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In the current study, we used breath-by-breath respirometry to evaluate respiratory
physiology under voluntary control in a male beluga calf [Delphinapterus leucas, body
mass range (Mb): 151–175 kg], an adult female (estimated Mb = 500–550 kg) and a
juvenile male (Mb = 279 kg) false killer whale (Pseudorca crassidens) housed in managed
care. Our results suggest that the measured breathing frequency (fR) is lower, while
tidal volume (VT) is significantly greater as compared with allometric predictions from
terrestrial mammals. Including previously published data from adult bottlenose dolphin
(Tursiops truncatus) beluga, harbor porpoise (Phocoena phocoena), killer whale (Orcinus
orca), pilot whale (Globicephala scammoni), and gray whale (Eschrichtius robustus)
show that the allometric mass-exponents for VT and fR are similar to that for terrestrial
mammals (VT: 1.00, fR:−0.20). In addition, our results suggest an allometric relationship
for respiratory flow (V̇ ), with a mass-exponent between 0.63 and 0.70, and where
the expiratory V̇ was an average 30% higher as compared with inspiratory V̇. These
data provide enhanced understanding of the respiratory physiology of cetaceans and
are useful to provide proxies of lung function to better understand lung health or
physiological limitations.

Keywords: diving physiology, marine mammals, bottlenose dolphin, killer whale, beluga, pilot whale, harbor
porpoise, gray whale

INTRODUCTION

Comparing respiratory traits between terrestrial and marine mammals shows some striking
differences in that when normalized by body mass, breathing frequency (f R) is generally lower
and tidal volume (VT) greater in marine mammals (Kooyman, 1973; Piscitelli et al., 2013;
Fahlman et al., 2017). Respiratory flow (V̇) is also generally greater in marine mammals as
compared with terrestrial species, especially in cetaceans, that have been shown to be able
to generate expiratory flows (V̇exp) that are at least one order of magnitude greater than
in humans (Olsen et al., 1969a; Kooyman et al., 1971, 1975; Kooyman and Cornell, 1981;
Piscitelli et al., 2013; Fahlman et al., 2015, 2017, 2019b). There appears to be great variability
in the mechanical properties of the respiratory system, but in general marine mammals
appear to have more compliant lung parenchyma as compared with terrestrial species, and
a rib cage that allows the alveoli to compress and collapse without apparent trauma (Olsen
et al., 1969b; Leith, 1976, 1989; Fahlman et al., 2011, 2017, 2018b; Denk et al., 2020).

Abbreviations: V̇ , respiratory flow; f R, breathing frequency; sf R, mass-specific breathing frequency; sVT, mass-specific tidal
volume; VT, tidal volume.
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However, the limited availability of data on respiratory
physiology has been, until recently, mostly limited to
pinnipeds with very few estimates in cetaceans (Piscitelli
et al., 2013; Fahlman et al., 2017). Data from different species
are therefore useful to help determine allometric differences
within and between marine species, and in comparisons with
terrestrial mammals.

