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Abstract
Purpose of Review The goal of this review is to summarize the state of big data analyses in the study of heart failure (HF). We
discuss the use of big data in the HF space, focusing on “omics” and clinical data. We address some limitations of this data, as
well as their future potential.
Recent Findings Omics are providing insight into plasmal and myocardial molecular profiles in HF patients. The introduction of
single cell and spatial technologies is a major advance that will reshape our understanding of cell heterogeneity and function as
well as tissue architecture. Clinical data analysis focuses on HF phenotyping and prognostic modeling.
Summary Big data approaches are increasingly common in HF research. The use of methods designed for big data, such as
machine learning, may help elucidate the biology underlying HF. However, important challenges remain in the translation of this
knowledge into improvements in clinical care.

Keywords Heart failure . Big data . Omics . Single cell . Machine learning

Introduction

In the past 5–10 years, big data has become an integral part of
the study of cardiovascular disease. There are many defini-
tions of big data; however, one definition is data large or
complex enough that they cannot be analyzed or interpreted
by traditional methods. As a result, computational methods,
primarily statistics and machine learning (ML), are used to
analyze this data. Several big data technologies are starting

to be applied in the clinic: for example, genomics and tran-
scriptomics are used for patient stratification in breast cancer
diagnosis and treatment [1, 2] and can be used to determine
acute cardiac allograft rejection [3, 4]. However, due to chal-
lenges in clinical implementation and questions about the ben-
efits of these methods [5], most big data approaches are im-
plemented in preclinical research.

Chronic heart failure (HF) is a prime target for big data
research due to the complex etiology of the syndrome, the
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large number of risk factors, the high degree of comorbidity in
patients, and the prolonged and progressive course of disease.
Big data used for the study of HF are derived from a variety of
sources (Fig. 1). Some of these sources are dependent on
tissue such as blood or myocardial samples, while others are
ascertained through clinical care or wearable devices.

In this review, we discuss the biological and clinical impact
of the application of common big data types and computation-
al approaches across the spectrum of human HF etiologies and
subtypes, including inherited and acquired HF as well as HF
with preserved and reduced ejection fraction (HFpEF and
HFrEF, respectively). While many types of big data are used
for the study of HF (Table 1), this review will focus on several
areas of omics, including genomics, epigenomics, transcripto-
mics, and proteomics, as well as big clinical data. We also
address several current issues with big data collection and
analysis, and reflect on the future of these methods in HF.

Big Data Computational Methods

In order to analyze big data, methods that account for both the
size and the complexity of the dataset are required. Data noise,
spurious correlations, and limitations in computational power
are a few of the challenges that these types of analysis
methods are designed to overcome [25]. Big data analysis
protocols vary based on the nature of the data collected as well
as the specific research question. Nonetheless, there are shared
concepts that are common in these analyses that we will brief-
ly discuss: dimension reduction, ML, and a popular branch of
ML called deep learning (DL). For more detailed methodo-
logical overview, see [26–28].

When a large number of features are measured, data visu-
alization and interpretation is difficult. Thus, feature or dimen-
sion reduction is a common aim of computational methods
[29]. Data-driven approaches like principal component

Fig. 1 Types of big data in heart failure and the body location fromwhich
samples are taken for that data type. Omics and clinical data are the two
common big data types to study HF. Clinical data can be gathered via
wearables, imaging techniques, echocardiography (ECG), and electronic
health records (EHRs). Different omics technologies primarily analyze
cardiac tissue or blood and include genomics, transcriptomics,
translatomics, proteomics, metabolomics, and lipidomics. Specimen can

be studied at different resolutions, including bulk, single cell, single
nucleus, and spatial level. To date the different tissue resolutions are not
yet available for every omic. Data analysis is challenged by accuracy,
structure, and volume of omics and clinical data. Traditional statistical
as well as machine learning methods are employed to extract essential
information to improve biological understanding and clinical care in HF.
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analysis transform features to a lower dimensional space by
finding combinations of features that capture most of the var-
iability in the data. These combined features, however, are
often hard to interpret as they are a mathematical combination
of arbitrary molecules. Thus, an alternative is to perform di-
mension reduction based on interpretable features. For this
purpose, molecules are grouped into processes such as cellular
pathways, based on prior knowledge that is available in data-
bases. There are many methodological approaches that then
try to estimate which processes are more or less active, based
on the levels of the molecules that belong to them (e.g., gene
set enrichment analysis [30]).

