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Coronavirus disease-19 (COVID-19)-induced severe acute respiratory syndrome is a global pandemic. As
a preventive measure, human movement is restricted in most of the world. The Centers for Disease
Control and Prevention (CDC), the National Institutes of Health (NIH), along with the World Health
Organization (WHO) have laid out some therapeutic guidelines for the infected patients. However, other
than handwashing and vigilance surrounding commonly encountered oronasal symptoms and fever, no
universally available prophylactic measure has yet been established. In a pandemic, the accessibility of a
prophylactic biologically active substance is crucial. Ideally, it would be something readily available at a
low price to a larger percentage of the population with minimal risk. Studies have demonstrated that zinc
may reduce viral replication and increase immune responses. While consuming zinc (within the recom-
mended upper safety limits), as a prophylactic might provide an additional shield against the initiation
and progression of COVID-19 would need clinical studies, the potential clearly exists. Even after vaccina-
tion, low zinc status may affect the vaccination responses.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Zinc: an essential trace element

Maintaining the adequate zinc balance is essential for the
normal functionality of various human systems [1]. Zinc is mostly
present in muscles (60%), bones (30%), and skin (5%) in humans [2–
4]. Zinc is involved in the synthesis process of various proteins and
is involved in activating enzymes necessary for normal cellular
functions. Zinc facilitates the absorption of vitamin A, vitamin E,
and folate [1]. Zinc deficiency is associated with a higher rate of
infections, degenerative diseases, oral diseases, and behavioral dis-
orders in humans [1,4]. Available information suggests that zinc
deficiency is associated with increased disease severity of the
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Fig. 1. a. Subcellular localization and transport of zinc b. Inhibition of viral replication by zinc 1. Free virus inactivation 2. Viral uncoating inhibition 3. Inhibition of viral
genome transcription 4. Inhibition of viral protein translation and polyprotein processing Abbreviations: CV, coronavirus; DdDp, DNA-dependent DNA polymerase; EMCV,
encephalomyocarditis virus; FMDV, foot and mouth disease virus; HCV, hepatitis C virus; HIV, human immunodeficiency virus; HPV, human papilloma virus; HRV, human
rhinovirus; HSV, herpes simplex virus; PV, polio virus; RdRp, RNA-dependent RNA polymerase; RT, reverse transcriptase; SARS, severe acute respiratory syndrome
coronavirus; SFV, Semliki Forest virus; SV, sindbis virus; VZV, varicella-zoster virus [15].
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COVID-19 [5]. In a comprehensive metal(loid)s analysis, compared
to the non-severe COVID-19 patients, the whole blood chromium,
calcium, and copper levels were higher, while the levels of zinc,
magnesium, manganese, iron, lead, arsenic, and thallium were
lower in the severe patients with COVID-19 [6]. Depending on
age and gender, the recommended daily allowance for zinc varies
from 2 and 13 mg/day, with the tolerable upper intake level for
zinc is set at 40 mg/day by the Institute of Medicine (IOM).

Around 25–66% of the consumed zinc is absorbed from the jeju-
num and ileum, and is present all over the body (in tissues, cells
and fluids) [7], although the highest content of zinc is found in
the muscles and bones. Zinc is bound to serum proteins (albumin,
globulin, transferrin) and amino acids, which disperse zinc
throughout the body; 95% of the total body zinc is present in the
intracellular compartments [3]. The cellular zinc homeostasis is
partly maintained by the zinc importers family (Zip) that lets the
zinc accumulate into the cytosol, and by the zinc exporters family
(ZnT), which transport the zinc out of the cytosol [2,7] (Fig. 1). In
addition, zinc-binding proteins, metallothioneins (MT) can also
contribute to maintaining intracellular zinc homeostasis [2]. To
keep the homeostatic balance in the body, zinc is excreted or elim-
inated through the kidneys, skin, and intestines when necessary.
The possible effects of severe acute respiratory syndrome coron-
avirus 2 (SARS-CoV-2) on Zip, ZnT and MT will need additional
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studies. Of importance, in addition to inadequate consumption of
zinc, reduced intestinal absorption is a common cause of zinc inad-
equacy. Phytate (present in cereals, corn, and rice) has a strong
inhibitory effect on zinc absorption from consumed meals. Casein
can also exert a modest inhibitory effect on zinc absorption.
Besides, iron supplementation may negatively influence zinc
absorption, while cadmium can reduce zinc absorption [8].
2. Zinc: an antiviral nutrient

