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Matrix-assisted laser desorption ionization - mass
spectrometry imaging of erlotinib reveals a limited tumor
tissue distribution in a non-small-cell lung cancer mouse

xenograft model

Dear Editor,

Erlotinib has been used to treat patients with EGFR-
mutated non-small-cell lung cancer (NSCLC) for almost
two decades; however, acquired resistance sooner or
later develops against its blockade, thus, low efficacy
is inevitable in some patients."” Many studies have
aimed to discern the cause of this resistance by exploring
the underlying molecular mechanisms of erlotinib. To
investigate an underlying mechanism of erlotinib’s resis-
tance, its distribution in tumor, liver, and kidney tissues
were analyzed with matrix-assisted laser desorption
ionization mass spectrometry imaging (MALDI-MSI) in
drug-resistant and drug-sensitive NSCLC mouse xenograft
models. The low in vivo distribution of erlotinib in tumor
tissues in a drug-resistant NSCLC mouse xenograft model
suggests the existence of a new resistance mechanism in
NSCLC.

To investigate the resistance of NSCLC cell lines to
erlotinib treatment, the drug effects on proliferation
were studied in two NSCLC cell lines, H1299 (EGFR
WT; erlotinib-resistant) and PC9 (Exonl9 del; erlotinib-
sensitive).>* Erlotinib weakly inhibited cell proliferation
in the H1299 cells (ICs, = 65 uM, Figure 1A). In contrast,
robust inhibition was observed in the PC9 cells (IC5, = 0.7
uM) (Figure 1B). Additionally, we investigated whether
erlotinib inhibited EGFR kinase activity in H1299 cells to
confirm previously reported results.” Erlotinib (30 uM)
was applied to EGF-induced H1299 cells to examine the
drug effects on the EGFR signaling pathway. As presented
in Figure 1C, EGF activated the EGFR, whereafter the
activation was suppressed by erlotinib treatment, which
led to the suppression of both AKT and ERK phospho-
rylation. We also used the DARTS assay to investigate
the binding of erlotinib to EGFR (Figure 1D).%” Pronase
treatment, that is, digestion, significantly reduced EGFR

level. However, this digestion was suppressed by pre-
treatment with erlotinib (30 uM) due to a conformational
change induced by erlotinib binding to EGFR. In con-
trast, the amount of VDACI, a non-erlotinib binding pro-
tein used as a control, was significantly decreased even
when incubated with erlotinib prior to pronase treatment.
This implies that erlotinib is directly binding to EGFR to
inhibit EGF-induced EGFR kinase activity. Based on these
results, H1299 was selected to explore the erlotinib resis-
tance mechanisms in this study.

Next, the in vivo responses of erlotinib in HI1299
(erlotinib-resistant) and HCC827 (erlotinib sensitive) cells
were investigated in xenograft mice models. The PC9 cell
line was not used in this study because PC9 derived tumors
were associated with severe ulceration, which would also
be difficult to analyze for MALDI-MSL® Additionally,
HCC827 cell line harbors exon19 del of EGFR such as PC9
cell line.

Notably, erlotinib did not reduce the volume of H1299
tumors (Figure 2A) in contrast to HCC827 tumors (Fig-
ure 3A), which confirmed the cells were erlotinib-sensitive
(ICso = 0.2 uM) (Figure S2), and there was no appar-
ent toxic indication of the erlotinib treatment (Figures 2B
and 3B). H1299 tumor tissue, liver, and kidney were iso-
lated from the xenograft mice previously treated with
either vehicle (N = 4) or erlotinib (N = 5) (10 mg/kg)
for analyzing erlotinib distribution. The distribution of
erlotinib was then examined in the isolated tissue sections
with MALDI-MSI. The erlotinib target protein, EGFR,
was visualized with immunofluorescence. The images
generated from the vehicle and erlotinib-treated groups
were subsequently compared and are presented in Fig-
ures 2C-2R and 3C-3R. We confirmed that erlotinib co-
localized with EGFR in the erlotinib-treated tumor tissue
samples.
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Erlotinib treatment of NSCLC cell lines. (A) Effect of erlotinib on the proliferation of H1299 and (B) PC9 cell lines at

72 hours. ICs, values were calculated from the inhibition ratio. The erlotinib ICs, in H1299 cells was predicted to be 65 uM. NT indicates
dimethyl sulfoxide (DMSO) alone, and it was also used to normalize data of erlotinib treated group. (C) H1299 cells were treated with 30 uM
erlotinib for 2 h. After serum starving, the cells were stimulated by adding 100 ng/ml EGF for 15 min. (D) DARTS analysis to determine
erlotinib binding with EGFR. DARTS analysis was performed to analyze the interaction of erlotinib to EGFR and VDACI, an erlotinib
non-binding protein control. All data are the mean + S.E.M. and CV < 20 % from > 3 independent experiments, ***p < 0.001 vs NT,

**p < 0.01 versus Pronase_EGFR, paired t test by GraphPad Prism

In the tumor tissues from H1299 xenograft mouse model,
the Total Ion Current (TIC) normalized average signal
intensities of erlotinib, and M13/M14 precursor ions (at
m/z 394.178 and 380.160, respectively) were analyzed in
vehicle- and erlotinib-treated mice (Figures 2E, 2F, 21, and
2J). M13/M14, which are the biologically active metabo-
lites of erlotinib were also detected in erlotinib treated
mice tissues.” Our measurement also confirmed that
erlotinib signal is detectable in liver and kidneys of drug-
treated mice, showing relatively high signal intensities
(Figures 2M, 2N, 2Q, and 2R).

