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Accurate auto-labeling of chest X-ray images
based on quantitative similarity to an explainable
AI model
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The inability to accurately, efficiently label large, open-access medical imaging datasets limits

the widespread implementation of artificial intelligence models in healthcare. There have

been few attempts, however, to automate the annotation of such public databases; one

approach, for example, focused on labor-intensive, manual labeling of subsets of these

datasets to be used to train new models. In this study, we describe a method for standar-

dized, automated labeling based on similarity to a previously validated, explainable AI (xAI)

model-derived-atlas, for which the user can specify a quantitative threshold for a desired level

of accuracy (the probability-of-similarity, pSim metric). We show that our xAI model, by

calculating the pSim values for each clinical output label based on comparison to its training-

set derived reference atlas, can automatically label the external datasets to a user-selected,

high level of accuracy, equaling or exceeding that of human experts. We additionally

show that, by fine-tuning the original model using the automatically labelled exams for

retraining, performance can be preserved or improved, resulting in a highly accurate, more

generalized model.
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The implementation of medical artificial intelligence (AI)
into clinical practice in general, and radiology practice in
particular, has in large part been limited by the time, cost,

and expertise required to accurately label very large imaging
datasets, which can serve as platinum level ground truth for
training clinically relevant AI models. The ability to automatically
and efficiently annotate large external datasets, to a user-selected
level-of-accuracy, may therefore be of considerable value in devel-
oping impactful, important, medical AI models that bring added
value to, and are widely accepted by, the healthcare community.
Such an approach not only has the potential to benefit retraining to
improve the accuracy of existing AI models, but —through using
explainable, model-derived atlas-based methodology1—may help to
standardize labeling of open-source datasets2–5, for which the pro-
vided labels can be noisy, inaccurate, or absent. Such standardization
may, in turn, reduce the number of datapoints required for accurate
model building, facilitating, training, and retraining from initial
small but well annotated datasets1,6.

In this study, we develop and demonstrate a method for
standardized, automated labeling based on similarity to a pre-
viously validated explainable AI (xAI) model, using a model-
derived atlas-based approach for which the user can specify a
quantitative threshold for a desired level of accuracy (the prob-
ability-of-similarity, or pSim metric). The pSim values range from
a “baseline” likelihood of similarity (pSim= 0, least selective) to a
“maximal” likelihood of similarity (pSim= 1, most selective);
pSim is computed by comparison between test-set derived image
features and image features retrieved from the model’s reference
atlas (i.e., library). This model-derived atlas is constructed during
model building (Fig. 1a) from the training set cases (Fig. 1a, b).
The calculated pSim value reflects the harmonic mean between
two model-related parameters, the “patch similarity” and the
“confidence” (Methods, Fig. 1b, c).

Specifically, we applied our existing AI model for detection of
five different chest X-ray (CXR) imaging labels (cardiomegaly,
pleural effusion, pulmonary edema, pneumonia, and atelectasis),
to three large open-source datasets—CheXpert2, MIMIC3, and
NIH4—and compared the resulting labels to those of seven
human expert radiologists. Of note, there is an inverse relation-
ship between the selected pSim threshold values and the number
of cases identified (i.e., captured) by the model from the external
dataset; in other words, the higher the threshold for likelihood of
similarity, the fewer cases that will be identified from the external
database as similar to the model labeled cases.

We showed that our xAI model, by calculating the pSim values
for each clinical output label based on comparison to the model’s
training-set derived reference atlas, could automatically label the
external datasets to a user-selected, arbitrarily high level of
accuracy, equaling or exceeding that of human experts. Moreover,
we additionally showed that, by fine-tuning the original model
using the automatically labeled exams for retraining, performance
could be preserved or improved, resulting in a highly accurate,
more generalized model. Although the pSim threshold values
required to achieve maximal similarity vary by clinical output
label, once those values are identified—based on comparison of
model labels to a relatively small subset of expert-annotated
ground truth labels—they can then be applied to the remaining
external dataset, to identify exams likely to be positive for that
clinical output label at a predetermined, high confidence level of
accuracy; the resulting labels can then be applied for fine-tuning
or retraining of the original model.

Results
System design. We developed an xAI model for detection of
the following five different labels on posterior–anterior (PA)

projection CXRs: cardiomegaly, pleural effusion, pulmonary
edema, pneumonia, and atelectasis (see Methods). As per pre-
vious reports, our model featured atlas creation and prediction-
basis calculation modules for explainability (Fig. 1)1. The pre-
diction basis was used to calculate a patch similarity value (a
probability between 0 and 1). Our model also included a con-
fidence probability calculation module (Fig. 1a and b). The har-
monic mean between the patch similarity and confidence model
outputs were used to calculate a quantitative probability-of-
similarity (pSim) value, between 0 and 1, for each clinical output
label studied (Fig. 1c).

xAI model development. CXR examinations performed at our
institution from February 2015 through February 2019 were
identified from our RIS (Radiology Information System) and
PACS (Picture Archiving and Communication System), resulting
in a dataset of 440,852 studies. Examinations were excluded if
there was no associated radiology report, no view position infor-
mation (e.g., anteroposterior projection, portable, etc.), or no
essential patient identifiers (including but not limited to medical
record number, age, or gender). A total of 400,886 CXR images
from 267,180 examinations, representing 117,195 patients, toge-
ther with their corresponding radiology reports, were collected
retrospectively (Supplementary Fig. 1). Using a rule-based Natural
Language Processing (NLP) model (Supplementary Table 1), we
automatically extracted 20 pathological labels from the radiology
reports, which were assigned one of the following three labels:
positive, negative, or ignore. After automated NLP data mining
and clean-up, we archived 151,700 anteroposterior CXR views
from 49,096 patients (58% male, mean age 62 ± 18 years)
and 90,023 posteroanterior (PA) CXR views from 69,404 patients
(50% male, mean age 57 ± 19 years). We randomly selected 1000
images for each view position as a test set; the remaining exam-
inations, from non-overlapping patients, were separated into
training and validation sets (Supplementary Fig. 1). The labels for
the training and validation sets were determined exclusively from
the automated NLP assignments, whereas those for the test
set were determined by consensus of three U.S. board-certified
radiologists at our institution (further details provided in
Supplementary Table 1), using the “Mark-it” tool (https://
markit.mgh.harvard.edu, MA, USA) for annotation7. Our xAI
model was trained by supervised learning with a total training
dataset of 138,686 CXRs and achieved a mean Area Under the
Receiver Operating Characteristic (AUROC) curve8 of 0.95+ 0.02
for detection of the five clinical output labels (Supplementary
Table 2) in our initial, independent test set (Methods).