After preprocessing and potentially dimension reduction,
statistical learning and modeling is often applied to make es-
timations about populations (inference) or predictions of new
experiments. These analyses often rely on ML, a variety of
algorithms to carry out computational tasks without detailed
instructions provided by the user. ML algorithms can be clas-
sified as unsupervised or supervised. Unsupervised algorithms
learn underlying patterns from data while supervised algo-
rithms learn from labeled data to perform tasks like classifica-
tion or prediction. For this, a portion of available data, referred
to as the training data, is used to fit a model. The model
performance is then assessed on test data, data that has not
been used for model training.

A common supervised ML algorithm is a neural network.
A neural network is characterized by nodes that are organized
in layers, inspired by biological neuronal circuits. Each node
can be regarded as a function that processes inputs to generate
outputs that become the inputs of the next layer of nodes. The
information processing of each node is learned from data by
an optimization method that adjusts the node’s function pa-
rameters to minimize the error in performing a task, learning
from each sample in a data set. Deep learning (DL) is a spe-
cific type of machine learning that uses neural networks with
many layers. Deep learning is difficult to interpret since infor-
mation processing via different nodes and layers becomes
incomprehensible. However, it is very powerful in performing
without human input highly difficult tasks such as interpreta-
tion of biomedical imaging or clinical health records that oth-
erwise would require high domain knowledge.

Omics in Heart Failure

High-throughput methods enable researchers to study molec-
ular profiles of tissues at high resolutions (Table 1). This field
is generally referred to with the suffix -omics. Omics technol-
ogies can be described as non-targeted—those that aim to
measure complete molecular profiles in an unbiased

Table 1 Big data of types in heart failure. Many types of big data used in the study of HF are listed below along with a brief description. Data types
specifically addressed in this review are in italics

Types of big data Description Examples in HF

Genomics

Genome-wide association study (GWAS) Observational study testing the association of genome-wide common
genetic variation with a trait in a population of individuals.

Reviewed in [6, 7]

Whole-genome sequencing (WGS) Sequencing of the whole genome. Usually applied in the study of
inherited disorders resulting in HF.

[8, 9]

Whole-exome sequencing (WES) Sequencing of the exome (protein-coding portion) of the genome.
Usually used to study forms of HF with known genetic etiologies.

Reviewed in [6]

Transcriptomics

Microarray Quantification of RNA by fluorescence measurement of cDNA
using chips. Limited to genes targeted by array chip.

[10, 11]

Bulk RNAseq Quantification of RNA though sequencing of cDNA, alignment to
reference genome, and counting.

[12, 13]

Single-cell RNAseq Single cell or nucleus isolation prior to RNAseq [14••]

Spatial transcriptomics RNAseq performed on patches of tissue on slides [15]

Proteomics The study of proteins or peptides in a targeted or agnostic manner. Reviewed in [16–18]

Metabolomics The agnostic or targeted study of metabolites. Reviewed in [19]

Lipidomics The study of the complete or targeted lipid profile in an individual
or population

[20, 21]

Wearables An item worn externally that provides continuous data on parameters
like heart rate, blood pressure, or fitness activity.

Reviewed in [22]

Clinical data

Electronic health records Electronic data representing patients or patient groups produced for
the purpose of managing clinical care

[23]

Imaging data The process of creating visual representation of physiology.
Examples include CT, MRI, echocardiography, EKG, X-ray.