SARS-CoV-2, the novel virus that causes COVID-19 infection, is
estimated to have infected over 109 million people worldwide
causing more than 2.4 million deaths as of February 16, 2021 (data
collected from Coronavirus resource center of Johns Hopkins
University, Maryland, U.S.). With heterogeneous clinical presenta-
tions [9–12], it is a global priority to encourage collaborative
efforts toward developing meaningful uniform therapeutic strate-
gies to treat and reduce disease mortality [13–15]. One strategy
may include zinc supplementation. The zinc compound has been
speculated to reduce influenza viral infection through its antiviral
effects in humans [13,16]. Using cultured chorion cells prepared
from human fetal membranes, a reduced replication of the influ-
enza virus was noted with a zinc ionophore (pyrrolidine dithiocar-
bamate) [17]. Similarly, in vitro studies on Madin-Darby canine
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kidney (MDCK)-SIAT1 cells, zinc oxide nanoparticles exert antiviral
effects against the H1N1 influenza virus infection [18]. In a related
study, polyethylene glycol-coated zinc oxide nanoparticles inhib-
ited more than 90% of H1N1 influenza virus loads [18]. Zinc has
also been shown to inhibit the replication of severe acute respira-
tory syndrome (SARS) coronavirus by cell culture studies on Vero-
E6 cells [19]. Using both zinc ions and zinc-ionophore (pyrithione),
the replication of SARS coronavirus was reduced when intracellular
concentration of zinc was high. The zinc-mediated inactivation of
the RNA-dependent RNA polymerase (RdRp; core replication
enzyme) is a possible mechanism of inhibition of SARS coronavirus
replication [19]. Of relevance, replication of SARS-CoV-2 also needs
two essential enzymes, RdRp and 3C-like proteinase (3CLpro). The
zinc-binding sites were shown to be conserved in RdRp and 3CLpro
by molecular modeling [20]. Though exact mechanisms are not yet
defined, zinc-binding can reduce the enzymatic activities of 3CLpro
and RdRp to inhibit viral replication [19]. In vitro studies have
claimed that low zinc levels favor viral multiplication in SARS-
CoV-2 infected cells [21]. Similarly, zinc could markedly inhibit
the replication potential of the respiratory syncytial virus [22].
Investigators had shown an 800-fold reduction in the respiratory
syncytial virus when 10 lM concentration of zinc was present dur-
ing preincubation, adsorption, penetration, and egress [22]. In the
clinical scenario, zinc supplementation resulted in a marked reduc-
tion in pneumonia prevalence in children [23,24]. Hepatitis C virus
(HCV) replication has also been suppressed by zinc [25], and zinc
supplementation has enhanced the response of antiviral therapy
for HCV-induced hepatitis patients [26–28]. The exact underlying
mechanism of zinc-induced antiviral response is not well-
understood; however, it has been demonstrated that zinc has the
potential to inhibit viral binding to the mucosal cells, and eventual
replication, possibly by generating antiviral interferon (IFN)-a and
IFN-c [29,30]. In another study, zinc supplementation taken for
24 weeks, enhanced the response to INF-a therapy in patients with
intractable chronic hepatitis C, as clinically determined by the
serum level of aminotransferase and the presence of RNA for
HCV [31]. SARS-CoV-2 can bind to the cell surface angiotensin-
converting enzyme 2 (ACE2) through its spike proteins for entering
into the cells to initiate viral replication and transcription [32]. Ear-
lier studies have shown that ACE-2 expression is regulated by Sir-
tuin 1 (SIRT1), and zinc can reduce SIRT-1-mediated ACE2
expression [33,34]. Experimental studies conducted on human
lung cell lines, and treated with zinc in combination with tri-
clabendazole (anthelmintic drug) or emetine (antiprotozoal drug),
have shown to suppress ACE2 expression without producing cyto-
toxicity [35]. Monotherapy with triclabendazole or emetine failed
to suppress ACE2 levels, suggesting the importance of zinc on the
expression of ACE2 [35].