The aim of this study was to provide new comparative
estimates of respiratory function from the false killer whale
(Pseudorca crassidens), and the beluga (Delphinapterus leucas)
while breathing at the surface at rest. In addition, we performed
an allometric analysis of available lung function data from
the bottlenose dolphin (Tursiops truncatus) (Fahlman et al.,
2019a,d), beluga (Kasting et al., 1989; Fahlman et al., 2019b),
pilot whale (Globicephala scammoni, now called Globicephala
macrorhynchus) (Olsen et al., 1969b), harbor porpoise (Phocoena
phocoena) (Reed et al., 2000), killer whale (Orcinus orca)
(Kasting et al., 1989), and gray whale (Eschrichtius robustus)
(Wahrenbrock et al., 1974; Kooyman et al., 1975). Our data
and analysis provide results that confirm that f R is generally
lower and VT is greater as compared with terrestrial mammals,
and the allometric mass-exponent for V̇ , VT, and f R is similar
to terrestrial mammals. In addition, while VT is greater as
compared with similar sized terrestrial mammals, it is seldom
close to vital or total lung capacity (Fahlman et al., 2020), as
has often been assumed (Dolphin, 1987). Finally, the allometric
relationship for V̇ provides interesting opportunities to estimate
lung function by recording the respiratory flow noise, a method
called phonspirometry in the human literature and currently
being tested in dolphins (Sumich, 2001; van der Hoop et al.,
2014). With proxies that allow remote recording of f R and
VT, improved estimates of field metabolic rate (FMR) may
be possible in cetaceans (Fahlman et al., 2016). Thus, this
improved knowledge of respiratory physiology in cetaceans is
not only important to enhance basic knowledge in comparative
respiratory physiology, but a better understanding of normal
respiratory capacity and limitations will also have important
implications to aid conservation of charismatic megafauna. We
therefore analyze published and unpublished lung function data
from 7 cetacean species of varying size (body mass).

MATERIALS AND METHODS

Animals
Breath-by-breath respirometry was used to measure V̇ while
staying calm at the side of a pool from: one adult female and
one juvenile male false killer whale housed at Sea Life Park
(Hawaii- United States, January 2018) and Vancouver Aquarium
(Vancouver-Canada, September 2016), respectively, and one
male beluga calf at the Oceanogràfic (Valencia-Spain, April-June
2016) (Table 1). In addition, we included previously published
respiratory data from 11 adult male and 3 adult female Atlantic
bottlenose dolphins (Fahlman et al., 2019a,d), 6 adult and 2
juvenile beluga (Kasting et al., 1989; Fahlman et al., 2019b),
1 pilot whale (Olsen et al., 1969b), 2 harbor porpoises (Reed
et al., 2000), 4 killer whales (Kasting et al., 1989), and 2 gray

TABLE 1 | Animal identification (ID), species false killer whale (Pseudorca
crassidens-Pc), beluga (Delphinapterus leucas –Dl), Atlantic bottlenose dolphin
(Tursiops truncatus-Tt), harbor porpoise (Phocoena phocoena-Pp), pilot whale
(Globicephala scammoni-Gs), killer whale (Orcinus orca-Oo), gray whale
(Eschrichtius robustus-Er), number of animals (N), sex (F-female, M-male, number
behind abbreviation is number of animals), body mass (Mb, kg), and approximate
year of birth or age for wild caught animals or year of birth for animals born under
human care.

Animal
ID

Species N Sex Mb (kg) Birth year/
estimate
age (Yr)

References

Pc1 Pc 1 F 500–545 30+ –

Pc2 Pc 1 M 279 2014 –

Tt Tt 14 F3/M11 140–235 1989–2013 Fahlman
et al., 2019a

Dl1 Dl 1 M 160 ± 15
(162 ± 20)

2016 –

Dl2 Dl 5 F3/M2 450–891 1986–2007 Fahlman
et al., 2019b

Dl3 Dl 3 F2/M1 385–620 Adult1/
Juvenile2

Kasting et al.,
1989

Gs Gs 1 NA 450 Adult Olsen et al.,
1969b

Er1 Er 1 NA 1116–1745
(4.77–5.78)!

Calf Kooyman
et al., 1975

Er2 Er 1 F 2000–6000 Calf Wahrenbrock
et al., 1974

Pp Pp 2 M2 28 Juvenile Reed et al.,
2000

Oo1 Oo 1 F 1090 NA Spencer
et al., 1967

Oo2 Oo 3 F1/M2 1650–3600 Adult1/
Juvenile2

Kasting et al.,
1989

All data with a reference are previously published. ! Only length reported and Mb
estimated from equation in Trites and Pauly (1998).

whales (Wahrenbrock et al., 1974; Kooyman et al., 1975). The
animal identification (ID), sex, body mass (Mb), and year of
birth (known or estimated) are summarized in Table 1. For the
female false killer whale, the Mb was estimated from length and
girth, while for all other animals Mb was measured. The study
protocols were accepted at each facility, as well as by the Animal
Care and Welfare Committee at the Oceanogràfic (OCE-17-16,
amendments OCE-29-18 and OCE-3-19i), and the Bureau of
Medicine (BUMED, NRD-1015).