Reviewed in [24]
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manner—and targeted—those that have predefined molecules
of interest. While non-targeted omics are often treated as a
complete representation of a molecular profile, the biases that
underlie these representations need to be considered as possi-
ble sources of error. Technical bias often results from favoring
abundant or easy to read molecules and can be only partially
corrected during normalization procedures before data analy-
sis. As technologies develop, technical biases are addressed
(e.g., long-read RNAseq can overcome negative bias towards
long transcripts and improves isoform detection [31]). Further
biases are introduced at the analysis level, when prior biolog-
ical knowledge is used to reduce the dimensions of omics data
(see “Big Data Computational Methods”). The consultation of
prior knowledge can forestall new discoveries by disregarding
valuable information. Furthermore, bioinformatic databases
are a main source of biological knowledge and their inherent
biases and inaccuracies are integrated into analyses that use
them.

In HF, the specimen for omics analysis usually is cardiac
tissue or blood (e.g., peripheral blood mononuclear cells
(PBMCs)). While myocardial omic analyses can help eluci-
date disease mechanisms and identify biomarkers and thera-
peutic targets, the tissue availability for human samples is
limited. Blood samples are easier to access and can help sur-
vey HF patients at a higher temporal resolution. They are used
for biomarker detection and to study genomics as well as the
role of circulating cells while the origin and pathophysiology
of circulating molecules can be difficult to define.

Different omics technologies pose similar challenges on
data analysis and evaluation, including problems concerning
accuracy, imputation, integration, replication, and interpreta-
tion. We will discuss recent advances and challenges in im-
portant omics, in particular genomics, epigenomics, tran-
scriptomics, and proteomics.

Genomics

Genomics is one of the classic areas of big data, studying the
role of the genome in disease. Within genomics, analyses are
split by technique: genome-wide association studies (GWAS)
investigate specific predetermined single nucleotide polymor-
phisms (SNPs), while whole-exome sequencing (WES) and
whole-genome sequencing (WGS) use next generation se-
quencing to identify all variations in the coding regions or
the complete genome, respectively. GWAS is typically used
to study common HF, while WES and WGS are more fre-
quently used to study subtypes of HF with known genetic
etiologies such as familial dilated cardiomyopathy (DCM)
[32]. In both GWAS and whole-genome association studies
(WGAS) difficulties include limited information at each sin-
gle nucleotide polymorphism (SNP), difficulty understanding
the biological mechanism that may drive the association for

SNPs not in genes, and the need for large populations to gain
sufficient statistical power [33].

As a result of years of HF GWAS with limited associations
that provided little insight into the biology of the disease [34],
recent GWAS have focused on gathering sufficiently large
samples, looking at HF subgroups [35], and investigating bio-
marker and intermediate quantitative traits relevant to HF [7,
36, 37]. While GWAS of HF have been reviewed elsewhere
[6] [7], we want to highlight the recent publication of the
largest GWAS of HF to date: Shah et al. found 12 independent
signals at 11 loci associated with HF risk factors or structural
parameters of the left ventricle (LV) [38••]. After statistical
analysis to determine causality, several loci that remained as
risk factors mapped to genes involved in cellular senescence,
cardiac development, and protein homeostasis. These results
indicate that while much of the genetics of all cause HF is due
to risk factors, other innate biological pathways relevant to
cardiac function also play a role in genetic predisposition to
disease. However, like much of the GWAS literature, these
results are also limited in scope as the population studied only
included European ancestry individuals.

Epigenomics

Epigenomics is the study of alterations across the genome that
regulate genome expression and function without altering the
DNA sequence. Some of the epigenomic alterations that are
known to be relevant in HF include DNA methylation [39],
chromatin conformation mapping [40], and histone modifica-
tions [41, 42]. Many studies that apply epigenomics also use
data from other omics techniques, often either genomics or
transcriptomics into a multi-omics approach [39, 43, 44].