In this pandemic, chloroquine has been used to treat COVID-19
infection, with some early data suggestive of therapeutic potentials
[36–40]. Although there are also studies that reported to have no
benefit for using chloroquine on COVID-19 patients and docu-
mented increased risk of cardiotoxicity [41–45]. Notably, chloro-
quine is an ionophore for zinc and could increase the cellular
entry of zinc [46]. Additionally, intracellular antiviral effects of zinc
might be partly related to the chloroquine-induced beneficial
effects documented in COVID-19 patients. In a recent clinical
observation, zinc sulfate, in combination with hydroxychloroquine
and azithromycin, has shown to provide better therapeutic bene-
fits to the COVID-19 infected patients than the patients who
received hydroxychloroquine and azithromycin, without zinc; an
increased frequency of hospital discharge and reduced mortality
are documented in zinc sulfate added-COVID-19 patients [47]. It
needs to mention that hydroxychloroquine’s potential utility to
treat COVID-19 patients is debated, particularly the side effects
of this drug beyond the acceptable range, and will require careful
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clinical consideration [48–52]. Additional controlled studies will
also be required to gain better insight into the role and applications
of zinc in COVID-19 infection. The rationale for using azithromycin,
an antibiotic, against a viral infection was not clearly explained in
the aforementioned study [47]. Recent in vitro studies on human
airway cell lines have shown that zinc and azithromycin can sup-
press the expression of ACE2, and the investigators have specu-
lated the potential prophylactic and therapeutic value of this
combination for COVID-19 patients [53]. Exacerbation of antimi-
crobial resistance appears to be another casualty of the COVID-19
pandemic [54], and implementation of antimicrobial stewardship
to reduce antimicrobial drug resistance in this pandemic should
be a medical priority [55,56].
3. Zinc: an immune-boosting nutrient

