully and the

patients continued on study with no recurrence.

Previously, we reported the safety of EP in dose groups

1 and 2 by the measurement of muscle damage markers CK

and LDH [24]. Patients in dose group 3 showed no increase

([twofold baseline) in either CK or LDH, and any increase

observed at days 1 and 5 after vaccination returned to

baseline level by day 14 (data not shown).

Clinical outcome

PSA-DT is widely used as an indicator of outcome [29] and

was evaluated for vaccinated patients. PSA-DT showed sig-

nificant increases during the study period (Fig. 2a), with an

increase from 11.98 months (range -356.6 to 67.9) pre-study

to 17.26 months (range -117.4 to 129.4) for the 24- to

48-month period post-vaccination (p = 0.0020 (Fig 2a)).

This was a slow increase, not evident at the 0- to 24-month

period. Over the whole study period (0–72 months), PSA-DT

showed a significant increase (p = 0.0417) to 16.82 months

(range -169.2 to 62.38), indicating a slowing of disease

progression. Individual patient data are provided in Online

Resource 3. Compared to baseline, PSA-DT increased in

24/30 patients at one or more time-points during the study and

in 19/30 the PSA-DT increase continued to week 72. An

increase of C200 % in PSA-DT at any point during the study

was observed in 14/24, with 4/24 patients retaining this effect

out to 72 weeks. Figure 2b shows time to next treatment in

vaccinated patients compared to the control group. With a

hazard ratio of 0.7352 (95 % confidence interval 0.37–1.45),

time to next treatment was 243.3 weeks in the vaccinated

group and 184.0 weeks in the control group (p = 0.3785).

There was no objective reduction in PSA. At a median

of 4.6 years’ follow-up, 5 vaccinated patients compared to

6 control group patients have died. No effect of DNA dose

on outcome was detected.

Immunological responses

Immune monitoring was carried out on all patients, and

responses are shown in Table 2. FrC-specific CD4? and

PSMA27-specific CD8? T cells were evaluated using IFNc
ELISPOT. Ex vivo FrC-specific responses were used to

assess vaccine operation and the effect of delivery

Fig. 1 CONSORT diagram
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modality. Of 30 patients, 29 had a significant CD4?

response to FrC following vaccination, in keeping with an

expansion of a memory T-cell population detectable in the

baseline samples. The median CD4? T-cell response more

than doubled by week 72 compared to baseline; baseline

median IFNc response was 34 spots/million (range 0–153)

increasing to a median of 72 spots/million (range 1–306) at

week 72 (p = 0.0208) (Fig. 3a).

T-cell responses against PSMA27 were assessed in cir-

culating lymphocytes. Effector CD8? T cells are unlikely

to persist in blood, and as expected, we found only low

levels ex vivo (6/30 positive responses detected, 3/6 being

observed at 2 or more time-points). To detect central

memory cells, we cultured blood T cells with peptide/IL-2

for 8 days in vitro [30]; IFNc-producing PSMA27-specific

T cells were detected in 55 % (16/30) of patients. The

median CD8? response had increased 9.6-fold by week 72

compared to baseline (from 27 spots/million (range

0–2,373) to 260 spots/million (range 0–8,233)

(p = 0.0222)) (Fig. 3b). There was a trend for patients

with detectable PSMA27-specific T cells to have an

increased time to next treatment (Fig. 3c, p = 0.7925); we

identified no link between PSA-DT and detection of cir-

culating peptide-specific CD8? T cells. There was no

apparent effect of DNA dose on immunogenicity.

Effect of delivery on immune responses

The effect of vaccine delivery can be interpreted for the

first 24 weeks, during which the 2 arms of the study

remained independent. Thereafter, 11/15 patients crossed

over to vaccination with EP for 2 doses per protocol based

on an improvement in antibody responses to DOM with EP

Table 1 Patient demographics for screened, eligible and consented

patients

Parameter Vaccinated Non-vaccinated

HLA-A2? HLA-A2-

n = 30 no.

(%)

n = 32 no.