Despite these examples, there are many challenges in both
the analysis and interpretation of epigenomic data. Different
groups use different analysis workflows and there is limited
consensus on the best way to analyze data. The epigenome is
highly dynamic, meaning that with only a single sample at a
single time-point, it can be difficult to determine which chang-
es are causes and which are consequences of the cell state [45].
In data interpretation, the cell and tissue specificity of the
epigenomic landscape means that it can be difficult to be cer-
tain which changes are relevant to disease state [45, 46].
Despite these challenges, epigenomics provide a natural
bridge between knowledge of the genetic state in HF and
potential biological consequences.

Transcriptomics

The transfer from genetic code to cellular function is mediated
by the transcription of ribonucleic acid (RNA). RNA can be
translated to proteins (coding RNA or messenger RNA), or
execute structural (e.g., ribosomal RNA) or gene regulatory
functions (e.g., micro RNA, long non-coding RNA). The
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quantification of the set of RNA molecules (transcripts) pro-
duced by the genome is generally referred to as transcripto-
mics and provides important understanding of disease mech-
anisms [47]. As transcriptome profiles can cover up to ~
20.000 coding and ~ 15.000 non-coding genes [48], analysis
and functional interpretation is challenging. To extract rele-
vant information from transcriptome data, dimension reduc-
tion methods, enrichment based analysis, linear modeling,
clustering algorithms and other ML techniques are routinely
applied. The combination of these methods with prior biolog-
ical knowledge constitutes a key concept of functional inter-
pretation of large-scale gene expression data [49]. Among the
disadvantages of using bulk transcriptomics is their suscepti-
bility to fluctuations in cellular composition, which can lower
sample comparability. One solution to this is computational
cell deconvolution methods [50], which calculate cell frac-
tions from bulk measurements and can estimate cell-specific
expression profiles [51]. Cell deconvolution of human heart
tissue has been performed [52] and might serve as a first
example to enhance future HF transcriptome analyses.

The first high-throughput transcriptomic study on myocar-
dial human HF was published in 2000 [53]. In the subsequent
decades, technological and bioinformatic advances in tran-
scriptomics have improved our comprehension of cardiac hy-
pertrophy [54], reverse remodeling [55], cardiac metabolism
[10, 56], cardiac fibrosis [57], and immune dysregulation [58]
in HF. Several studies made their data sets and protocols pub-
licly available on platforms like NCBI’s gene expression om-
nibus. However, few attempts have been made to compare
transcriptomic HF studies [59–61]. The continuing develop-
ment of sophisticated data analysis methods invites the retro-
spective re-analysis and integration of published HF studies,
although data integration from different platforms, centers,
and technologies presents many challenges [62].

Transcriptome study of myocardial remodeling in HF is
complicated by tissue accessibility. Thus, for patient safety,
most studies analyzed tissue from HF patients undergoing
heart transplantation or LVAD treatment, leaving a knowl-
edge gap of gene expression profiling in HFpEF patients. A
recent study compared myocardial transcriptomes in patients
with clinical profiles suggesting HFpEF with those not
displaying signs of HF [63•] gene dysregulations similar to
those observed in HFrEF (TNNT2, LUM and p53). Future
research is required to specify differences between cardiac
remodeling in HFpEF and HFrEF patients to enable develop-
ment of disease specific therapy, which is currently lacking.

The profiling of non-coding RNA has provided targets for
diagnostic and therapeutic purposes in HF [64, 65]. As HF
specific non-coding RNAs can be detected in bloodstream,
developing miRNA panels to stratify HF patients by prognos-
tic or diagnostic aspects has been a major focus. However, the
clinical utility still has to be demonstrated and the (patho-)-
physiologic role of circulating RNAs remains unclear. Here, a

functional microRNA screening approach could help to prior-
itize candidates [66].

Translatomics can be described as the quantification of
translating mRNAs and ribosomes providing important infor-
mation of subsequent RNA regulation [67]. To address how
these layers of gene regulation connect in the failing heart, a
study by van Heesch et al. combined genotypes,
transcriptomes, and translatomes in 80 hearts (control vs. di-
lated cardiomyopathy) [13••]. Deciphering regulation in pro-
tein biosynthesis, the balance between transcriptional and
translational gene regulation was elucidated, for example mi-
tochondrial processes are initiated during transcription and
significantly enhanced on the translational level.
Furthermore, protein-truncating variants of DCM causing
genes were reported to inefficiently terminate translation, pro-
viding insights in the pathogenicity of genetic variants.
Excitingly, the authors report that circular RNAs (circRNAs)
and long non-coding RNAs (lncRNAs) were found to be also
translated to novel microproteins.