A serum zinc level of 80–130 lg/dl is considered as a normal
range [57], and <70 lg/dl is regarded as clinical zinc deficiency
[58,59]. Impaired zinc homeostasis adversely affects immune cells
by multiple mechanisms that result in the abnormal formation of
lymphocytes, impaired intercellular cytokine communication, and
diminished phagocytosis that cause an inadequate host defense
[60]. Improved zinc intake may also reduce the risk of bacterial
pneumonia co-infection by improving ciliary length and move-
ment that affects viral particle removal and improves mucociliary
clearance. There are many ways to supplement zinc through usual
food consumption. Meat (lamb, beef, and chicken) and seafood
(oysters, and lobster) are zinc-containing food. In addition, black
sesame, soy foods, mushrooms, lentils, celery, legumes, nuts,
almonds, and sunflower seeds are good sources of zinc [4]. Zinc
can also influence the functionality of several immune cells
[61,62], and an inadequate zinc microenvironment can impair
host-defense systems [63], thus increasing the susceptibility to
various microorganisms [64]. In vitro studies have shown a higher
rate of mouse CD4 + CD8 + thymocyte death by apoptosis in those
with low zinc concentrations [65], while apoptosis was shown to
be reduced by adding zinc [66]. In a study of human children, zinc
supplementation has been shown to provide T-cell-mediated
immunity by increasing the numbers of CD4 + CD3 + cells in
peripheral blood [67]. By contrast, zinc deficiency has been shown
to impair B-cell development [68], with low IgG production [69],
leading to higher rates of infection and subsequent mortality
[70]. Experimentally induced maternal zinc deficiency caused a
lower level of antibody generation in the offspring, while zinc sup-
plementation could restore the impaired antibody-mediated
responses [71]. Although the zinc supplementation can increase
CD3 + CD4 + cells in the peripheral blood, to better understand T
cell-mediated immunity, potential effects of zinc on T cell subsets,
including the balance between regulatory T (Treg) cells and T
helper type 17 (Th17), are needed. Of relevance, Treg cells can
reduce or resolve inflammation, while Th17 cells can promote
inflammation in various human diseases with immune dysregula-
tion [72]. Studies have shown that zinc deficiency can drive Th17
polarization and promote the loss of Treg cell function [73]. More
importantly, zinc supplementation can suppress Th17 cell develop-
ment to provide an additional shield against the infection [74].
Cytotoxic CD8 + cells can kill virally infected cells, and experimen-
tal studies have shown that a zinc-deficient diet resulted in
reduced population of CD8 + cells, thereby contributing to the
exacerbation of the inflammatory responses [75,76]. Of clinical
importance, a low numbers of lymphocyte, including CD8 + cells
are shown to be associated with poor prognosis of COVID-19
patients, and increasing lymphocyte counts resulted in clinical
improvements [77,78]. Macrophages showed reduced phagocytic
ability against the parasites in a low zinc microenvironment, and
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the phagocytic activity of the macrophages can be restored by
increasing zinc concentration [67].

A low zinc intake by elderly individuals has been documented
in the National Health and Nutrition Examination Survey III
(NHANES III); 35%–45% of elderly individuals (�60 years) were
projected to be consuming zinc below the estimated average
requirements (6.8 mg/day for elderly females; 9.4 mg/day for
elderly males). Even after adjusting the consumption from both
food sources and dietary supplements, 20%–25% of elderly individ-
uals were estimated to have inadequate zinc intakes [79,80].
Reduced dietary zinc intake in elderly individuals is associated
with a low intracellular concentration of zinc [81]. Of clinical sig-
nificance, altered level of intracellular ionic zinc could exist, even
when the plasma levels of zinc are within the normal range. This
suggests that the plasma level of zinc might not always reflect
the overall zinc status and could be misleading, particularly in
elderly individuals [82–84]. When zinc level was measured in
serum and the same individual’s skin biopsy, despite low serum
level of zinc, not much change in zinc content was noted in the
biopsy site of the patients with leprosy when compared with the
control tissue content [85]. In a similar line of study, when zinc
was measured in serum and thigh skin in patients with chronic
venous leg ulceration, the skin zinc concentration was elevated
in patients with ulceration, as compared to the healthy controls;
although the serum zinc level was lower in patients with chronic
venous leg ulceration [86]. Moreover, commonly prescribed drugs,
including hydrochlorothiazide, angiotensin 2 receptor antagonists,
and angiotensin-converting-enzyme inhibitors that are used for
the treatment of hypertension and cardiovascular disease patients
can cause increased urinary excretion of zinc to induce systemic
zinc deficiency [87]. In studies of zinc-deficient individuals, exoge-
nous zinc supplementation resulted in higher INF (type I and II)
production and response, along with improved immune cell sur-
vival, maturation, and function [88,89].