Experimental Trials
All experiments were performed using operant conditioning
as previously detailed (Fahlman et al., 2019a,d). Participation
by each individual was voluntary, and the animals were not
restrained and could refuse to participate or withdraw at any
point during the experimental trial. Each experiment (trial)
consisted of an animal staying stationary in the water with the
blow-hole out of the water, allowing the pneumotachometer to
be placed over the blow-hole.

Respiratory Flow
The procedures and equipment were identical to those used in
our previous studies (Fahlman et al., 2015, 2018a,b, 2019a,b), and

Frontiers in Physiology | www.frontiersin.org 2 March 2020 | Volume 11 | Article 142

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00142 February 28, 2020 Time: 20:29 # 3

Fahlman et al. Respiratory Physiology in Cetaceans

the procedure is briefly summarized here. The V̇ was measured
using a custom-made Fleisch type pneumotachometer (Micah
Brodsky, V.M.D. Consulting, Miami, FL, United States; Mellow
Design, Valencia, Spain), which housed a low-resistance laminar
flow matrix (Item # Z9A887-2, Merriam Process Technologies,
Cleveland, OH, United States). A differential pressure transducer
(Spirometer Pod, ML 311, ADInstruments, Colorado Springs,
CO, United States) was connected to the pneumotachometer
with two firm walled, flexible tubes (310 cm lengths of 2 mm
I.D.). The differential pressure transducer was connected to a data
acquisition system (Powerlab 8/35, ADInstruments, Colorado
Springs, CO, United States), and the data was captured at 400 Hz
and displayed on a laptop computer running LabChart (v. 8.1,
ADInstruments, Colorado Springs, CO, United States). A low
resistance diffuser was added to homogenize the flow (Fahlman
et al., 2018b), which helped resolve the difference in calibration
factors for inspired (V̇insp) and expired (V̇exp) flow (Fahlman
et al., 2015). To assess the flow range over which the flow was
linear, we used an industrial fan (Atmosphere Vortex 728 CFM S
Line S-800 Fan, 8′′) to generate laminar flow up to 120 l · s−1, as
measured by a calibrated industrial flow meter (Merriam Process
Technologies, Serial No. Z50MC2-4-LHL, Flow standard serial
No. WMMH10-6). The pneumotachometer was placed in series
with the Merriam flow meter and the flow calibrated from 0 to
120 l · s−1, showing that the response was linear and identical in
both directions. For each trial, the differential pressure was used
to estimateV̇ , and was calibrated using a 7.0 l calibration syringe
(Series 4900, Hans-Rudolph Inc., Shawnee, KS, United States).
The signal was integrated and the VT determined as detailed in
a previous study (Fahlman et al., 2015). A normal breath was
considered a respiration that began with an exhalation followed
by an immediate inspiration.

Data Assessment and Statistical
Analysis
We compared the resting data within and between individuals
and species. The relationship between a dependent variable (VT,
f R, V̇ , and breath durations) and Mb was analyzed using linear-
mixed effects models (lme, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
version 3.3.3, 2016). We log10-transformed the variables to
generate linear functions that could be used with the lme function
in R. Species was treated as a random effect, which accounted
for the correlation between multiple measurements of the same
species (Littell et al., 1998). Normality was confirmed using the
qqnorm plot. Best models of remaining variables were chosen by
the log-likelihood (LL) ratio test. Acceptance of significance was
set to the P < 0.05 level, while 0.05 < P < 0.1 was considered
a trend. Data are presented as the mean ± standard deviation,
unless otherwise stated.

