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ABSTRACT 
Fuchsia standishii J. Harrison, 1840, a perennial shrub, is renowned for its vividly colored and uniquely 
shaped blooms, which have an extended flowering season. Commonly cultivated as an ornamental pot
ted plant, it is utilized in traditional Chinese medicine. In this study, we successfully sequenced and 
assembled the complete chloroplast genome of F. standishii using high-throughput Illumina sequencing 
technology. The assembled chloroplast genome displays a typical quadripartite structure, with a total 
length of 156,391 bp. It consists of a pair of inverted repeat regions (IRs), each measuring 25,069 bp, sepa
rated by a large single-copy region (LSC) of 87,754 bp and a small single-copy region (SSC) of 18,499 bp. 
The overall GC content of the genome is 37.60%. The genome includes a total of 129 genes, comprising 
84 protein-coding genes, 37 tRNA genes, and eight rRNA genes. Phylogenetic analysis of 17 complete 
chloroplast genomes revealed that F. standishii forms a monophyletic group with the entire Circaea. This 
study provides a molecular foundation for future phylogenetic research on Fuchsia.
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Introduction

Fuchsia standishii J. Harrison, 1840 is a flowering plant species 
native to South America and New Zealand, belonging to the 
Onagraceae family (Garibaldi et al. 2012). Fuchsia standishii is 
the basionym of Fuchsia hybrida. Notably, it is the exclusive 
representative of the Fuchsia genus in China (Figure 1). 
Widely cultivated and esteemed as an ornamental potted 
plant, its flowers can enhance the nutritional, sensory, and 
functional qualities of food formulations (Castillo-Carri�on 
et al. 2024). In studies conducted by Rios et al. (2017), F. 
standishii emerges as a crucial component in the formulation 
of horchata, a beverage widely integrated into the traditional 
practices of Southern Ecuador due to its recognized anti- 
inflammatory, analgesic, and diuretic properties (Rios et al. 
2017). Renowned for its diverse therapeutic properties 
encompassing anti-inflammatory, antioxidant, antifungal, car
diotonic, sedative, and stomachache-alleviating effects, it is a 
valuable botanical resource (Csepregi et al. 2016).

Despite its medicinal importance, the chloroplast genome 
of F. standishii has not been previously documented, hinder
ing a comprehensive understanding of its genetic characteris
tics and evolutionary history. This study focuses on 
sequencing the complete chloroplast genome of F. standishii 
to lay the groundwork for further exploration and research in 
this field.

Materials and methods

Fresh leaves were gathered at Dali County (geospatial coordi
nates: 100�110600E, 25�8409500N). And that is stored in the 
Herbarium of Dali University (http://yxy.dali.edu.cn/yhxy/, 
wangshuang0541@126.com, Wang Shuang) with a voucher 
number WS2022111804. For whole-genome DNA sequencing, 
we extracted total genomic DNA using a modified CTAB 
method (Doyle and Doyle 1987), which was then fragmented 
into 150 bp for library construction and sequenced by the 
Illumina NovaSeq 6000 platform (Illumina, San Diego, CA, 
USA) (Zhang et al. 2023). This process yielded 4.64 GB of 
sequence data. The trimmed reads were assembled using 
NOVOPlasty v.4.3.1 (Dierckxsens et al. 2017). Genome annota
tion was performed by Geneious Prime v.2023.2.1 (Kearse 
et al. 2012). Manual corrections were made by comparing the 
sequence with the reference chloroplast genome of Circaea 
cordata (GenBank accession number: NC_060876.1). The 
annotated genome sequence has been submitted to 
GenBank (accession number: OR896387.1). We retrieved the 
complete chloroplast genomes of 17 Onagraceae species 
from GenBank. All sequences were initially aligned using 
MAFFT v.7.149 (Katoh and Standley, 2013). A maximum likeli
hood (ML) tree was constructed using IQ-TREE-1.6.8 (Nguyen 
et al. 2015; Wascher and Kubatko, 2021) and the 
TVMþFþ Iþ R4 model, which was selected using 
ModelFinder (Kalyaanamoorthy et al. 2017). Using Bowtie2, 
the raw data is mapped back onto the assembled chloroplast 
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genome sequence (Langdon, 2015). Sorting and depth statis
tics are performed using samtools (Li et al. 2009). Finally, stat
istical plotting is conducted with a step length of one bp. 
CPGview was employed to generate cis-spliced and trans- 
spliced genes. (Liu et al. 2023).