(%)

Median age, years 71 75

Range 58–84 66–80

Prior treatment

Prostatectomy 10 (30) 4 (13)

Radiation therapy 24 (80) 29 (91)

Androgen deprivation 25 (83) 27 (84)

Gleason score

\6 15 (50) 10 (31)

7 14 (47) 16 (50)

[8 1 (3) 2 (6)

Unknown 4 (13)

Tumor size

Small (T1c–T3a) 19 (63) 23 (72)

Large (T3b–T3c) 6 (20) 4 (13)

Unknown 5 (17) 5 (16)

Baseline PSA (ng/mL)

Median 5.0 5.3

Range 0.5–26.3 0.97–48.0

\2.0 1 (3) 1 (3)

2.0–5.0 17 (53) 14 (44)

5.0–10.0 8 (27) 8 (25)

[10 4 (13) 9 (28)

Fig. 2 Clinical responses. a Shows a box and whiskers plot of PSA-

DT calculated for each patient pre-treatment, for 6-month periods on

study and overall for the whole 72-week study follow-up. Data

represent the median and range for all HLA-A2?, vaccinated patients

(n = 30). PSA-DT at weeks 24–48 and over the 72-week follow-up

period is significantly increased over pre-treatment (p = 0.0020 and

p = 0.0417, respectively). b A Kaplan–Meier plot of the time to next

treatment. Gray shading indicates the on-study period. The small

vertical tick marks show censored times. The dashed line represents

vaccinated HLA-A2? patients (n = 30), and solid line shows the

unvaccinated HLA-A2- control group (n = 32)
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[24]. Figures 3d, e show CD4? and CD8? peak T-cell

responses up to week 24, respectively. For both CD4? and

CD8? responses, the delivery of vaccine ± EP generated a

significant response compared to baseline. The effect of

adding EP during delivery was not dramatic but there was a

trend toward induction of higher levels of both CD4? and

CD8? T-cell responses (p = 0.2128 for CD4? T cells and

p = 0.1014 for CD8? T cells) (Fig. 3d, e). Clearly, larger

numbers are required but this weak effect contrasts with the

significant increase in humoral anti-DOM responses by

adding EP [24].

Discussion

In HLA-A2 transgenic mice, pDOM-PSMA27 epitope

vaccination stimulates strong peptide-specific CD8? T-cell

responses [22]. The PSMA27 epitope is processed from

PSMA, and induced T cells can kill human target cells,

confirming PSMA27 as a useful target for CD8? T-cell

attack. The phase I/II study we present here takes these

observations to the clinic. In HLA-A2? prostate cancer

patients at biochemical failure, with low disease burden,

vaccination significantly increased PSA-DT compared to

Table 2 Summary of immune responses

Patient ARM Dose Ab CD4 CD8 CD8 (cultured)

± Max

Fold

Inc.

Week

of

max.

±Week

0–24

±Wk

0–72

Max

Fold

Inc.

Week

of

max.

± Max

Fold

Inc.

Week

of

max.

±Wk

0–24

±

Wk

0–72

Max

Fold

Inc.

Week

of

max.

