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Abstract. Cachexia denotes a complex metabolic syndrome 
featuring severe loss of weight, fatigue and anorexia. In 
total, 50‑80% of patients suffering from advanced cancer 
are diagnosed with cancer cachexia, which contributes 
to 40% of cancer‑ associated mortalities. MicroRNAs 
(miRNAs) are non‑coding RNAs capable of regulating 
gene expression. Dysregulated miRNA expression has been 
observed in muscle tissue, adipose tissue and blood samples 
from patients with cancer cachexia compared with that 
of samples from patients with cancer without cachexia or 
healthy controls. In addition, miRNAs promote and main‑
tain the malignant state of systemic inflammation, while 
inflammation contributes to cancer cachexia. The present 
review discusses the role of miRNAs in the progression 
of cancer cachexia, and assess their diagnostic value and 
potential therapeutic value.
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1. Introduction

Cachexia is a complex syndrome featuring loss of weight 
that results from reduced skeletal muscle mass (1). This 
syndrome usually appears in the late stages of severe illnesses, 
including cancer, kidney disease, human immunodeficiency 
virus, congestive heart failure and chronic obstructive pulmo‑
nary disease (2,3). Patients with cachexia are insensitive to 
treatment, have a low quality of life and have a high mortality 
rate (4).

Cancer cachexia affects 50% of patients with cancer and 
causes ~40% of cancer‑associated mortalities (5). The inci‑
dence of cancer cachexia changes with the stage and type of 
cancer (6). According to a previous cohort study on patients 
with advanced tumors, those with pancreatic cancer are at the 
greatest risk of developing cancer cachexia (~70%), followed 
by colorectal, gastroesophageal, and head and neck cancer 
(~45%) (7), while patients with breast and prostate cancer 
are at the lowest risk of developing cachexia (20‑30%) (7). 
In addition, cancer cachexia may result in inefficient chemo‑
therapy, increased treatment interruptions or decreased 
survival rates (8).

The diagnostic standard of cachexia is loss of weight >5% 
or >2% among patients who have a body mass index (BMI) 
less than 20 kg/m2 (9). In addition, neuroendocrine changes 
occur in patients with cancer cachexia, leading to early satiety 
and food aversion (10). The Warburg effect is the catabolism 
of glucose to lactate to obtain adenosine triphosphate (11). 
Lactate is converted to glucose in the liver at a cost of energy. 
When glucose is released into the bloodstream, cancer cells 
may use it again for glycolysis. The Cori cycle is a fruitless 
glucose‑lactate shuttle that increases energy expenditure and 
hepatic gluconeogenesis (12). As a result, catabolic metabo‑
lism in fat and skeletal muscle provides additional glucose 
precursors for gluconeogenesis. In cachexia, the Warburg 
effect in myocytes contributes to muscle mass reduction (13). 
Reduced food absorption and excessive metabolism eventually 
lead to a negative energy balance and mass loss, particularly 
skeletal muscle mass loss (5). Decreased skeletal muscle mass 
and muscle function are found to negatively influence the life 
quality among patients with cancer cachexia and have recently 
been widely referred to as ‘sarcopenia’ (14,15). Cancer 
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cachexia may subsequently progress to refractory cachexia, 
and interventions at such stage are unlikely to be successful.

Currently, there are limited options for the treatment 
of cancer cachexia. There are two therapeutic concepts: 
i) non‑pharmacological options, which are focused on nutri‑
tion and exercise interventions (3,16); and ii) chemotherapy, 
including the usage of hormone therapy (e.g. gonadotropins), 
myostatin inhibitors and anti‑inflammatory drugs (17). 
However, the effectiveness of these treatments remains 
unclear, as clinical outcomes and long‑term efficacy reports are 
insufficient (18). Therefore, novel early diagnostic biomarkers 
and therapeutic targets for cancer cachexia are needed (19).

Several microRNAs (miRNAs or miRs), such as let‑7d‑3p 
and miR‑345‑5p, were found to be markedly dysregulated 
among patients with cachexia (6,20). Furthermore, several 
miRNAs have been found to have a regulatory effect on 
inflammatory pathways, and on the degradation and synthesis 
of proteins in skeletal muscle, which makes miRNAs 
potential novel therapeutic candidates in cancer cachexia 
therapy (21,22). The present review summarizes miRNAs 
differentially expressed in specimens derived from patients 
with cancer cachexia, including muscle, adipose tissue and 
blood. In addition, the present review proposes that miRNAs 
may be considered as potential diagnostic markers or 
therapeutic targets for cancer cachexia.