RESULTS

For the beluga calf, the average (±s.d., n= 78)VT, V̇ insp, V̇exp, and
f R were, respectively, 4.0 ± 2.3 l, 7.4 ± 1.9 l s−1, 8.3 ± 1.4 l s−1,
1.9 ± 1.5 breaths min−1. The average VT, V̇ insp, V̇exp, and f R for

the juvenile false killer whale (n = 7) were 16.9± 1.6 l, 38.6± 3.6 l
s−1, 72.8± 7.5 l s−1, and 2.5± 2.4 breaths ·min−1, and the same
values for the adult false killer whale (n = 54) were, respectively,
13.5 ± 4.5 l, 32.8 ± 8.5 l s−1, 50.1 ± 18.0 l s−1, and 5.4 ± 3.3
breaths ·min−1.

Including all available data from adult whales (Figure 1,
the figure also includes data from juveniles and calves), and
log10-transforming Mb (log[Mb]), VT (log[VT]), V̇ (log[V̇]),
and f R [log(f R)], there was a significant relationship between
log(Mb) and log(VT), log(f R), expired log(V̇), and inspired
log(V̇) (Table 2). Neither, expiratory (χ2 = 2.33, 1 df, P < 0.1),
inspiratory (χ2 = 1.49, 1 df, P < 0.01) or total breath duration
(χ2 = 2.30, 1 df, P < 0.1, Figure 2) changed with Mb.

DISCUSSION

In the current study we provide new respiratory measurements
from spontaneous breaths that were within the range of those that
provide accurate flow estimates (Finucane et al., 1972; Fahlman
et al., 2019b), on a male beluga calf, a male juvenile and an
adult female false killer whale. We also provide an allometric
analysis of previously published data from adult male and female
cetaceans. Our results suggest that the predicted f R is lower, while
VT is significantly greater as compared with terrestrial mammals
(Figures 1A,B). The reported data also suggest an allometric
relationship for V̇ with a mass-exponent between 0.65 and 0.66,
and where V̇exp is an average 30% higher as compared with V̇ insp
in the Mb range of the reported data (Figures 1C,D).

In the current study our analysis provided estimated
allometric relationships between VT, f R, V̇ , and Mb (Figure 1
and Table 2). When predicting allometric relationships for
metabolism there are standard conditions to assure that
confounding variables are controlled. For basal metabolic rate
(BMR), animals are to be resting adults in a post-absorptive
state, measured under thermoneutral conditions. However, no
definition such as basal VT or f R currently exist, and our
measurements were not done in fasted animals and not all were
adults. While it is known that digestion significantly increase
metabolic rate (Secor, 2009), we are not aware of any study
that assess variation in respiratory variables following feeding
(Crosfill and Widdicombe, 1961; Stahl, 1967; Lasiewski and
Calder, 1971; Schroter, 1980; Calder, 1981; Bennett and Tenney,
1982; Feldman, 1995). However, our measurements provide
comparative results in juvenile and adult cetaceans at rest. Thus,
these data provide valuable comparisons between species and
with terrestrial mammals. For example, the mass-exponent for
VT for adult cetaceans reported in the current study (cetacean:
1.00) scale similarly, with those reported in both terrestrial and
marine mammals (marine mammal: 0.97; terrestrial: 1.04) (Stahl,
1967; Bishop, 1997; Fahlman et al., 2019c) but the gain appears
to be different, possibly reflecting the different challenges with
an aquatic life.