Single-Cell RNAseq

With single-cell RNAseq, the transcriptome of individual cells
can be measured, providing tissue profiling at unprecedented
granularity. Bulk RNAseq fails to account for a functional
diversity of cell types that might be crucial in understanding
the orchestration of myocardial syncytium in health and dis-
ease. Single-cell expression profiles can inform about cell lin-
eage heterogeneity [68], inter cell communications [69], indi-
vidual transcription factor and pathway activity levels [70], or
can be integrated within multi-omic approaches [71].

The main challenges in the application of this technology
included separation of single, viable cells and subsequent am-
plification of a minute amount of RNA. Different approaches
to overcome these hurdles vary in gene coverage and
multiplexing ability (i.e., the capacity to process in parallel)
[72, 73]. The cardiac tissue poses additional challenges. Since
cardiomyocytes (CM) are too large for many cell sorting ap-
proaches, single nucleus RNAseq can be applied, which in-
volves isolating the nucleus rather than the whole cell prior to
sequencing. The transcriptional profile of single cell and sin-
gle nucleus RNAseq has been reported to be comparable dur-
ing CM differentiation [74]. As the transcriptional profiles of
mono- and polynucleated CM were reported to be similar
[75], application of single nucleus RNAseq on cardiac tissue
is encouraged. The plethora of information gathered by single
cell RNAseq poses new challenges to big data analysis that
have only partially been met. These include the need to quan-
tify uncertainty in measurements and efficiently handle gene
dropout rates; the limited benchmarking possibilities; the need
to scale to higher dimensional data, as more cells and more
genes can be measured; and the integration of multiple levels
of single-cell omics [76].
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Single-cell RNAseq has already been applied to study the
cardiovascular system (reviewed in [77–80]). To date, studies
have focused on the description of cardiac cell lineage hetero-
geneity and trajectory in mice [79, 81–83], as well as on hu-
man cardiogenesis [84–88].

HF was studied in murine models, investigating cell cycle
arrest [89] and adaptive remodeling of CM [90]. Human HF
description on single cell level was recently reported [14••]. A
total of 21,422 single cells from 14 control and 8 failing hearts
were compared. The reported cellular heterogeneity was sug-
gested to reflect functional specializations. Macrophages ful-
fill very heterogeneous tasks in the human heart [91], which
was mirrored by different macrophage clusters, some of which
presumably specialize in regulating the conduction system,
whereas other clusters displayed traits that suggested involve-
ment in immune response regulation. A cluster of endothelial
cells (EC) was characterized to highly express ACKR1. These
ECs decreased in HF and might exert cardioprotective func-
tions, as injection of ACKR1+ ECs into a murine HF model
improved cardiac function compared to control. This study
highlighted that cell heterogeneity within lineages relates to
functional specialization and pathological condition, aspects
that can only be studied with single-cell resolution. The
knowledge of such functional cellular subgroups could enable
the targeting of such clusters to boost their cardioprotective
ability.

Spatially Resolved Transcriptomics

As single-cell analysis is exhibiting a soaring development,
spatially resolved transcriptomics add yet another layer of
information and complexity. Study of the single cell or bulk
transcriptome does not regard the complex tissue architecture
of the heart. Further, many pathological processes like fibrotic
scarring or ischemia can be local aberrations that require to be
studied within tissue context. Spatially resolved transcripto-
mics could overcome these hurdles by gathering gene expres-
sion data while retaining respective spatial information. Many
approaches are limited in gene coverage and/or in spatial res-
olution [92]. Stahl et al. developed spatial transcriptomics, a
technique that compartmentalizes tissue into patches which
are subsequently profiled via RNAseq [93] and set the path
for further development [94]. Other technologies are under
active development to improve the spatial resolution and cov-
erage of genes of these methods [95, 96]. The data generated
by these technologies still require a sound computational
framework to integrate both layers of information.