Auto-labeling model performance applied to three open-source
datasets. We applied our xAI CXR auto-labeling model to the
available PA CXR images from three large open-source datasets:
CheXpert (n= 29,420 PA CXR’s), MIMIC (n= 71,223), and NIH
(n= 67,310)2–4. To assess labeling accuracy, we randomly selected
a subset of “positive” and “negative” cases as determined by the
model for each of the five labels, distributed equally in each of ten
pSim value ranges (0–0.1, 0.1–0.2, 0.2–0.3, …, 0.9–1.0), for expert
review (Figs. 2–4). Ground truth (GT) was defined as the majority
consensus of seven expert sub-specialist radiologists (three with
12–25 years’ experience in thoracic radiology and four with 1–6
years’ experience in emergency radiology); GT and individual
ratings of each reader, for each clinical output label (cardiomegaly,
pleural effusion, pulmonary edema, pneumonia, and atelectasis), in
each of the pSim value ranges, are shown in Figs. 2–4a (upper left).
In Figs. 2–4b (upper right), we graph the relationship between the
pSim value applied for the model’s auto-labeling (x-axis) and both
the (i) positive predictive value (PPV) and negative predictive
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value (NPV) of the model’s ratings, versus ground truth; and the
(ii) model’s true positive capture rate (TPCR) and true negative
capture rate, defined respectively as the total true positive (by GT)
divided by the total positive (by GT), and the total true
negative (by GT) divided by the total negative (by GT). In

Figs. 2–4c (lower left) and Figs. 2–4d (lower right), respectively, the
number of false positive (by GT) and false negative (by GT) cases
rated by the model at each pSim threshold value (x-axis), are
shown, stratified by datasets (i.e., CheXpert, MIMIC, or NIH), with
the optimal, lowest pSim threshold achieving 100% PPV or NPV,

Fig. 1 System overview. Standardized, automated labeling method, based on similarity to a previously validated five-label chest X-ray (CXR) detection
explainable AI (xAI) model, using an xAI model-derived-atlas based approach. a Our quantitative model-derived atlas-based explainable AI system
calculates a probability-of-similarity (pSim) value for automated labeling, based on the harmonic mean between the patch similarity and the confidence.
The resulting pSim metric can be applied to a “mode selection” algorithm, to either label the external input images to a selected threshold-of-confidence, or
alert the user that the pSim value falls below this selected threshold. b The model-derived atlas-based method calculates patch similarity and confidence,
based on class activation mapping (CAM)38,39 and predicted probability from the model, for each clinical output label. c The harmonic mean between the
patch similarity and confidence is then used to calculate a pSim for each clinical output label in mode selection.
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indicated. Of note, the lowest possible pSim threshold required for
100% PPV or NPV, corresponds to the maximal “correct capture
rate”, as shown in Figs. 2–4b.

Also, as shown in the text boxes in Figs. 2–4c, d, as well as in
Fig. 5, model accuracy compared favorably to that of the available
pooled public labels of the external, open-source datasets. Figure 5
additionally shows that the automated-labeling model’s AUROC

performance, compared favorably to that of the individual expert
radiologists, for each clinical output label, at both the pSim= 0
baseline value labeling threshold and the optimal pSim value
labeling threshold (i.e., the lowest pSim value achieving 100%
accuracy, as per Figs. 2–4c, d).

Sample auto-labeled CXR images that had complete agreement
between all seven expert radiologists and the xAI model, positive
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for each of the five clinical output labels studied, are shown in
Supplementary Fig. 2. The pSim threshold values applied by the
model for each image and the number/percent of PA CXR
examinations with total agreement for each label, are also shown.
Of note, there were only 14 positive examinations identified by
the model as pneumonia that had full agreement with each
reader, of 50 total examinations labeled as positive for pneumonia
(28%). The percent positive labels with complete agreement for
the other four labels, as shown in the figure, were cardiomegaly
78% (39/50), pleural effusion 78% (39/50), pulmonary edema
43% (17/40), and atelectasis 46% (23/50).

In Supplementary Table 3, we applied our automated-
labeling model to the three complete public, open source CXR
datasets: CheXpert (n= 29,420), MIMIC (n= 71,223), and NIH
(n= 67,310); in order to demonstrate the magnitude of the
number of cases captured, at the optimized pSim threshold value
for maximal accuracy for each clinical output label (PPV,
NPV= 1; as per Figs. 2–4). Pooling the model’s labels for the
three full public datasets (Supplementary Table 3, C) resulted in a
capture rate of 80% for cardiomegaly (134,076/167,953), 68% for
pleural effusion (114,230/167,953), 27% for pulmonary edema
(45,660/167,953), 20% for pneumonia (33,308/167,953), and 28%
for atelectasis (47,436/167,953). It is noteworthy that the model’s
mean CXR “capture rates” for the pooled results from the three
public datasets, closely corresponded to those shown in the
graphs of Figs. 2–4b, for the randomly selected subset of
examinations (n= 90–100) labeled by both the model and the
expert radiologists.

Summary comparison of labeling efficiency, confidence metrics
for the five auto-labeled clinical output labels. For each of the
five auto-labeled clinical output labels (Fig. 6), we compared: (i)
the percent of positively auto-labeled CXR’s captured from the
three pooled, full public datasets (from Supplementary Table 3);
(ii) the percent of cases with complete agreement between the
model and all seven expert readers (from Supplementary Fig. 2);
(iii) the lowest pSim value such that PPV= 1 (graphed as “1-
pSim@PPV1”; from Figs. 2–4c), and (iv) the lowest pSim
value such that NPV= 1 (graphed as “1-pSim@NPV1”; from
Figs. 2–4d). Clinical output labels with higher values of these
parameters (e.g., cardiomegaly, pleural effusion) corresponded to
greater model auto-labeling efficiency and confidence; Clinical
output labels with lower values (e.g., pulmonary edema, pneu-
monia) corresponded to lesser model auto-labeling efficiency and
confidence. Of note, for atelectasis, “1-pSim@PPV1” was higher
than “1-pSim@NPV1”, indicating greater confidence that the
model is correct in “ruling-in” this label (i.e., correctly auto-
labeling true-positives) than in “ruling-out” this label (i.e., cor-
rectly auto-labeling true-negatives). This relationship was

reversed for the other four labels (e.g., greater confidence that the
model can correctly “rule-out” than “rule-in” pneumonia or
pulmonary edema).