2 DDDDE 1 - ? ? 9.6 4 - ? ? 792 8–12

11 DDDDD 2 - ?? ?? 2.7 6 - ?? ?? 2,192 26–32

13 DDDDD 2 - - ? 3.7 60 - ? ?? 9.9 50–60

19 DDDDE 2 - - (?) 1.7 26 (?) 7 52 - -

1 DDDEE 1 ?? 73.9 50 ?? ?? 8 60 - - -

5 DDDEE 1 ?? 19.1 52 ? ?? 11 72 - ?? ?? 12.5 50–60

7 DDDEE 1 ?? 2.8 60 ?? ?? 6 6 - - ?? 473 50–60

8 DDDEE 1 ?? 48.5 52 ?? ?? 205 50 - ? ?? 82.3 50–60

15 DDDEE 2 ?? 3.6 10 ?? ?? 2.9 10 - - -

17 DDDEE 2 - ? ? 2.5 10 ?? 201 26 ? ? 993 8–12

23 DDDEE 3 ?? 11.3 52 ? ?? 2.5 50 - - -

25 DDDEE 3 ?? 47.0 28 - ?? 2.7 28 - ? ? 22.3 8–12

27 DDDEE 3 ?? 21.1 60 ?? ?? 3.9 26 - - -

29 DDDEE 3 - - ?? 2.4 72 - - -

31 DDDEE 3 ?? 15.9 60 ?? ?? 6 72 - - -

3 EEEEE 1 ?? 2.9 12 ?? ?? 63 12 ?? 72 48 - -

4 EEEEE 1 ?? 263 52 ?? ?? 22 52 ? 27 52 ?? ?? 29 26–32

6 EEEEE 1 ?? 58.2 12 ?? ?? 24 60 - (?) (?) 1.7 8–12

9 EEEEE 1 ?? 7.3 28 ?? ?? 3.5 4 ?? 76 4 - -

10 EEEEE 1 ?? 42.8 12 - - - - -

12 EEEEE 2 ?? 92.4 52 ?? ?? 5.4 48 (?) 46 16 - ? 4.1 26–32

14 EEEEE 2 - - ? 4.4 50 - ?? ?? 1,113 50–60

16 EEEEE 2 ?? 13.2 28 ?? ?? 55 6 - ?? ?? 1,992 50–60

18 EEEEE 2 ?? 11.5 20 ?? ?? 29 10 - ?? ?? 5,247 16–24

20 EEEEE 2 ?? 15.2 50 ?? ?? 2 10 - ? ?? 17 26–32

22 EEEEE 3 ?? 2.4 60 ?? ?? 4.2 52 - - -

26 EEEEE 3 - ?? ?? 4.6 16 - - -

28 EEEEE 3 - ?? ?? 33 2 - - -

30 EEE 3 ? 2.1 16 ? ? 3.4 12 - - -

32 EEEEE 3 ?? 393 50 ?? ?? 4 10 - - ? 10.4 26–32

Data show whether the response is negative (-) (not significant), weakly positive (?) (\twofold increase but significant), positive (?) ([twofold

increase and significant in one time-point) or strongly positive (??) ([twofold increase and significant in more than one time-point). If positive,

the fold increase at the week of maximum response is shown
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pre-vaccination. We compared time to next treatment in

vaccinated patients with a synchronous group of HLA-A2-

patients. The data suggest that pDOM-PSMA27 vaccination

could affect the natural history of prostate cancer and the

suggestion that time to next treatment can be extended will

need evaluation in a larger, randomized study. Whether

HLA-A2 in its own right is an adverse prognostic factor

has not been answered definitively, though there is a sug-

gestion of link to prostate cancer incidence [31], increased

proportion of large tumors (T3b–T3c) and higher post-

operative Gleason sums compared to the HLA-A2- control

group [32]. An adverse effect of HLA-A2 on outcome

would strengthen a clinical effect of vaccination.

The increase in PSA-DT became visible after[24 weeks

after first vaccination, and in 14/30 patients, the increase was

200 % or greater. From a baseline of 12 months, PSA-DT

increased to 17 months. While caution is needed in the

absence of randomized controls [33], a consistent story

supporting an effect of vaccination at biochemical recur-

rence is emerging, where vaccination significantly increases

PSA-DT [6, 9, 34–36]. Within the limits of comparability

between studies, it appears that our DNA vaccine, targeting a

single PSMA epitope, is at least as effective as other more

complex DNA- or peptide-based vaccines.

T cells against the DOM helper sequence expanded in

almost all (29/30, 97 %) patients, demonstrating patients’

immunocompetence and the immunological performance

of the vaccine. pDOM-PSMA27 induced CD8? T-cell

responses in 16/30 (55 %) of patients, using pre-defined

assay criteria and a single round of in vitro culture.

Fig. 3 Immune responses.

a and b Represent data from all

patients who completed

vaccination (n = 29) displayed

as a box and whiskers plot and

show the median and range of

CD4? and CD8? IFNc
responses to FrC protein and

PSMA27 peptide at baseline

(solid) and post-final

vaccination (checked). c Shows

the time to next treatment for 14

patients that required additional

treatment and compares patients

who made a PSMA27-specific

CD8? response (responder,

n = 7) with those that did not

have a detectable response

(non-responder, n = 7).