There are clear differences in respiratory physiology between
terrestrial and marine species, with the latter having lower
f R and greater VT (Figures 1A,C; Stahl, 1967; Mortola and
Limoges, 2006; Fahlman et al., 2017). While the relative VT is
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FIGURE 1 | Scatter plots showing (A) tidal volume (VT), (B) breathing
frequency (fR), (C) expiratory (V̇exp), and (D) inspiratory flow (V̇ insp) during rest
in adult bottlenose dolphins (Tt, Tursiops truncatus), a calf (Dl1,
Delphinapterus leucas) and adult belugas (Dl2), a juvenile and an adult false
killer whale (Pc1 and Pc2, Pseudorca crassidens), adult pilot whale (Gs,
Globicephala scammoni), juvenile harbor porpoises (Pp, Phocoena
phocoena), adult and juvenile killer whale (Oo1 and Oo2, Orcinus orca), and
calf gray whales (Er1 and Er2, Eschrichtius robustus). Solid line is for
allometric predictions published for terrestrial mammals at rest (Stahl, 1967),
and dotted line is prediction equation in Table 2.

TABLE 2 | Results from linear mixed model for tidal volume (VT), breathing

frequency (fR), and respiratory flow
(
V̇

)
.

Dependent variable β0 log[Mb] χ2 P-value

log[VT] −1.50 ± 0.23 1.00 ± 0.08 67.2 <0.01

log[fR] 0.97 ± 0.28 −0.20 ± 0.10 13.7 <0.00

Log[V̇exp] −0.23 ± 0.21 0.70 ± 0.12 36.2 <0.01

Log[V̇insp] −0.17 ± 0.09 0.63 ± 0.10 43.2 <0.01

The models included all available data for adult cetaceans only (Figures 1, 2), and
to account for allometric changes and to adjust for heteroscedasticity the data were
log10-transformed, e.g. Mb (log[Mb]), VT (log[VT]), fR [log(fR)], and V̇ (log[V̇]).

FIGURE 2 | Box plot showing expired (Ex), inspired (In), and total (BD)
breath-duration during rest in adult bottlenose dolphins (Tursiops truncatus,
Tt), a beluga calf (Delphinapterus leucas, Dl-j) or adult (Dl-a), adult false killer
whale (Pseudorca crassidens, Pc), and gray whale calves (Eschrichtius
robustus, Er).

greater in marine mammals (19–22 ml kg−1, this study and
Mortola and Sequin, 2009; Fahlman et al., 2017, 2019c) as
compared with terrestrial mammals (8 ml · kg−1) (Stahl, 1967),
the allometric mass-exponent were similar between marine and
terrestrial mammals. Thus, respiratory function scales similarly,
between these groups of mammals, possibly reflecting similar
metabolic demands. In the current study, the allometric mass-
exponent between f R and Mb (−0.20 ± 0.10) was similar
to that reported for terrestrial mammals (−0.26, Stahl, 1967),
but lower than that reported previously in marine mammals
(−0.42, Mortola and Sequin, 2009). One possible reason for this
difference is that placement of the flow meter over the blow-hole
requires desensitization to avoid altering the behavior. Without
proper desensitization individual animals may not have had
enough time to get used to the procedure resulting in periods
of hyperventilation. For example, several dolphins included in
the current study began a trial with periods of high f R with
shallow VT. Through repeated training we have observed that
these animals become used to the measurements and calm down,
progressing to a more physiological breathing pattern. As an
example, one beluga in our previous study (S5, Fahlman et al.,
2019b) and the adult false killer whale had unexpectedly high f R
(5.4 breaths · min−1 vs. 2.7 breaths · min−1 from Table 2), and

Frontiers in Physiology | www.frontiersin.org 4 March 2020 | Volume 11 | Article 142

https://www.frontiersin.org/journals/physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00142 February 28, 2020 Time: 20:29 # 5

Fahlman et al. Respiratory Physiology in Cetaceans

were also individuals where we had limited ability to extend the
training and desensitization. Conversely, the juvenile beluga had
much lower f R than that predicted from the allometric equation
(1.9 breaths ·min−1 vs. 3.4 breaths ·min−1). Thus, the relatively
higher and lower f R in these individuals may have increased the
variation. For the previous study with a lower mass-exponent,
on the other hand, the f R obtained were by focal observations
of 19 species of marine mammals (Mortola and Limoges, 2006),
which may have prevented changes due to placement of the
pneumotachometer over the blow-hole. It is also possible that
some breaths are missed during focal observations, which may
also explain the differences between studies.