The pairwise kappa statistics estimating inter-observer varia-
bility among the seven expert radiologists are shown in Fig. 7, for
each of the five auto-labeled clinical output labels. The ranges for
these values are as follows: cardiomegaly 0.82–0.92, pleural
effusion 0.78–0.94, pulmonary edema 0.57–0.86, pneumonia
0.38–0.80, and atelectasis 0.47–0.78. The distribution of these
ranges correlates well with the model’s per clinical output label
auto-labeling efficiency and confidence metrics, shown in Fig. 6,
with cardiomegaly and pleural effusion showing the most inter-
rater agreement, and pneumonia, pulmonary edema, and
atelectasis showing the least.

In Fig. 8, we compare the model’s auto-labeling performance
using that pSim metric, to that of using either (1) patch similarity
(based on CAM calculations, related to “focal” spatial localiza-
tion) or (2) confidence probability (related to the “global”
probability distribution of the final model output labels), alone.
Our new analysis suggests that the use of a quantitative pSim
threshold may have benefits over either patch similarity or
confidence calculation alone, which is especially notable for those
clinical diagnosis output labels—pneumonia and pulmonary
edema—that have the lowest inter-rater agreement among
experts (Fig. 7). These results impact the “explainability” of our
model with regard to saliency maps. A recent paper concluded
that saliency map techniques are highly variable, and that their
use “in the high-risk domain of medical imaging warrants
additional scrutiny”; the authors recommended “that detection or
segmentation models be used if localization is the desired output
of the network”. A noteworthy feature of our approach, however,
is its explainability based on quantitative pSim values (calculated
from our model-derived-atlas), which as discussed, may have
added value over saliency maps created using patch similarity or
confidence calculations only9.

We also studied the relationship between performance con-
sistency, generalizability, dataset size, and architecture. Regarding
architecture, there was excellent consistency between our current
model and three additional, different model architectures,
including ResNet-5010, MobileNet v211, and MnasNet12 (Supple-
mentary Fig. 3). Our results similarly suggest consistent, robust
generalizability regarding dataset size and heterogeneity (Table 1,
Supplementary Tables 3 and 4).

To demonstrate the ability of our system to generalize to
external datasets at a user designated level of performance, we
fine-tuned our original model through iterative re-training using
the auto-labeled CXR exams from the three public datasets
(Table 1). The CXR exams selected for re-training (n= 31,020)
had at least one positive label, a pSim value greater than or equal

Fig. 2 Automated-labeling model performance applied to three open-source CXR datasets, compared to consensus ground truth of seven expert
radiologists, for the cardiomegaly & pleural effusion image labels. We applied our xAI CXR auto-labeling model to three large open-source datasets:
CheXpert, MIMIC, and NIH. For two of the five clinical output labels (cardiomegaly & pleural effusion), we randomly selected a subset of “positive” and
“negative” cases as determined by the model, distributed equally in each of ten pSim value ranges (0–0.1, 0.1–0.2, 0.2–0.3, …, 0.9–1.0), for expert review. In
a, the positive (light red) and negative (light blue) ratings for each of the seven individual readers (columns A–G) are displayed graphically, with the
consensus ground truth (GT, determined by majority) shown in the last column (bold red or bold blue). In b, the positive predictive values (PPV = [true
positive by GT]/[total positive by model], solid red triangles, y-axis left) and negative predictive values (NPV= [true negative by GT]/[total negative by
model], solid blue circles, y-axis left), of the model’s ratings, are graphed versus the pSim threshold value that was applied by the model (x-axis). Also
displayed in b (y-axis right) are the model’s true positive capture rate (TPCR, dotted red triangles) and true negative capture rate (TNCR, dotted blue
circles), defined respectively as TPCR = [true positive (TP) by GT]/[total positive by GT (number bold red from a)] and TNCR = [true negative (TN) by
GT]/[total negative by GT (number bold blue from a)]. In c (lower left) and d (lower right), respectively, the number of false positive (FP by GT) and false
negative (FN by GT) cases rated by the model at each pSim threshold value (x-axis), are shown stratified by dataset (CheXpert, MIMIC, or NIH; total
number cases positive or negative by the model in parentheses), with the optimal, lowest pSim threshold achieving 100% PPV or NPV, as indicated (bold
green triangles).
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to the optimal threshold for that label (as per Figs. 2–4c, 2–4d,
and 5), and were excluded if they had been used previously as
part of the test set. Our results comparing performance of the
original model to that of the fine-tuned model (Table 1 and
Supplementary Table 4), showed equal or improved accuracy of
the fine-tuned model—trained using both local and more
generalized data from the three public datasets—versus the
original model, which was trained using local data only.

Discussion
Accurate, efficient annotation of large medical imaging datasets is
an important limitation in the training, and hence widespread
implementation, of AI models in healthcare13–22. To date, how-
ever, there have been few attempts described in the literature to
automate the labeling of such large, open-access databases2–6.
One approach, for example, focused on developing new AI
models using labor-intensive, manually annotated subsets of the
external datasets, and applying these models to the remaining
database6. The accuracy of such an approach can be limited not
only by the: (1) baseline performance of the model, but also by (2)
differences in the case mix and image quality of the external
datasets. Moreover, as demonstrated by the results of our study,
(3) it cannot be assumed that the labels provided with public
databases are accurate or clean; for example, in some public
datasets, such labels may have been generated from potentially
noisy NLP derived annotation, without validation by an appro-
priate platinum level reference standard.