In a pilot study, Asp et al. analyzed cardiac fibrotic samples
from three HFpEF patients and demonstrated the feasibility of
performing spatial transcriptomics on adult human heart tissue
[15]. A hallmark study combined spatial transcriptomics, sin-
gle cell technology and in situ sequencing to create a spatio-
temporal map of gene expression patterns during embryonic

heart development at an hitherto unseen resolution [85•]. This
combinatorial approach is a highly promising field for HF
research and is likely to fundamentally improve our under-
standing of cardiac remodeling in the near future.

Proteomics

Proteomics is the quantification of proteins, as transcriptomics
do not consider the subsequent and frequent regulations of
RNA translation or protein modification. Targeted and non
targeted proteomic technologies can be applied, differing in
protein coverage, protocol complexity and analytical through-
put [97]. Data generated by proteomics provides similar chal-
lenges to the other omics analysis as discussed above. In HF,
proteomics have been applied to unravel protein posttransla-
tional regulation and temporal dynamics [16]. Due to tissue
availability, animal models of HF have been more frequently
analyzed [18]. In 2017, the first human proteomic heart atlas
described 10,700 proteins in 16 anatomical regions, providing
a rich resource of known and unknown protein distributions
[98].

The plasma proteome of HF patients has been analyzed
extensively to identify biomarkers for HF and their genetic
risk-association as well as to understand organ crosstalk via
blood stream [99–101]. Egerstedt et al. studied the plasma
proteome of HF patients in different clinical stages (early HF
development, manifest advanced HF, and reversal of HF after
heart transplantation) [102••]. They identified 33 candidate
proteins that were associated with HF development. The ori-
gin of those circulating proteins was investigated by querying
public transcriptome and proteome datasets as well as apply-
ing spatial transcriptomics on two failing hearts. GWAS was
then used to determine genetic loci that were associated with
protein candidates. This study demonstrates that the arsenal of
omics technologies can be successfully applied to complete
biological characterization of candidate biomarkers.

Clinical Data in Heart Failure

While omics data provides information about the cellular state
during disease, how the disease state is viewed and treated in
real patients provides additional insight. Clinical data can be
described as information about a patient’s health status that is
gathered mainly for the purpose of clinical care. These include
imaging data, electronic health records (EHRs), and data cap-
tured by wearables (Fig. 1). Clinical and omic data types can
be analyzed with similar methods; however, they differ re-
garding their data structure. While omic data are structured
measurements, clinical data is often a combination of unstruc-
tured, semi-structured, and structured data with the added
complication that free text can be subjective or spurious.
Thus, clinical data often requires significant pre-processing
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prior to analysis, a major hurdle for clinical data analysis on a
large scale. Highly promising approaches to this challenge of
extracting relevant information from unstructured clinical data
include natural language processing [103–105], but even
structured clinical data is subject to noise resulting from entry
errors. Clinical data is frequently sparse, subject to care utili-
zation and documentation habits, and biased, in that health
states outside of clinical encounters are rarely reported. Once
preprocessing challenges are overcome, clinical data analysis
is often subjected to similar statistical and mathematical
modeling as omics data for predictive or inference purposes.
In HF, patient outcomes have been associated with the pres-
ence of a wide variety of comorbid conditions and ejection
fraction sub-group. Despite this, mortality and risk of rehos-
pitalization in HF patients remains high. As a result, three
major trends have emerged in the use of clinical data for the
study of HF: sub-phenotyping, deep phenotyping, and imag-
ing data.