2. miRNAs in the development of cancer and cancer 
cachexia

miRNAs are short RNAs that can regulate the expression 
of ~60% of protein‑encoding genes of human mRNAs (23). 
miRNAs were firstly identified in 1993, and additional types 
of miRNAs have been identified and studied since then (24). 
The miRBase database contains published miRNA sequences, 
and the up‑to‑date version of this database contains >2,570 
mature miRNAs from humans (25). The majority of miRNAs 
can be transcribed by RNA polymerase (pol) II or pol III in the 
nucleus to produce primary precursor miRNAs (pri‑miRNAs) 
(60‑100 nt) (Fig. 1) (26). The Drosha/DiGeorge critical region 
8 ribonuclease complex divides pri‑miRNAs to generate 
precursor pre‑miRNAs, which are later exported to the cyto‑
plasm via the exportin‑5 complex (27). The Dicer/TAR‑RNA 
binding protein complex subsequently divides pre‑miRNAs 
to produce mature double‑stranded miRNAs (28). To become 
functional, double‑stranded miRNAs are then disassembled 
to produce passenger and guide strands. The passenger 
strand is degraded, while the guide strand is loaded onto the 
RNA‑induced silencing complex (29,30). The primary function 
of miRNAs is to inhibit the translation of target mRNAs.

miRNA expression profiling shows that changes in 
miRNA expression are associated with various illnesses, 
including primary muscle diseases, dexamethasone‑induced 
atrophy, diabetes and wasting diseases (such as cancer 
cachexia) (31,32). In addition, various aspects of metabolic 
changes and inflammatory responses are also regulated by 
miRNAs (33‑35). Hypermetabolism and systemic inflamma‑
tion are typical symptoms of cancer cachexia (36). Therefore, 
miRNAs possibly impact cancer cachexia pathogenesis.

Cancer cells may produce inflammatory cytokines and 
cause local and systemic inflammation in the host (37,38). 

Previous studies have demonstrated that the tumor itself may 
be capable of secreting exosomes containing miRNAs (39‑42), 
which can increase the synthesis of circulating inflammatory 
factors (39). The levels of circulating inflammatory cytokines, 
including tumor necrosis factor‑α (TNF‑α), interferon‑γ 
(IFN‑γ), interleukin 1 (IL‑1) and IL‑6, can be also altered in 
patients with cachexia (43,44). miRNAs can be transported via 
exosomes, which can be secreted into the serum, cerebrospinal 
fluid, urine and saliva (45). Exosomes from adipose tissue 
in the tumor microenvironment may also promote the 
development of systemic inflammation (46,47).

miR‑182‑5p, miR‑183‑5p, miR‑21‑5p, the miR‑200 family, 
miR‑7‑5p, miR‑125b‑5p, miR‑96‑5p, miR‑139‑5p, miR‑99a‑5p, 
miR‑497‑5p and miR‑486‑5p have been found to be altered 
in breast cancer (BC) (48). A total of 26 differentially 
expressed miRNAs were found to interact with frequently 
deregulated genes known to be involved in colorectal 
cancer pathways (49). The majority of these miRNAs could 
predict the prognosis of patients with colorectal cancer in 
stages II and III (49). It has been demonstrated that miRNAs 
can be used for the early detection of oral cancer (50). A total 
of 9 differentially expressed miRNAs (miR‑486‑1, miR‑486‑2, 
miR‑153, miR‑210, miR‑9‑1, miR‑9‑2, miR‑9‑3, miR‑577 and 
miR‑4732) have been identified, which could be used as lung 
adenocarcinoma diagnostic biomarkers (51).