In this study, we demonstrate a method for standardized,
automated labeling based on similarity to a previously validated
xAI model, using a model-derived-atlas based approach, for
which the user can specify a quantitative threshold for a desired
level of accuracy, the pSim metric. Specifically, we applied our
existing AI model for detection of five different CXR clinical
output labels (i.e., cardiomegaly, pleural effusion, pulmonary
edema, pneumonia, and atelectasis), to three large public open-
source datasets (i.e., CheXpert, MIMIC, and NIH), and compared
the resulting labels to those of seven human expert radiologists.

We showed that our xAI model, by calculating the pSim values
for each label based on comparison to its retrieved training-set
derived reference atlas, could automatically label a subset of the
external data at a user-selected, arbitrarily high level of accuracy,
equaling or exceeding that of the human experts (Fig. 5).

Moreover, we additionally showed that, by fine-tuning the ori-
ginal model using the automatically labeled exams for retraining,
performance could be preserved or improved, resulting in a
highly accurate, more generalized model.

The pSim value used for annotation reflects a trade-off between
the accuracy of image labeling (i.e., the higher the pSim value, the
more accurate the labels) and the efficiency of image labeling (i.e.,
the higher the pSim value, the fewer examinations that the model
selects for annotation). To determine the pSim threshold for each
output label such that PPV, NPV= 1, we randomly selected a
subset of “positive” and “negative” exams from the three pooled
open-source databases, distributed equally in each of ten pSim
value ranges (0–0.1, 0.1–0.2, 0.2–0.3, …, 0.9–1.0) as per Figs. 2–4
(10 exams per pSim range for a total of 100). It is noteworthy
that, using this approach for exam selection, we were able to
achieve a very high level of labeling accuracy and model perfor-
mance after fine-tuning, despite the relatively small number of
cases presented for human expert review (n= 100).

To evaluate the efficiency of our automated-labeling approach,
we applied our xAI model to the three full public datasets, and
compared the five auto-labeled clinical output labels according to
the following parameters: (i) the percent of positively auto-labeled
CXR’s from the three pooled public datasets (i.e., the capture
rate), (ii) the percent of cases with complete agreement between
the model and all seven expert readers, (iii) the lowest pSim value
for annotation such that all positive cases captured are true
positive (i.e., optimal pSim for PPV= 1), and (iv) the lowest pSim
value for annotation such that all negative cases captured are true
negative (i.e., optimal pSim for NPV= 1). We found a strong
correlation between the magnitude of these parameters for
each of the annotated clinical output labels, as shown in Fig. 6. It
is noteworthy that the positive capture rates from the three
pooled public datasets also strongly correlated with the capture
rates graphed in Figs. 2–4b, for the subset of examinations
(n= 90–100) labeled by both the model and the radiologist
experts. Moreover, the parameter values reported for each clinical
output label corresponded well with the kappa values for inter-
observer variability shown in Fig. 7.

Together, our results suggest that the overall accuracy and
efficiency of the auto-labeling model, applied to the full public
datasets at the optimal pSim for each clinical output label, may be
similar to the accuracy and efficiency of the model as applied to
the subset of examinations annotated by the seven expert radi-
ologists. These results also suggest greater auto-labeling efficiency,
with higher confidence in label accuracy, for cardiomegaly and
pleural effusion—two of the more objective findings in CXR
interpretation—and lesser auto-labeling efficiency, with lower
confidence in label accuracy, for pneumonia and pulmonary
edema—two of the more subjective assessments in CXR inter-
pretation. Indeed, the larger the quantity “1-pSimoptimal” for a
given clinical output label (where 0 ≤ pSim ≤ 1 and pSimoptimal=
the minimum pSim value such that PPV/NPV= 1), the more
reliable and robust is the labeling for that clinical output label,
based on similarity to the “remembered” reference atlas derived
from the model’s NLP training set.

An important feature that distinguishes our approach from
that of other black-box classification models is explainability; the
pSim metric provides feedback that the model is performing at a
predetermined level of accuracy. Labeling external datasets using
black-box classification methods is likely to be more labor-
intensive than with our approach, because each distinct dataset
(e.g., CheXpert, NIH, and MIMIC) may require a greater number
of manual labels to ensure that sufficient representative
exams have been sampled. Using pSim to estimate a quantitative
probability-of-similarity, however, could provide greater user
confidence that sufficient exams have been sampled for accurate

Table 1 Added value of fine-tuning with auto-labeled
datasets for model generalizability and performance
improvement.

Original Model
(Ensemble)

Fine-tuned Model
(Ensemble)

Cardiomegaly 0.994 0.998
Pleural Effusion 0.998 0.998
Pulmonary edema 0.960 0.968
Pneumonia 0.908 0.930
Atelectasis 0.954 0.965
Average Score 0.963 0.972

To demonstrate the ability of our system to generalize to external datasets at a user designated
level of performance, we fine-tuned our original model through iterative re-training using the
auto-labeled CXR exams from the three public datasets. The CXR exams selected for re-training
(n= 31,020) had at least one positive label, a pSim value greater than or equal to the optimal
threshold for that label (as per Figs. 2–4c, 2–4d, and 5), and were excluded if they had been used
previously as part of the test set. The ensemble performance of the original model, compared to
the fine-tuned model, for each of the five model labels and their average, is shown (see also
Supplementary Table 4 for the stratified performance of the six DenseNet-121 models that form
the ensemble for each). The fine-tuned model utilized the same environments and hyper-
parameters (e.g., learning rate= 10–8) as the original model. Performance for each of the model
labels was preserved or improved on the more generalized, fine-tuned model.
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model performance. In the future, such expert manual annotation
might only need to be done once for any given platform at any
given institution, facilitating automated continuous fine-tuning
and retraining. Indeed, a recent paper found that “for a brain
lesion segmentation model trained on a single institution’s data,

performance was lower when applied at a second institution;
however, the addition of a small amount (10%) of training data
from the second institution allowed the model to achieve its full
potential performance level at the second institution”. Our
approach has the potential to facilitate fine-tuning or retraining to

Fig. 3 Automated-labeling model performance applied to three open-source CXR datasets, compared to consensus ground truth of seven expert
radiologists, applied to the pulmonary edema and pneumonia labels. Please refer to Fig. 2 for a–d captions.
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a similar or greater level of performance, using considerably less
data than 10% of the initial training set23.