d and e, Scatter plots, represent

patients who made a significant

response up to week 24,

comparing patients receiving

vaccination without (-EP) or

with (?EP) EP. d Compares

CD4? responses to FrC at

baseline and at week of max

response (n = 11 and n = 13

for -EP and ?EP,

respectively). e Compares

CD8? responses to PSMA27 at

baseline (solid) and at week of

max response (n = 7 and n = 6

for -EP and ?EP,

respectively). All CD8?

responses have been assessed

after short term in vitro culture
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Comparison of immunogenicity between trials is hampered

by widely varying assay systems used for immune moni-

toring, and additionally, only few studies are available that

report this data in comparable clinical settings [6, 9]. The

dataset by McNeel et al. [9] with a full-length DNA vac-

cine encoding PAP is most similar to our own, and in this

study, 3/22 patients had measurable CD8? T-cell responses

compared to 6/30 patients in our dataset ex vivo.

Incorporation of full-length antigen sequence into the

DNA vaccine seems attractive since it would allow vac-

cination of all rather than to the 40 % of patients who carry

HLA-A2 [9]. However, there are cogent reasons for using a

peptide-focused vaccine since the inductive power of the

repositioned peptide is generally considerably higher than

from full-length sequence [37]. CD8? T cells specific for a

single epitope are clearly capable of suppressing even an

acute viral infection [38]. Should escape from focused

attack occur, a second vaccine against a different epitope

could be used [39], and we are exploring double attack in

our current clinical trial against the WT-1 antigen [40].

Although our vaccine design could readily incorporate

tumor-derived MHC class II-binding epitopes, there is no

clear evidence that these are required for the maintenance

of cytotoxic T cells and there is a danger that regulatory T

cells might be induced [13, 41].

Viral vector–based vaccines have the problem of pre-

existing or induced antiviral immunity. However, an MVA-

MUC-1 vaccine induced an IFNc? T-cell response to

MUC-1 after short-term culture in 7/34 patients with

prostate cancer [6]. Pox viral delivery in metastatic disease

also generated PSA peptide-specific CD8? T-cell respon-

ses in 13/29 patients following PSA-TRICOM vaccination

[42] and in 9/24 patients following MVA-Trovax vacci-

nation [43]. It appears that our approach has at least

comparable immunogenicity. We would contend, however,

that avoiding blocking immunity, likely to arise from MVA

[44], will be important for repeated vaccinations required

to maintain attack on cancer. A concern at the outset of our

study had been whether T-cell responses would be durable,

as with some vaccines approaches CD8? T-cell responses

can be lost rapidly and then not re-expand after repeated

injection [18]. Our data argue that with DNA vaccination

this is not a problem with T-cell responses maintained to

the end of the follow-up period.

To examine whether our DNA vaccine had sufficient

potency to be scaled from mouse to human, we examined

the delivery of our DNA vaccine using the Inovio

Elgen100 device for the first time in the clinic. We had

found pre-clinically [22, 45] that EP increased antibody

responses, with lesser increase in CD8? T-cell responses to

our DNA fusion vaccine. In the clinic, this dichotomy is

also evident with clear increases in antibody [24] but only a

trend for increase in both CD4? and CD8? T-cell

responses with EP. After cross-over of 11/15 patients to EP

boosting, there is a significant and durable increase to the

end of the study but we can no longer assess the impact of

the individual delivery modalities. It is intriguing to spec-

ulate why EP has an apparently smaller effect on T-cell

responses compared to humoral responses. In the trial, this

may simply be a reflection of very small patient numbers

treated without electroporation, and a randomized dataset

needs to evaluate the comparative question further. A

possible explanation for both the murine and human data

could be that unlike B-cell responses, where the increased

muscular antigen expression after electroporation leads to

higher humoral responses [24], for T cells there may not be

such a strict correlation with the quantity of antigen

expressed by the muscle cells.

In summary, the pDOM-PSMA27 vaccine is safe, gener-

ates anti-PSMA responses in the majority of patients and is

associated with an increase in PSA-DT. Use of EP was well

tolerated and may increase T-cellular vaccine efficacy.

These findings merit further testing in a randomized setting.

Examining the vaccine-induced T cells for their ability to

home to the tumor will be a critical component of further

evaluation and may offer the tool to better identify a link

between vaccine-induced immunity and clinical outcome.
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