Elderly individuals commonly suffer from an inadequate
immune system [63], and are generally more susceptible to
COVID-19 infection [90,91]. Again, elderly individuals with comor-
bidity, including hypertension and diabetes, are usually zinc defi-
cient [92]. Studies have shown that elderly individuals who
consumed 45 mg elemental zinc/day for a year had a significantly
reduced infection occurrence [89]. Other reports suggest zinc sup-
plements up to 150 mg/daily are needed, especially during viral
infections [93]. This seems to point to the idea that maintaining
optimal zinc balance is essential in protecting against infection.
The mechanism of higher intracellular zinc concentration could
affect the replicative cycle of the RNA viruses to reduce viral repli-
cation. It is noteworthy that COVID-19 is an RNA virus.
4. Zinc: effects on COVID-19 patients

In a recently concluded Conference on Coronavirus Disease of
the European Society of Clinical Microbiology and Infectious Dis-
eases (ESCMID), Dr. Güerri-Fernández and colleagues presented
the retrospective analysis data on the impact of zinc on the mortal-
ity of COVID-19 patients among the hospital admitted patients in
Spain. Out of 249 studied patients, there was 8% (21 patients) mor-
tality. The investigators found a significantly lower plasma level of
zinc in COVID-19 patients who died (43 lg/dl) than the patients
who survived (63.1 lg/dl). After adjusting different variables, the
investigators showed each unit increase of plasma zinc at the time
of hospital admission resulted in a 7% reduced risk of in-hospital
mortality. Also, less than 50 lg/dl of a plasma zinc level at the hos-
pital admission was associated with a 2.3-fold increased risk of in-
hospital deaths as compared to the patients with a plasma zinc
level of 50 lg/dl or higher, suggesting the importance of maintain-
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ing adequate zinc balance [21]. In a similar line of study, serum
zinc level was found to be relatively low in samples collected from
COVID-19 patients compared to the healthy counterparts. The
average serum zinc level was remarkably low in the samples col-
lected from the non-surviving COVID-19 patients (n = 6) as com-
pared to the surviving COVID-19 patients (n = 29) [94]. In
another uncontrolled case series study with COVID-19 patients, a
high dose of oral zinc salt resulted in clinical recovery, improved
oxygenation, and less shortness of breath among those patients
[95]. A study conducted in Japan on 62 patients with COVID-19
showed a close association between low serum zinc level and
severity of the disease [5]. The investigators also found serum zinc
level as a predictive factor for a critical illness of patients with
COVID-19 [5]. In a different study, the fasting zinc level in blood
in patients with COVID-19 (n = 47) was significantly lower than
the healthy controls (n = 45). The median zinc level in patients
with COVID-19 was 74.5 lg/dl, while in the control group, the level
was 105.8 lg/dl [96]. The zinc-deficient COVID-19 patients were
found to develop more complications, along with extended hospi-
tal stay and higher mortality [96]. In a trial conducted on COVID-19
patients (n = 62), treated with combination therapy of Nitazox-
anide, Ribavirin, Ivermectin and zinc, showed a more rapid
nasopharyngeal clearence of SARS-CoV-2 as compared to the
patients (n = 51) who revived symptomatic treatment [97]. In a
multicenter cohort study on 3473 hospitalized COVID-19 patients
(in New York, U.S.), treatment with zinc and an ionophore resulted
in a 24% reduced risk of ‘in-hospital’ mortality [98]; it was an
observational study, and zinc sulfate (220 mg) was given orally,
once or twice daily for four days or until discharge. As a zinc iono-
phore, hydroxychloroquine (400 mg twice daily for one day then
200 mg twice daily for four days) was used in patients whose oxy-
gen saturation was <94% on room air, and whose QTc interval was
<500 ms [98]. Among the zinc and ionophore treated group of 1005
hospitalized COVID-19 patients, 121 patients (12%) died, while
among 2467 patients who did not receive zinc and ionophore,
424 patients (17%) died [98]. However, it needs to be mentioned
that not all the studies found an association between zinc con-
sumption and disease severity in COVID-19 patients [99]. In a ret-
rospective analysis of 242 (Zinc-treated group: n = 196; Control
group: n = 46) hospitalized patients with COVID-19, treated with
zinc sulfate at a total daily dose of 440 mg (100 mg elemental zinc)
showed neither additional benefit nor harmful health effects; since
overall zinc status of the patients was not analyzed, no definitive
conclusion could be drawn from this study [100]; also the retro-
spective nature of the study prevented in adjusting the uniform
dose and duration of the study [100].