Another noteworthy aspect of our approach relates to system
deployment. We can apply the pSim value threshold to each class
independently, selecting a low pSim value for high conspicuity
clinical output label with high inter-rater agreement, and selecting
a high pSim value for noisier, more subjective non-specific clin-
ical output label with lower inter-rater agreement, the latter at the
cost of generating fewer labeled examinations (i.e., lower capture
rate). Employing pSim values helps quantify which clinical output
labels of the AI model are most reliably annotated and which
need to be improved, making it possible to measure system
robustness. Deploying the xAI system is also HIPAA compliant,
as no patient identifiable source data need be stored, since the
mode selection (Fig. 1) uses only the encoded predicted prob-
ability distributions for categories and the compressed informa-
tion from the UMAP transformation24 for the atlas.

Other current approaches to auto-labeling have involved semi-
supervised6,25 and self-supervised26–29 learning. Because these
approaches assume low correlation between classes, however, their
performance has not been validated for multi-label CXR classifica-
tion models with high interclass correlation. Transfer learning and
fine-tuning have also been attempted to improve performance
when independently developed models are applied to external
datasets30–32, however, these methods are often impractical because
different institutions are likely to use different definitions for similar
categories, and capturing data with external labels based on even
slightly different definitions can introduce considerable noise when
such data is used for training or retraining new models. Our
approach, however, allows for generation of standardized labels, with
a user defined probability-of-similarity to that of established models.
Our model-derived atlas-based approach, which simplifies the

computational issues by focusing on small patch regions with lower
interclass and higher intraclass correlations, could achieve high
accuracy and efficiency for auto-labeling three large public open
source CXR datasets, similar to or exceeding that of human experts.

Our auto-labeling AI model reflects several characteristics of
human intelligence33 in general, and radiologist-mimicking
behavior in particular. Specifically, our system is “smart”, in
that it can access its “memory” of examination clinical output
labels present in the training set, and quantitatively estimate their
similarity to clinical output labels in the new, external examina-
tion data. The “1-pSimoptimal” metric for each clinical output label
provides a measure of the “intelligence” of the system for efficient
accurate labeling, and its value (between 0 and 1) reflects the
quality (i.e., ground-truth accuracy) of the NLP-derived dataset
used for initial training. The model can also provide feedback to
users through its explainability functionality, by displaying
examples of the clinical output labels under consideration from
its reference atlas together with their associated pSim value; this
interaction offers the user an additional level of confidence that
the model is doing what it’s supposed to do. In this regard, our
system can be viewed as an augmented intelligence tool to
improve the accuracy and efficiency of medical imagers.

Indeed, one limitation of our model is that its labeling accuracy
and efficiency is directly proportional to the quality of the initial
training set. This may help explain why cardiomegaly and pleural
effusion - two high-conspicuity clinical output labels routinely
correctly described in the radiology reports identified by NLP for
model training - have higher efficiency metrics (Figs. 2 and 6)
than pulmonary edema and pneumonia (Fig. 3), which are more
non-specific and variably assessed by different radiologists. This
also may help explain why the 1-pSimoptimal values for NPV= 1
in Fig. 6 are higher than the 1-pSimoptimal values for PPV= 1, for

Fig. 4 Automated-labeling model performance applied to three open-source CXR datasets, compared to consensus ground truth of seven expert
radiologists, applied to the atelectasis label. Please refer to Fig. 2 for a–d captions.
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all clinical output labels except atelectasis (Fig. 4), since atelectasis
is a lower conspicuity, more non-specific clinical output label
typically noted in CXR radiology reports only when it is present,
but not mentioned when it is absent (i.e., the model learned from
its NLP derived training set to have a higher level of certainty, and
hence a higher 1-pSimoptimal value, when atelectasis is present,
than when it is absent). Pulmonary edema and pneumonia, on
the other hand, are typically described in CXR reports with a
higher level of certainty when they are definitely absent (e.g., no
evidence of pulmonary edema or pneumonia), than when they

are possibly present (e.g., cannot exclude pulmonary edema or
pneumonia).

Moreover, because cardiomegaly and pleural effusion are focal,
high-conspicuity regional imaging findings, they also demon-
strate a higher TPCR performance with patch similarity than with
confidence probability (Fig. 8). Similarly, for atelectasis, typically
a more discrete, focal, regional CXR finding than pulmonary
edema or pneumonia, both patch similarity and pSim (Fig. 8)
show good TPCR performance relative to confidence probability.
Conversely, for pulmonary edema, the only label for which TPCR

Fig. 5 AUROC performance of automated-labeling model at two different pSim threshold values, compared to sensitivity, specificity of individual
expert radiologists, and pooled public labels from three open-source CXR datasets. AUROC performance of our xAI CXR auto-labeling model applied to
the CheXpert, MIMIC, and NIH open-source datasets, is shown for each of the five labeled clinical output labels: a cardiomegaly, b pleural effusion,
c pulmonary edema, d pneumonia, and e atelectasis. Comparison is to the performance of the individual expert radiologists (A–G, red circles), as well as to
the performance of the pooled external annotations (blue squares, n= number available labeled external cases per clinical output label). ROC curves (y-
axis sensitivity, x-axis 1-specificity) are shown for both the baseline pSim = 0 threshold (magnified box) and the optimal pSim threshold (i.e., the lowest
pSim threshold achieving 100% accuracy, as per Figs. 2–4c and d).
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performance is better with confidence probability than with patch
similarity (Fig. 8), this result is consistent with the fact that
confidence probability is more sensitive for the detection of glo-
bal, non-localized features, which are routinely associated with
pulmonary edema findings on CXR (i.e., pulmonary edema is
visualized diffusely throughout the bilateral lung fields).

It is noteworthy that the explanation for these differences in
performance between confidence probability, patch similarity,
and pSim for the five different labels (Fig. 8), corresponds so
closely with the reader performance and reader variability shown
in Figs. 2–5 and 7. This not only confirms our “common sense”
clinical insight that cardiomegaly and pleural effusion (as well as
atelectasis) are high conspicuity objective CXR findings, whereas
pulmonary edema and pneumonia are more non-specific sub-
jective assessments, but also underscores the explainability of our
model (through assignment of appropriate pSim values for each
label) in mirroring human performance, likely attributable to the
radiologist based ground truth used for model training.