The emergence of sub-phenotyping has caused a shift from
the tendency to view HF patients as a single population (or as
two clearly defined populations) towards the tendency to view
them as a large heterogeneous supergroup composed of many
smaller and potentially unknown subgroups [106, 107].
Predicting the outcomes of HF patients, especially within sub-
groups, is a major area within big data studies using EHR data
or other data relevant to clinical care [108]. Adler et al. were
able to divide HF patients into those at high and low risk of
death based on clinical variables, and their classifier had a
better predictive power than any of the individual classifier
components, and better than other comparison markers in-
cluding NT-proBNP [109]. Ahmad et al. divided a group of
HF patients into four clusters which differed in age, sex, clin-
ical measures, and comorbid conditions, before building a
classifier to predict survival. They found that cluster member-
ship had a modest predictive ability, but performed better than
left ventricular ejection fraction alone as the gold standard
measure of cardiac function [110]. Other studies have tested
multiple types of algorithms for predicting outcomes includ-
ing HF hospitalization and mortality among HFpEF patients
[111], and phenogrouped HF patients who had been random-
ized to cardiac resynchronization therapy with a regular or
implantable cardiac defibrillator prior to evaluation of the ef-
fect on HF events and death [112].

Deep phenotyping—the characterization of a phenotype
through the comprehensive evaluation of components and in-
termediate manifestations—has resulted in the use of many
diverse types of data. Data including echocardiography
[113], electrocardiography (ECG) [114], cardiac magnetic
resonance imaging (MRI) [115], tissue imaging [116], im-
plantable monitors [112], and other wearable and non-
invasive cardiac monitors [117, 118] are used in combination
withML andDLmethods for the prediction andmonitoring of
HF patients. Laboratory values and intermediate phenotypes

are also widely analyzed. The diversity of data types used for
the study of HF is rapidly expanding. Analyzing populations
that have multiple data in the same individuals can provide
detailed information about the progression of disease as well
as insights into clinical characteristics that may indicate neg-
ative outcomes.

Imaging data constitutes a major branch of big data analy-
sis, facilitating automated assessment of echocardiography,
computed tomography, magnetic resonance imaging, and nu-
clear imaging results. The rise of imaging data from clinical
care has happened partially due to improvements in the ability
of ML analysis methods for this data. As DL approaches are
especially useful to consider the vast amount of features in raw
images and integrate those with other clinical variables. For a
detailed discussion of these topics, we point the reader to
dedicated reviews [24, 119]). However, as with other big data
types, important limitations remain. Most importantly, the
lack of interpretability of DL models based on image data is
a major obstacle for relevance to clinical care.

As a whole, big data from clinical populations has provided
great insight into the true phenotypic diversity of HF and has
begun to provide links between that diversity and patient out-
comes. However, despite the increased understanding of phe-
notypic heterogeneity, there is still a significant amount to be
learned about the relationship between sub-phenotypes and
outcomes. While this is a rapidly expanding field, questions
about the necessary manual curation of certain data types,
inconsistencies in imaging between clinical sites, and privacy
concerns remain. The promise of the interface between large
scale clinical imaging and electronic health records holds great
promise.

Conclusions

“Since we can never know all the factors that a problem
entails, we can never solve it. [..] To arrive at the truth
we would need more data along with the intellectual
resources for exhaustively interpreting the data.” -
Fernando Pessoa, from The Book of Disquiet (translated
by Richard Zenith)

Despite advances in the use of big data in HF, we are still
learning how to use this information to understand the com-
plexities of HF. To date, many challenges remain, as reflected
by high mortality and morbidity rates and limited treatment
options. However, the direction that HF research has taken
towards big data science promises to advance our knowledge
substantially. Relevant data is being collected and analyzed in
larger numbers with emerging data types forthcoming. Those
include image data, wearable data, environmental data and
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data generated by cardiac monitors such as CardioMEMs
[120]. And, the combination of multiple data types, either
clinical and molecular data or multi-omic integration is be-
coming more common. However, despite the innovation in
big data and HF, unresolved questions remain.

Data storage and sharing are key aspects of big data research
and security breaches on patient data can lead to serious person
rights infringements. While research data is often anonymized to
protect participants, data re-identification is a serious threat. To
minimize the risks of infringing on participant privacy, different
data sharing strategies including open consent, controlled access
and registered access are used [121].