Results

The chloroplast genome of the subject organism measures 
156,391 bp and exhibits the typical quadripartite circular 
structure, consisting of two inverted repeat regions (IRa and 
IRb, each 25,069 bp), a large single-copy region (LSC, 
87,754 bp), and a small single-copy region (SSC, 18,499 bp) 
(Figure 2). The coverage depth map of the assembly of the 
chloroplast genome is shown in Figure S1 and the sequenc
ing depth at the lowest loci is 270x. This genome includes a 
total of 129 genes, inclusive of 84 protein-coding genes, 37 
tRNA genes, and eight rRNA genes. Each of 13 protein-coding 
genes (rps16, atpF, rpoC1, petB, petD, rpl16, rpl2(�2), 
ndhB(�2), ndhA) have one intron, while two protein-coding 
genes (ycf3 and clpP) have two introns (Figure S2), and the 
rps12 gene was trans-spliced gene (Figure S3). The total GC 
content of the chloroplast genome is 37.60%. To unravel the 
phylogenetic affiliation between F. standishii and its relatives, 
we conducted a maximum likelihood (ML) analysis and con
structed a phylogenetic tree (Figure 3). The resulting analysis 

demonstrated that F. standishii forms a monophyletic group 
with the entire Circaea genus. These findings contribute sig
nificantly to the phylogenetic and evolutionary understand
ing of the Fuchsia.

Discussion and conclusions

F. standishii is highly regarded for its ornamental and medi
cinal properties, making it a favorite among enthusiasts. In 
our research, we present the complete chloroplast genome 
sequence of F. standishii for the first time, revealing a dis
tinctive circular structure that spans 156,391 bp and contains 
a total of 129 genes. Phylogenetic analysis of 17 species 
within the Onagraceae family strongly indicates that F. stand
ishii forms a monophyletic group with the entire genus 
Circaea, a finding consistent with previous molecular studies 
(Levin et al. 2003). Chloroplast genomes from the genus 
Circaea and Fuchsia are known to be maternally inherited 
(Corriveau and Coleman, 1988; Zhang et al. 2003). F. stand
ishii forms a monophyletic group with the entire genus 
Circaea may be linked to the structural and sequence varia
tions observed in chloroplast genomes within the 
Onagraceae, which differ between biparentally and mater
nally inherited genomes. In conclusion, our study not only 
enhances the genomic information available for F. standishii 
but also establishes a foundation for understanding 

Figure 1. F. standishii is a shrub with opposite leaves that are either ovate or narrow. Its flowers have a red, bell-shaped tube, with petals available in various colors, 
including purple, red, pink, and white. The petals are wide and obovate. The immature fruit is green and obovate oblong. A. Plant; B. Flower; C. Immature fruit. 
Photos of F. standishii were taken by Siying Li.
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genetic diversity, evolution, and phylogeny within the genus 
Fuchsia.
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Figure 2. The chloroplast genome map of F. standishii illustrates genes transcribed in a clockwise direction on the inner circumference and counterclockwise on the 
outer circumference. The dark gray inner circle represents GC content, while the light gray denotes another content. Various colors distinguish different functional 
genes. A prominent line on the large circle marks the boundaries of the IRa and IRb, dividing the genome into SSC and LSC regions. This informative and detailed 
chloroplast genome map was skillfully created using the CPGview tool.
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