Another limitation of our model is that our proposed xAI
system requires substantial computational resources and storage
space to provide the prediction basis and to operate the mode
selection module. Because the explainable modules have been
designed to operate independently, however, we can differentially
deploy the xAI system of adjusted capabilities according to the
specification of a given server.

In summary, we have: (i) developed and demonstrated an
explainable AI model for automated labeling of five different CXR

imaging clinical output labels, at a user selected quantitative level
of confidence, based on similarity to the model-derived-atlas of
an existing validated model, and (ii) showed that, by fine-tuning
this existing model using the automatically labeled exams for
retraining, performance could be preserved or improved, result-
ing in a highly accurate, more generalized model. It is noteworthy
that these results were accomplished by human expert annotation
of only 100 exams, selected from the three large independent
datasets, representing an equal distribution of pSim threshold
values from 0 to 1; this suggests that our approach based on
quantitative similarity to an explainable AI model-derived-atlas
may be able to provide highly accurate, fully automated labeling,
regardless of the size of the open-source database being studied.

In conclusion, the ability to automatically, accurately, and effi-
ciently annotate large medical imaging databases may be of con-
siderable value in developing important, high-impact AI models that
bring added value to, and are widely accepted by, the healthcare
community. Our approach might not only help to improve the
accuracy of existing AI models through fine-tuning and retraining,
but also help to standardize labels of open-source datasets (for which
the provided labels can be noisy, inaccurate, or absent) based on
their quantitative similarity to those of existing, validated models.
Use of the pSim metric for auto-labeling has the potential to reduce
the amount of annotated data required for accurate model building,
thereby reducing the need for labor-intensive manual labeling of
very large datasets by human experts.

Methods
This study was compliant with the Health Insurance Portability and Accountability
Act and was approved by the Institutional Review Board of the Massachusetts
General Hospital for retrospective analysis of clinically acquired data with a waiver
of informed consent.

Retrospective collection of the development and test datasets. The develop-
ment dataset contained CXR images acquired between February 2015 and February
2019. All DICOM (digital imaging and communications in medicine) images were de-
identified before data analyses. To make a consistent dataset, we chose only exam-
inations that had associated radiology reports, view position information (e.g., AP/PA
projections, portable, etc.), and essential patient identifiers (including but not limited to
medical record number, age, or gender). If an examination had multiple CXR images,
only a single CXR image was included. We randomly selected 1000 images for each
view position as a test set; the remaining examinations, from non-overlapping patients,
were separated into training and validation sets (Supplementary Fig. 1).

Labeling of the development and test datasets. The labels for the training and
validation sets were determined exclusively from the automated NLP assignments,
whereas those for the test set were determined by consensus of three U.S. board-
certified radiologists at our institution (further details provided in Supplementary
Table 1) using the “Mark-it” tool (https://markit.mgh.harvard.edu, MA, USA) for
annotation7.

Network training. Densely Connected Convolutional Network (DenseNet-121)34,
which connects each layer to all other layers in a feed-forward method, was selected
to develop the 20 pathologic labels detection and classification system. The pre-
trained model, available from the official repository in Pytorch35,36, was fine-tuned
by supervised learning with our training dataset and the NLP’s labels after the last
fully connected layer with 1000 outputs and the first convolutional layer were
replaced with 21 outputs (i.e., 20 pathologic labels and view position) and with
inputs of 1 channel depth, respectively. The network topology was optimized using
AdamW37, where we used a batch size of 144, a learning rate of 1 ´ 10�4, beta-1 of
0.9, beta-2 of 0.999, epsilon of 1 ´ 10�8, and weight decay of 1 ´ 10�5. In the
training step, real-time data augmentation was performed by applying geometric
transformations: rotation from −10 to 10, scaling to 110%, random crop to
512 × 512, random horizontal flip with 1% probability. All experiments were
conducted on four GPUs of Tesla V100 SXM 32 GB [NVIDIA DGX, CA, USA],
and all deep-learning models were implemented with Pytorch (v.1.2.0).

Weighted loss function. The Binary Cross-Entropy (BCE) loss function was
weighted by the ratios of positive and negative samples for each class label (αcP and α

c
N ),

for multi-label classification4. We considered two additional weights: the first weight
had to reflect the ratio of the number of effective samples (αcs , the maximal sum
number between positive and negative labels among 20 clinical output labels divided

Fig. 6 Comparison of labeling efficiency/confidence metrics for each of
the 5 clinical output labels. For each of the five auto-labeled clinical output
labels– cardiomegaly (blue), pleural effusion (orange), atelectasis (gray),
pulmonary edema (green), and pneumonia (yellow)—we compared: (i) the
percent of positively auto-labeled CXR’s “captured” from the three pooled, full
public datasets (i.e., “Pooled Capture%”, from Supplementary Table 3, C); (ii)
the percent of cases with complete agreement between the model and all
seven expert readers (i.e., “Full Agree%”, from Supplementary Fig. 2); (iii) the
lowest pSim value such that PPV = 1 (graphed as “1-pSim”, from Figs. 2–4, c),
and (iv) the lowest pSim value such that NPV = 1 (graphed as “1-pSim”, from
Figs. 2–4, d). clinical output labels with higher y-axis values (e.g., cardiomegaly,
pleural effusion) correspond to those with greater model auto-labeling
efficiency/confidence; clinical output labels with lower y-axis values (e.g.,
pneumonia, pulmonary edema) correspond to those with lesser model auto-
labeling efficiency/confidence. Of note, in the graph for atelectasis, “1-
pSim@PPV1” is higher than “1-pSim@NPV1”, which can be interpreted as
greater confidence that the model is correct in “ruling-in” the clinical output
label (i.e., correctly auto-labeling true-positives) than in “ruling-out” the clinical
output label (i.e., correctly auto-labeling true-negatives); this relationship is
reversed for the other four clinical output labels (e.g., greater confidence that
the model can correctly “rule-out” than “rule-in” pneumonia or pulmonary
edema).
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by that of the c-th label) to train because of consideration of ignore labels for each
clinical output label. When training the AI model, we experimentally found that using
samples with the other view position as well as those with a targeted view position can
improve the generalization performance of the model, so we added the second weight
(α(ν)) in the loss function to relatively control the impact of samples with the target
view position. The weighted BCE loss function is given by the Eq. (1):