In addition, miRNAs may have a prognostic value for 
patients treated with a combination of interventions, including 
diet and physical activity (48). Differentially expressed extracel‑
lular vesicle (EV) miRNAs resulting from the Mediterranean 
diet may be engaged in pathways associated with cardiometa‑
bolic risk factors in overweight BC survivors (52). In addition, 
environmental factors such as pesticides may modify miRNA 
expression and the DNA methylation status (53). Alteration of 
miRNA expression profiles upon exposure to naturally occur‑
ring asbestiform fibers is a diagnostic indicator of mesothelial 
neoplastic transformation (54). In patients with colon cancer, 
vascular endothelial growth factor (VEGF) may be an inde‑
pendent predictor of weight loss (55). VEGF promotes the 
proliferation, migration and tube formation of endothelial cells 
(ECs), and has become a primary target of anti‑angiogenic 
therapy (56‑59). Furthermore, VEGF is linked to systemic 
inflammation and malnutrition, supporting the possible involve‑
ment of VEGF in cancer cachexia pathogenesis (55). VEGF is 
required for tumor angiogenesis, and inhibition of VEGF inhibits 
angiogenesis and tumor growth (57,60‑62). miRNAs promote 
angiogenesis by facilitating the proliferation and migration of 
ECs (63). The hypoxia inducible factor‑1α/VEGF signaling 
pathways regulated by miR‑210, miR‑21 and miR‑126 play a role 
in colon cancer initiation (64). Overexpression of miR‑638 could 
inhibit angiogenesis and tumor growth in hepatocellular carci‑
noma by suppressing VEGF signaling (65). miRNAs produced 
from tumor cells, such as miR‑23a, miR‑494 and miR‑210, were 
reported to be packaged into EVs and transported to recipient 
ECs (66). These miRNAs promote angiogenesis by facilitating 
the proliferation and migration of ECs (63).

3. miRNAs in muscular atrophy

Patients with cancer cachexia can lose ≤75% of their skeletal 
muscle mass, which may lead to poor prognosis and higher 
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mortality associated with cancer (67). Muscle protein degrada‑
tion in cancer cachexia is mediated mainly by the ubiquitin 
proteasome system, induced by activation of E3 ligands (68). 
The Fork head box O (FoxO) signaling pathway is involved 
in this process by inducing the transcription of E3 ubiquitin 
ligases, of which there are three members in skeletal muscle: 
FoxO3, FoxO1 and FoxO4 (68). Inhibition of FoxO tran‑
scriptional activity attenuates muscle fiber atrophy during 
cachexia (69). miRNA‑486 reduces FoxO1 protein expression 
and enhances FoxO1 phosphorylation to inhibit E3 ubiquitin 
ligase (70). miR‑21 associates with and activates Toll‑like 
receptor 7, which induces apoptosis in muscle cells via the 
c‑Jun N‑terminal kinase pathway, leading to atrophy (18).

Dysregulated expression of miRNAs (such as myomiRNAs, 
a subset of miRNAs with high expression in skeletal muscle) is 
associated with muscle atrophy, which is a hallmark of cancer 
cachexia (71‑74). The expression profile of miRNAs in rectus 
abdominis muscle samples was evaluated among patients 
with cancer who exhibited or not a cachexia syndrome (6). In 
that study, 8 miRNAs were upregulated among patients with 
cancer cachexia, including let‑7d‑3p, miR‑423‑5p, miR‑345‑5p, 
miR‑532‑5p, miR‑3184‑3p, miR‑1296‑5p, miR‑423‑3p and 
miR‑199a‑3p (6). Pathway analysis indicated that the target 
miRNAs were enriched in the adipogenesis, myogenesis, inflam‑
mation and innate immune response pathways (6). In another 
study, the expression levels of 754 miRNAs in broad fascia 
biopsies of 8 healthy individuals and 8 patients with non‑small 
cell lung cancer who exhibited cachexia were investigated (75). 
The expression of 28 miRNAs was significantly changed, with 

23 miRNAs being downregulated and 5 upregulated (75). In 
addition, the genes of TNF, transforming growth factor‑β, IL‑6 
and insulin are among the 158 putative target genes identified 
using miRTarBase (75). A total of 9 miRNAs were found to be 
differentially expressed in muscles of a cancer cachexia mouse 
model (20). miRNA‑mRNA co‑sequencing revealed activation 
of the atrophy‑related transcription factors STAT3, NF‑κB and 
FoxO, thus exposing transcriptional and post‑transcriptional 
regulatory networks involved in muscle wasting (76).