In terrestrial mammals, both total lung capacity and VT scale
isometrically with Mb, while f R scales allometrically (Stahl, 1967),
resulting in a minute ventilation that scales similar to metabolic
rate with a mass-exponent around −0.25. In marine mammals,
the reported mass-exponent for VT is 0.97 (Fahlman et al., 2020),
which agrees with the results from the current study, and for f R
between −0.20 (this study) and −0.42 (Mortola and Limoges,
2006). Thus, we would therefore expect the mass-exponent for
minute ventilation, the product between f R and VT, to range
between −0.60 and −0.80. Using the former, the mass-corrected
minute ventilation for the false killer whales would be 523 ml ·
kg−0.80

· min−1 and 552 ml · kg−0.80
· min−1 for the juvenile

and adult false killer whales, respectively. Thus, these animals
achieved similar minute ventilations using different ventilatory
strategies, where the juvenile animal had a 17% lower f R and a
92% higher VT, while the adult had a 102% higher f R and an 18%
lower VT as compared with the allometric equation. The mass-
corrected minute ventilation for the beluga calf, on the other
hand, was 131 ml · kg−0.80

· min−1. Thus, the beluga calf had a
44% lower f R and 21% lower VT as compared with the allometric
results presented in this study, possibly indicating that this young
animal was performing surface breath-holds. While at first these
results appear inconsistent, they agree with the literature that
both f R and VT vary considerably, but in general the former
is significantly lower while the latter is considerably greater
as compared with terrestrial mammals (Mortola and Limoges,
2006; Piscitelli et al., 2013; Fahlman et al., 2017, 2020). On-
going development of bio-logging tags may allow measurement
of fH (Cauture et al., 2019) or respiratory flow noise (e.g.
phonospirometry; Sumich and May, 2009; van der Hoop et al.,
2014) that could provide estimates of f R and VT in undisturbed
adult marine mammals during rest, which could help verify the
current and past estimates.

Phonospirometry is a method that uses the respiratory sound
to estimate V̇ , and uses the flow noise and the assumption that
increasing sound level scales linearly withV̇ . Phonospirometry
has previously been used successfully to estimate VT and
respiratory health in humans, and recent validation work that
links to flow noise to V̇ has been performed in dolphins (van
der Hoop et al., 2014). The data in the current study provide
a useful linking function between flow noise and V̇ as we
present evidence of a size dependent change in V̇ that scales
with a mass-exponent that is similar for inspired and expired
breaths (Table 2). Thus, phonospirometry validation studies in

smaller species, such as dolphins, belugas or pilot whales, would
allow us to scale V̇ to larger species, such as sperm whales
or humpback whales, and provide a method to more reliably
estimate VT. Improved estimates of VT and how it changes
during different activities would significantly help to improve our
understanding of the physiological responses of these animals. In
addition, a better estimate of how VT changes during or following
different activities, such as active swimming or diving, would
allow improved estimates of field metabolic rates in studies using
f R to estimate energy use (Fahlman et al., 2016).

This is the first study to report comparative resting respiratory
function (V̇ , VT, f R, breath duration) in small and medium sized
cetaceans. Our data suggest that while the intercepts are different,
the allometric mass-exponents for VT and f R in cetaceans are
similar to terrestrial mammals. The relationship in V̇ and animal
size may provide improved estimates of lung function and field
metabolic rates in large species. The data presented in the current
study provide valuable comparisons within and between species
that are important to understand physiological limitations in
cetaceans. Furthermore, these data highlight the significance of
access to animals under managed care that provide physiological
measurements under voluntary conditions.
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