LW�BCEðx; y; t; vÞ ¼ �αðvÞ ∑
J

c¼1
αcs αcPt

cln yc þ αcN 1� tcð Þln 1� yc
� �� � ð1Þ

where x denotes CXR images, the model’s output is y ¼ fy1; y2; :::; yJ g that indicates
the predicted probability of J classes, v is a view position of the image, and t ¼
ft1; t2; :::; tJ g means the labels of clinical output labels extracted by NLP. In addition,
αcs is defined as ð Pmj j þ Nmj jÞ=ð Pcj j þ Ncj jÞ in order to make fairness among classes
with different numbers of effective samples which consider only “0” and “1”, not “−1”.
Here, Pcj j and Ncj j are the total numbers of “1”s and “0”s in labels for c label, and m
means the class index having the maximum total number of both “1”s and “0”s
(m ¼ argmaxcð Pcj j þ Ncj jÞ). We also define αcP ¼ Pcj jþ Ncj j

Pcj j and αcN ¼ Pcj jþ Ncj j
Ncj j for

Fig. 7 Pairwise kappa statistics between the seven expert radiologists, for each of the five clinical output labels. For each of the five auto-labeled clinical
output labels—a cardiomegaly, b pleural effusion, c pulmonary edema, d pneumonia, and e atelectasis—the pairwise kappa statistics estimating inter-
observer variability are shown in the respective color-coded matrices43.
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Fig. 8 Performance comparison of Confidence Probability, Patch Similarity, and pSim in assigning true-positive model output labels for cardiomegaly,
pleural effusion, pulmonary edema, pneumonia, and atelectasis. We compared the true positive capture rate (TPCR) performance for each of the five
clinical output labels, using confidence probability alone (reflecting the global probability distribution of the output labels), patch similarity alone (reflecting
the focal spatial localization of the output labels), and pSim (reflecting the harmonic mean between the confidence probability and patch similarity, as per
Fig. 1). These results are noteworthy in that the two model output labels that reflect high inter-rater agreement of imaging findings—a cardiomegaly and
b pleural effusion, as per Fig. 7—show good agreement between the three confidence-level metrics, with high TPCR’s for each. For the two output labels
that show lower inter-rater agreement per Fig. 7—c pulmonary edema and d pneumonia—pSim performance significantly exceeds that of patch similarity
for both, and that of confidence probability for pneumonia but not pulmonary edema. This difference is likely attributable to the fact that patch similarity is
more sensitive for the detection of focal, regional imaging findings (e.g., as seen with the clinical diagnosis of pneumonia), whereas confidence probability
is more sensitive for the detection of global findings (e.g., as seen with the clinical diagnosis of pulmonary edema). The results for e atelectasis, typically a
more focal than global finding on CXR, may be similarly explained.
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solving the imbalance between positive and negative; α(ν) is set to ω if ν is the targeted
view, 1 for the others.

Design overview for quantitative, explainable, model-derived atlas-based
system. Our automated dataset labeling, based on similarity to a validated CXR AI
model, requires calculation of two quantitative atlas-based parameters, the “patch
similarity” and “confidence” probabilities (values between 0 and 1), as per Fig. 1.
For the “patch similarity” computation, a patch atlas is generated based on class
activation mapping (CAM)38,39; for the “confidence” computation a distribution
atlas is generated based on predicted probabilities (Fig. 1a, b). The harmonic mean
between the patch similarity and confidence values are then used to calculate a
pSim for each clinical output label (Fig. 1c).

Predicted probabilities, model ensemble, and distribution atlas creation. To
improve the robustness of the entire system, an ensemble of six DenseNet-121
models is composed using unweighted averaging, such that the final probability is
determined as an average of probabilities predicted by the six models40. Those six
models are constructed by independently training with three weights (i.e., ω= 1.1,
1.5, and 2.0 in α(ν)) for PA view, then selecting two models maximized by AUROC
and accuracy, respectively. To create the Distribution-atlas, we do inference with
the trained AI model on a full training dataset, to obtain two probability dis-
tributions of positive and negative samples for the training dataset. These prob-
ability distributions are saved as the Distribution-atlas for each clinical output label.

Patch atlas creation based on CAM ensemble method. To improve the locali-
zation performance of our class activation mapping, we developed an ensemble
method as follows: by removing noise components of a single CAM, adding only
significant components, and normalizing it in Eq. (2), the ensemble CAM was able
to highlight sharply the overlapping regions among the single CAMs.

CAMc
E ¼ Normalize ∑

S

s¼1
CAMc

s � Uτ

� �
ð2Þ

where CAMc
E means the ensemble CAM matrix, CAMc

s is a CAM matrix for the
c-class generated from s-th single model, and S denotes the number of models. Uτ

denotes a matrix with the component of ui;j ¼ uðCAMc
s ði; jÞ � τÞ to determine

CAM values less than τ as noise components and to remove them. u is a unit step
function, ⊙ means the Hadamard product, and Normalize is a linear scale for
converting into a standard range between 0 and 1.

To create the patch atlas, we search for main contours on a high-resolution CAM
(512 × 512) generated from a CAM for each class, select a bounding box to include the
outline, define it as the patch, and save it (one or two patches from a CAM are
considered in this study). For each clinical output label, patches are saved as typical,
representative patterns from only the CXR images with the AI model’s predicted
probability of being greater than or equal to 0.9. We train a cosine metric-based UMAP
model using the patches for all clinical output labels24. The UMAP model transforms
the patches into coordinates in two-dimensional embedding space, such that the smaller
the Euclidean distance in this space, the higher the cosine similarity. For the automated
labeling method, therefore, the patch atlas consists of coordinates for all patches in the

two-dimensional embedding space and the UMAP model (Fig. 1b). In addition, the
patch atlas can be created using more advanced schemes41,42.