It is important to note that physicians’ recommendations
should be sought before consuming zinc to minimize potential
adverse effects. Acute exposure to high doses of zinc may induce
gastrointestinal tract disorders, including nausea, vomiting, loss
of appetite, epigastric pain, diarrhea, along with headache and fati-
gue [7]. Chronic zinc toxicity may include lethargy, copper defi-
ciency, and severe iron deficiency anemia [101]. Excessive zinc
levels are cytotoxic and shown to induce higher mortality in exper-
imental studies [102]. The risk of developing adverse effects may
limit the tolerability and long-term use of zinc.
5. Conclusion

The holistic approach of maintaining an adequate nutritional
balance with healthy eating habits and keeping an active lifestyle
are likely to reduce the disease burden of the COVID-19 pandemic
[103-110]. Without the mass availability of effective vaccines or
specific drugs to treat or control COVID-19 infection, social distanc-
ing and home isolation are the most recommended measures



Fig. 2. a. Zinc in a selected signal transduction pathway (IGF, insulin-like growth factor; IGFR, IGF receptors; EGFR, epidermis growth factor-receptor; MAPK, mitogen-
activated protein kinase; PKC, protein kinase C; P70S6K, P70S6 kinase). b. Activation of the transcription factor MTF-1 by zinc and induction of MT [121,122].
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employed to minimize the spread of COVID-19-associated infec-
tion. However, consuming zinc has the potential to provide an
additional shield against the illness [111-114], possibly by reduc-
ing viral load and enhancing the immunity of the COVID-19
patients (Fig. 2). The elevated intracellular concentration of zinc
could inactivate the RNA-dependent RNA polymerase, the core
viral replication enzyme [19], which could reduce viral replication
and might have the potential to minimize the disease burden. Fur-
ther studies will determine the relevance of experimental studies
with zinc on human viral diseases. Of relevance, 40 mg of zinc
per day is considered as the tolerable upper intake level and is unli-
kely to induce toxicity. Whether this same level of zinc intake can
provide added protection against COVID-19 infection, perhaps by
enhancing the host resistance, is an area that needs additional
studies; the results of the ongoing clinical trials around the world
will shed further light [115]. Another added benefit of zinc is that it
is generally considered very safe to consume without harmful
effects, even when consumed well above the daily recommended
dietary intake [101]. The potential benefits of taking zinc in an
effort to stave off COVID-19 infection will require carefully
designed research studies and clinical trials to be universally rec-
ommended and would need to be a prospective, randomized
placebo-controlled trial [116]. Of clinical significance, zinc defi-
ciency has a deleterious association with severely ill patients
beyond COVID-19. For instance, a South Korean study has reported
that severely ill patients, who died after an intensive care unit
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(ICU) transfer, showed hypozincemia [117]. Even after treatment,
the serum level of zinc did not change in these patients [117].

The double-blinded randomized controlled trials continue to be
the gold standard of clinical studies. ClinicalTrials.gov and the
WHO’s International Clinical Trials Registry Platform (WHO ICTRP)
have enlisted around 50 clinical trials to test the effects of various
doses of zinc on the initiation and the progression of COVID-19
patients. Ongoing clinical trials on COVID-19 patients, either with
zinc or with zinc and ionophores (quercetin or epigallocatechin
gallate) are likely to extract additional information on its clinical
utility [118-120]. The results of these ongoing studies in different
parts of the world, particularly double-blinded randomized con-
trolled trials, would provide information on the therapeutic value
of zinc, either as a prophylactic or as an adjuvant therapy to min-
imize the disease burdens of COVID-19 patients. Available clinical
studies with zinc supplementation on COVID-19 patients, although
sparse, suggest promising prospects. Finally, the success of the
ongoing COVID-19 vaccination program may be partly dependent
on zinc sufficiency, and that low zinc availability may affect the
vaccination responses.
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