4. miRNAs in adipose tissue depletion

The hallmarks of cancer cachexia are muscle loss, browning 
of white adipose tissue (WAT) and lipolysis (77,78). Increased 
levels of circulating inflammatory cytokines can also induce 
lipolysis and proteolysis in adipose tissue and muscle, 
respectively, as well as downregulate protein synthesis, which 
causes a reduction in skeletal muscle mass and adipose tissue 
in patients with cancer cachexia (21). WAT can promote the 
circulation of inflammatory cytokines as well as regulate 
inflammatory processes in immune cells and tissues by 
secreting miRNA‑containing exosomes (79‑81). miR‑483‑5p, 
miR‑744, miR‑23a and miR‑99b were found to be downregu‑
lated in the abdomen subcutaneous adipose tissue of patients 
with gastrointestinal cancer and cachexia in contrast to those 
of patients without cachexia syndrome, while the expression of 
miR‑378 was upregulated (82). miRNAs in blood may serve as 
non‑invasive biomarkers of cancer malignancy, and miRNAs 
can remain highly stable in blood.

Figure 1. microRNA (miRNA) biogenesis and release in tumor cells. miRNAs are transcribed by RNA polymerase II (pol II) or polymerase III (pol III) in 
the nucleus to generate primary miRNAs (pri‑miRNAs). Pri‑miRNAs are separated with Drosha/DiGeorge Critical Region 8 (DGCR8) complex to generate 
pre‑miRNAs, which will be exported to cytoplasm via exportin‑5 complex. The Dicer/TAR‑RNA binding protein (TRBP) complex further separates the 
pre‑miRNAs to generate mature double‑stranded miRNAs. Afterward, the passenger strand for mature miRNA undergoes degradation, and the guide strand 
is loaded into the RNA‑induced silencing complex (RISC) for regulating target gene expression.
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5. Circulating miRNAs in cancer cachexia

miRNAs also present in serum, saliva, plasma, urine, and 
cerebrospinal fluid (83,84). The psoas muscle mass index 
(PMI) provides a simple approach to describing skeletal 
muscle volume in the body (85,86). A study on miR‑203 in 
the blood of patients with colorectal cancer demonstrated that 
patients with low PMI had higher levels of miR‑203 than those 
with high PMI (87). Furthermore, overexpression of miR‑203 
in serum is an independent predictor of sarcopenia (87). 
Similarly, previous studies have shown that the level of miR‑21 
increased in the blood of patients with colorectal cancer who 
developed cancer cachexia compared with that of patients who 
did not develop cancer cachexia (88).

Exosomes are the most common type of EVs, which are 
small membrane‑bound vesicles between 30 and 150 nm 
in diameter (89). The presence of miRNA‑rich circulating 
exosomes may promote the development and maintenance 
of systemic chronic inflammation in patients with cancer 
cachexia (21,89). Furthermore, a previous study reported the 
upregulation of miR‑155 in exosomes of BC cells (4T1), which 
can target peroxisome proliferator‑activated receptor‑γ in 
adipocytes, and promote adipocyte metabolism and browning 
differentiation (90). In conclusion, tumor‑derived exosomal 
miRNAs may induce cancer cachexia, and therefore exosomal 
miRNAs are considered potential early diagnostic markers of 
cancer cachexia (90‑94).

6. Discussion and perspectives

Dysregulation of specific miRNAs, such as let‑7d‑3p, 
miR‑345‑5p, miR‑532‑5p, miR‑378, miR‑92a‑3p, miR‑21, is 

involved in the development of cachexia. Cachexia may induce 
the differential expression of miRNAs but it has not been vali‑
dated. Dysregulated expression of miRNAs was observed in 
muscle tissue, adipose tissue and blood specimens from patients 
with cancer cachexia in contrast to the findings in patients 
who did not exhibit cancer cachexia or in healthy controls 
(Table I) (6,75,82,87,88,95‑97). However, miRNAs directly 
obtained from adipose or muscle tissue biopsies are not appli‑
cable as diagnostic markers of cancer cachexia (84). Thus, 
the diagnostic value of miRNAs for cancer cachexia should 
be restricted to circulating miRNAs. miRNAs with high 
stability in body fluids can be potentially used as non‑invasive 
markers (98,99). miRNAs from plasma/serum have been 
reported as biomarkers for the early diagnosis of different 
types of tumor, including gastric cancer (100), BC (101) and 
pancreatic cancer (102). Therefore, it can be proposed that 
circulating miRNAs in the blood can be used as biomarkers 
to differentiate patients at risk of developing cancer cachexia. 
For example, circulating miRNAs such as miR‑21 may serve 
as markers for diagnosing cancer cachexia among patients 
likely to develop colorectal cancer (88). However, the appli‑
cation of using circulating miRNAs in patients with cancer 
as biomarkers for diagnosis needs to be validated in future 
clinical trials.