Patch similarity value calculation. To calculate the patch similarity as shown in
Fig. 1b, we need to extract the Prediction-basis (Ψc

pb) for the c-th label by calcu-
lating Euclidean distance between the UMAP transformed coordinate of the input
image and the Patch-atlas, and then by selecting K-basis with the minimum dis-
tance as Eq. (3):

Ψc
pb ¼ Ωc

pbð1Þ; :::;Ωc
pbðKÞ

n o
ð3Þ

where Ωc
pbðkÞ denotes the patch with the k-th minimum Euclidean distance among

the Patch-atlas, and the Euclidean distance is calculated by

f cUMAPðycpÞ � Ac
P�UMAPðiÞ

��� ������ ���
2
for i ¼ 1; ¼ ; nðAc

P�UMAPÞ. Moreover, f cUMAP is the

trained UMAP model for c-class, ycp is a 1024-dimensional patch vector calculated
by an input image, Ac

P�UMAP is the Patch-atlas, and nðAc
P�UMAPÞ is the size of the

Patch-atlas. The patch similarity is proposed to enable the AI model to interpret
the new patch based on the prediction-basis (Ψc

pb), as a quantitative metric. The
metric is calculated by a percentile of how close a patch of an input image is on a
prediction-basis of K patches in the embedding space.

patch similarity ¼ 1� f cD
1
K
� ∑

K

m¼1
f cUMAPðycpÞ � f cUMAPðΩc

pbðmÞÞ
��� ������ ���

2

� �
ð4Þ

where f cD denotes a function calculating a percentile for the mean Euclidean dis-
tance of K-nearest patches for the input image, based on a distribution of the mean
Euclidean distance for all patches of the Patch-atlas.

Confidence value calculation. As per Fig. 1b, we propose the confidence metric,
based on the distribution atlas, as a measure of the trust level between the positive
and negative predicted probabilities for a clinical output label. This quantitative
metric is simply defined with Eqs. (5) and (6) for positive and negative predicted
samples, as follows:

ConfidenceP ¼ max fcPðycÞ � ð1� f cNðycÞÞ; 0
� � ð5Þ

ConfidenceN ¼ max ð1� f cNðycÞÞ � f cPðycÞ; 0
� � ð6Þ

Assuming that a predicted probability is yc for c-class, we calculate a percentile
(f cPðycÞ) in the positive Distribution-atlas and a percentile (1� f cNðycÞ) in the negative
Distribution-atlas. Then, the difference between two percentiles is calculated as the
confidence. Because the predictive ability of the xAI model for each clinical output
label is related to the shape and degree of intersection of the two probability density
curves (positive and negative) on the distribution-atlas, the confidence metric, as
defined based on Eqs. (5) and (6), provides a quantitative measure analogous to a p
value between different statistical distributions. In other words, the higher the
confidence value for a label, the higher the likelihood that the input image is mapping
to the correct label, and the lower the likelihood of incorrect mapping. Moreover, this
metric has the ability to quantify different levels of confidence according to different

Box 1 | Mode selection for automated labeling method

Input: predicted probability for c-class (yc), ConfidenceP, ConfidenceN, and patch similarity
%[step-1] To divide into two groups by yc and THpos : positive or negative candidates
If yc � THpos: then

%[step-2] To decide mode and annotation for the positive candidates
% Probability-of-similarity, pSim
pSim = 2 ConfidenceP pSimilarity / (ConfidenceP + pSimilarity)
If pSim >= pSim threshold value (PPV, NPV= 1): then

Mode = Self-annotation mode
Label = 1%Positive label

Else
Mode = Re-annotation mode
Label = -1%unlabeled

Else
%[step-2] To decide mode and annotation for the negative candidates
pSim = ConfidenceN
If pSim >= pSim threshold value (PPV, NPV= 1): then

Mode = Self-annotation mode
Label = 0 %Negative label

Else
Mode = Re-annotation mode
Annotation = −1% unlabeled
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distributions of clinical output label characteristics on the distribution atlas for each
class of the model, even at the same predicted probabilities.

pSim calculation, pSim threshold selection. Our automated dataset labeling
method calculates the pSim value using a harmonic mean between confidence and
patch similarity (pSimilarity in Eq. (7)) for each input image.

pSim ¼ 2 � confidence � pSimilarity=ðconfidenceþ pSimilarityÞ ð7Þ
The pSim threshold for each clinical output label is chosen by the lowest pSim

values that can achieve 100% PPV and NPV, as per Figs. 2–4.
Additional functionality of our model design includes a “mode selection” algorithm,

which, using the selected pSim threshold value, can be used to either: (1) determine the
image label (positive, negative, or unlabeled) within a given level-of-confidence if the
pSim value for a class is greater than the selected threshold (“self-annotation mode”), or
(2) alert the human user if the pSim falls below the selected threshold for level-of-
confidence (“re-annotation mode”). Although the “re-annotation mode” was not
applied to our current study, this has the potential to be of value in future applications
and deployment of our model, as part of its explainability functionality (more details
regarding pSim “mode selection” are provided in Methods Box 1).

Statistical analyses. To assess the statistical significance of the AUROC’s, we
calculated 95% CIs using a nonparametric bootstrap approach via the following
process: first, 1000 cases were randomly sampled from the test dataset of 1000 cases
with replacement, and the DCNN models were evaluated on the sampled test set.
After running this process 2000 times, 95% CIs were obtained by using the interval
between 2.5 and 97.5 percentiles from the distribution of AUROCs. The 95% CIs of
percentage accuracy, sensitivity, and specificity of the models at the selected
operating point were calculated using binomial proportion CIs.

Selection of PA CXR’s from three open-source datasets. Although the external
datasets contained both AP and PA views, our study was conducted with PA views
only, for both consistency/convenience and to minimize potential confounding vari-
ables. Specifically, from the CheXpert v1 (n= 223,414) and NIH (n= 112,120) data-
sets, which contain PA labels in their metadata files, we collected 29,420 and 67,310 PA
CXRs respectively. From the MIMIC v1 (n= 369,188) dataset, which did not have
clear labels, we applied an internal model to distinguish between PA and AP projec-
tions, which returned 71,223 PA CXR’s (specificity 0.999, sensitivity= 0.998).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The labels for the five categories applied to the three open datasets by the seven expert
readers can be accessed at: https://github.com/MGH-LMIC/AutoLabels-PublicData-CXR-
PA. The training, validation, and test datasets generated for this study are anonymized; the
non-DICOM image format of this data may be available in 15 business days for research
purposes from the corresponding author (sdo@mgh.harvard.edu) with an official request.

Code availability
The codes for model development can be accessed at: https://github.com/MGH-LMIC/
CXR-autolabeling.
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