Among omics data, genomic information has highest re-
identification risk and thus elaborate sharing regulations are
needed [122]. Approaches include sharing only the subset of data
that is not sensitive, sharing only more common genetic variants
that will be less specific to a single individual, and requiring strict
protocols for data access. Another approach are search engines
for genomic mutations where allelic information can be queried
with no reference to a patient [123]. Other omic data in general
are less specific to an individual, and data is made public on
servers like the gene expression omnibus. However, even tran-
scriptome data can be used to infer genetic structural variants and
thus facilitate re-identification [124].

Clinical data is highly sensitive and its use in big data research
is subjected to strict regulations concerning data privacy and
security. Databases like UK Biobank or dbGAP provide clinical
and molecular profiles of participants at great depth. Here, con-
trolled access has to be requested by scientists with a research
proposal and an agreement to a data handling framework. Most
databases store data and regulate access in a centralized fashion,
which constitutes aweak point for security breaches as frequently
reported in the US [125]. Methods that rely on decentralized
networks, such as blockchain, have been suggested to provide
additional security and data ownership for individuals
[126–128]. However, as with all data security measures, there
remains a trade-off between affordable protection and making
data sufficiently accessible to researchers. Beyond critical aspects
of data safety, costs of storage, energy consumption, and envi-
ronmental consequences need to be considered.

One of the major issues across big data domains are biases
in the collection and analysis of that data. As we rush to collect
ever larger sample sizes, we should pause to carefully consider
whether we are merely enthralled by ever increasing data
samples (so-called data chauvinism [129]) or whether the bi-
ological question is best answered by data of the type and
quality available. For many omics technologies, the number
of features considered requires large samples, or the noise
introduced will result in inferior model fitting. In other cases,
a large sample size can be less informative if the sampling is of
lower quality, for instance if non-probabilistic sampling was
applied [130]. Thus, many omic studies, especially those an-
alyzing sparse myocardial tissue, suffer from small patient

cohorts that cannot compensate for the biological and clinical
variability. A large-scale effort to acquire and comprehensive-
ly characterize relevant tissue samples with a variety of omics
techniques would ameliorate this issue and potentially provide
great insight into the biology of HF. Such efforts have proven
valuable in other areas, most notably in oncology. In clinical
data analysis we must balance the desire to find subsets of
patients that share characteristics, with the goal of making sure
that all patients benefit from the potential of precision medi-
cine. Concerns about sampling bias, data missingness, and
measurement error in big data, and especially big clinical data,
are all relevant to research in HF [131–133]. These data qual-
ity concerns are also important because they will directly af-
fect the output of machine learning analyses [134].

Lastly, despite the excitement about big data, the ultimate goal
inmedicinemust always be to improve human health. Physicians
should receive additional training allowing them to appropriately
evaluate the potential of big data in clinical care [135]. To suc-
cessfully implement precisionmedicine approaches based on big
data technologies, clinicianswill need to understand the strengths
and weaknesses of methodologies and have confidence in their
relevance to disease. The role of big data in HF prevention and
treatment necessitates a multi-disciplinary discussion where phy-
sicians are needed to take a leading role.

A significant amount of big data has been generated and
analyzed for the study of HF to promote a digitalization of
medicine [136] and are adapted to deal with the particular
problems posed by HF biology on the various levels that have
been discussed. However, challenges still lie ahead. Some are
data governance issues, such as patient privacy as well as data
access and sharing, while others are more biological or tech-
nical, such as integration of multiple data types to describe HF
from different perspectives. As the amount of big data gener-
ated by different methods continues to accrue, we must piece
the biology together, and harness that knowledge to benefit
patients. While a unified theory explaining complete clinic
and biology of HF might still be unattainable, the era of big
data analysis helps us to consider more and more factors and
thus brings us much closer to the goal of treating the right
patient with the right treatment at the right time.
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