Multiple characteristics of miRNAs make them potential 
targets for new treatments of cancer cachexia. Firstly, miRNAs 
regulate the translation of mRNAs belonging to multiple genes 
and signaling pathways that are dysregulated in cancer cachexia, 
such as TNF, IFN signaling, STAT and NF‑κB transcription 
factors and associated target genes (15,103‑105). Secondly, 
miRNAs have been used to promote muscle development and 
maintain muscle homeostasis (106). The expression of multiple 

Table I. miRNAs in specimens of patients with cancer cachexia or cancer.

miRNAs Specimens (Refs.)

let‑7d‑3p, miR‑345‑5p, miR‑423‑5p, miR‑532‑5p,  Muscles from cachectic patients with pancreatic  (6)
miR‑1296‑5p, miR‑3184‑3p, miR‑423‑3p, miR‑199a‑3p and colorectal cancer 
miR‑450a‑5p, miR‑424‑5p, miR‑450b‑5p, miR‑424‑3p,  Muscles from cachectic patients with non‑small  (75)
miR‑335‑3p, miR‑103‑3p, miR‑483‑5p, mir‑409‑3p,  cell lung cancer 
miR‑15b‑5p, miR‑370‑3p, miR‑20a‑3p, miR‑451a,   
miR‑517c‑3p, miR‑144‑5p, miR‑766‑3p, miR‑1255b,   
miR‑517a‑3p, miR‑512‑3p, miR‑522‑3p, miR‑520g‑3p,  
miR‑483‑3p, miR‑519a‑3p, miR‑26a‑2‑3p, miR‑485‑3p,  
miR‑379‑5p, miR‑518b, miR‑520h, miR‑656‑3p  
miR‑483‑5p, miR‑23a, miR‑744, miR‑99b, miR‑378 Abdominal subcutaneous tissues/primary human  (82)
 dipocytes from cachectic patients with  
 gastrointestinal cancers 
miR‑1 Serum from cachectic patients with advanced (95)
 hepatocellular carcinoma 
miR‑21 Serum from cachectic patients with colorectal cancer (88)
miR‑130a Plasma from cachectic patients with head and (96) 
 neck cancer 
miR‑203 Serum from patients with colorectal cancer (87) 
miR‑468 Serum from patients with breast cancer (97)
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miRNAs has been found to be dysregulated in muscle wasting 
of cachexia (107). Thirdly, treatment of cancer cachexia with 
miRNAs can induce reversible and specific changes in gene 
regulation without affecting the DNA (108). miRNAs can 
be used as knockdown complementary mRNA targets (103). 
In knockdown therapy, complement‑specific miRNA drugs 
compete with their mRNA targets for translation. Fourthly, 
EVs can prevent miRNAs from being degraded in transfer 
and expedite their uptake via target cells (109,110). Finally, 
miRNAs can be efficiently stabilized or concentrated using 
novel processing methods (103,111). However, no miRNA 
drugs have been clinically used to date, although there are 
several ongoing clinical trials on phases 1 and 2 (112). For 
example, a phase I clinical study that applied miR‑16 mimics 
for the treatment of non‑small cell lung cancer or mesothe‑
lioma was accomplished, and may be followed up by a phase II 
study (113). miRNAs have also been adopted for targeting 
serum amyloid 1 and 2, which are lipoproteins usually gener‑
ated in response to inflammatory cytokines, and were shown 
to successfully relieve muscle atrophy in a pre‑clinical mouse 
model (114). miRNA mimics already used in clinical studies 
for cancer therapy, such as miR‑16, can be investigated in 
animal models of cancer cachexia to evaluate whether they can 
improve weight loss and alleviate cancer cachexia symptoms. 
The implications of miRNAs in the pathogenesis of cancer 
cachexia make them attractive therapeutic targets. In addition, 
miRNA‑based therapies for cancer cachexia target specific 
pathways that have the potential to restore homeostasis in 
chronically dysfunctional networks and enable positive muscle 
responses to exercise and diet.
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