In the tumor tissues from HCCS827 xenograft model,
the TIC normalized average signal intensities of erlotinib
and M13/M14 precursor ions (at m/z 394.178 and 380.160,
respectively) were analyzed in both vehicle and erlotinib-
treated mice (Figures 3E, 3F, 31, and 3J). We also confirmed
the intensity of the precursor ions in liver and kidney from
erlotinib-treated mice (Figures 3M, 3N, 3Q, and 3R).

These localization data in both xenograft mouse models
clearly demonstrate that erlotinib has affected the tumor
by binding to EGFR in vivo. The average drug signal inten-
sities per tissue unit were calculated for each tissue sam-
ple from the HCC827 and H1299 xenograft models to com-
pare the drug distributions in the two in vivo mouse groups.

We observed that the vehicle-treated groups exhibited dif-
ferent basic tumor tissue intensities in each model (Figure
S3). The average intensity was 4.50E-8 for HCC827 tumors,
1.36E-7 for H1299 tumors (Figures S4 and S7), 4.03E-7 for
the liver (Figures S5 and S8), and 1.32E-8 for the kidney
(Figures S6 and S9) in the vehicle-treated mice. Erlotinib
was detected in several tissues but with different inten-
sities in the HCC827 xenograft model group (tumor tis-
sue (13.89), liver (12.32), and kidney (46.42)) similar to
the H1299 xenograft model group, where erlotinib was
also detected in all three tissue types (tumor tissue (4.55),
liver (37.58), and kidney (300.25)) (Figure 4A). Interest-
ingly, as predicted by the high affinity of mutated EGFR
in HCC827 cells,' erlotinib content was 2.95 times higher
in HCC827 tumors when compared to H1299 tumors. Fur-
thermore, erlotinib showed stronger localization in the
kidney of the drug-treated H1299 xenografts. It is notewor-
thy that erlotinib was highly localized in normal organ tis-
sues (liver, kidney) in the erlotinib-resistant H1299 mouse
xenograft model.

In summary, these results demonstrate that in erlotinib-
resistant H1299 xenografts, erlotinib preferentially dis-
tributed in the liver and kidney rather than in the tumor
tissues (Figure 4B). Although erlotinib still has a bind-
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FIGURE 2 Erlotinib-resistant mouse xenograft model with H1299 cells and erlotinib distribution in tumor, liver, and kidney tissue. (A
and B) Mean tumor volumes + S.D. and body weight over time in response to treatment with erlotinib are shown. (C-R) Distribution of
erlotinib and its target protein, EGFR, in various tissues from vehicle and erlotinib-treated mice visualized with MALDI-MSI and IF,
respectively. The nucleus is visualized with Hoechst 33342 (blue) (Figures S12A-S12D), and EGFR is visualized with IF (green) in the merged
images. The gray and the red lines in the MSI images represent boundaries of the analyzed tissue sample and EGFR distributions,
respectively. MALDI-MSI images of metabolites M13/M14 (m/z 380.160) and erlotinib (m/z 394.178) are presented. These specific m/z values of
erlotinib were examined by MALDI-MS using erlotinib standard solution (Figure S1). The signal intensity of specific m/z values is presented
as an RGB color gradient from blue (low) to red (high). The xenograft mice were treated with either vehicle (N = 4) or erlotinib (N = 5)

(10 mg/kg) for analyzing erlotinib distribution. Abbreviation: NS, not significant.
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HCC827 xenograft mouse model
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FIGURE 3 Erlotinib-sensitive mouse xenograft model with HCC827 cells and erlotinib distribution in tumor, liver, and kidney tissue. (A
and B) Mean tumor volumes =+ S.D. and body weight over time in response to treatment with erlotinib are shown. ***p < 0.001. (C-R)
Distribution of erlotinib and its target protein, EGFR, in various tissues from vehicle and erlotinib-treated mice visualized with MALDI-MSI
and IF, respectively. The nucleus is visualized with Hoechst 33342 (blue) (Figures S12A-S12D) and EGFR is visualized with IF (green) in the
merged images. The gray and the red lines in the MSI images represent boundaries of the analyzed tissue sample and EGFR distributions,
respectively. MALDI-MSI images of metabolites M13/M14 (m/z 380.160 ) and erlotinib (m/z 394.178 ) are presented. These specific m/z values
of erlotinib were examined by MALDI-MS (Figure S1) using erlotinib standard solution. The signal intensity of specific m/z values are
presented as an RGB color gradient from blue (low) to red (high). The xenograft mice were treated with either vehicle (N = 6) or erlotinib

(N = 6) (10 mg/kg) for analyzing erlotinib distribution. Abbreviation: NS, not significant.
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FIGURE 4 Comparison of normalized erlotinib distributions and schematic summary of this study. (A) Relative erlotinib distribution
values (at m/z 394.178 ) in HCC827 and H1299 mouse xenografts. All values were calculated from MALDI-MSI data in triplicate and mean
values + S.D are presented, ***p < 0.001 and **p < 0.01 when compared to control and analyzed with Student’s ¢-tests. (B) Mouse xenograft
models were constructed with erlotinib-resistant (H1299) or erlotinib-sensitive (HCC827) NSCLC cell lines, and both mouse groups were
treated with erlotinib. MALDI-MSI was used to visualize the distribution of erlotinib in the tissues. For the comparison of erlotinib sensitive
and resistant tumor models, the erlotinib signal in each tissue was quantified and normalized with tissue size. Erlotinib had a higher overall

signal intensity in tumors from the HCC827 mouse model when compared to tumors from the H1299 mouse model. In addition, erlotinib was

highly distributed in normal liver and kidney tissues in the H1299 mouse model. These data provide a new mechanism for in vivo erlotinib

resistance

ing affinity to the target protein, EGFR, even in the H1299
tumor cells, the reduced distribution within in tumor tis-
sues suggests a new mechanism of erlotinib resistance in
vivo.
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