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Abstract: Resveratrol (RES), a natural polyphenolic compound, exerts anti-fatigue activity, but its
administration is complicated by its low water solubility. To improve RES bioavailability, this study
developed a self-nanoemulsifying drug delivery system (SNEDDS) for RES and evaluated its
anti-fatigue activity and rat exercise performance by measuring fatigue-related parameters, namely
lactate, ammonia, plasma creatinine phosphokinase, and glucose levels and the swimming time to
exhaustion. Through solubility and emulsification testing, the optimized SNEDDS composed of
Capryol 90, Cremophor EL, and Tween 20 was developed; the average particle size in this formulation,
which had favorable self-emulsification ability, was approximately 41.3 ± 4.1 nm. Pharmacokinetic
studies revealed that the oral bioavailability of the optimized RES-SNEDDS increased by 3.2-fold
compared with that of the unformulated RES-solution. Pretreatment using the RES-SNEDDS before
exercise accelerated the recovery of lactate after exercise; compared with the vehicle group, the plasma
ammonia level in the RES-SNEDDS group significantly decreased by 65.4%, whereas the glucose
level significantly increased by approximately 1.8-fold. Moreover, the swimming time to exhaustion
increased by 2.1- and 1.8-fold, respectively, compared with the vehicle and RES-solution pretreatment
groups. Therefore, the developed RES-SNEDDS not only enhances the oral bioavailability of RES but
may also exert anti-fatigue pharmacological effect.
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1. Introduction

Fatigue is defined as physical and/or mental weariness resulting in inability to maintain exercise at
the same intensity, leading to deterioration in performance [1]. Oxidative stress and exhaustion are two
possible influential mechanisms in physical fatigue [2]. The accumulation of reactive oxygen species
(ROS) induces oxidative stress in the body and may cause physical injury by attacking large molecules
and cell organs, resulting in physical fatigue. Exhaustion, defined as energy depletion and excess
metabolite accumulation, may play a crucial role in physical fatigue [3]. Recent studies have investigated
supplementing exogenous antioxidants, such as icariin [4] and (−)-epigallocatechin-3-gallate [5],
through diet to prevent exercise-induced oxidative stress and reduce physical fatigue by scavenging free
radicals and ROS. In particular, resveratrol (RES), an antioxidant, has been widely utilized to enhance
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exercise performance [6,7]. RES, in combination with exercise, can clinically enhance the mitochondrial
capacity of the forearm skeletal muscle [8]. Some researchers have studied the anti-fatigue effects of
RES. For example, Xiao reported that gavaging 25 mg/kg RES once daily for four weeks significantly
prolonged the exercise time to exhaustion [9]. Wu et al. demonstrated that giving RES once daily
for four weeks exerted anti-fatigue pharmacological effects [10]. In addition, Menzies et al. showed
that RES treatment for nine weeks combined with exercise training could stimulate mitochondrial
biogenesis [11]. Although these anti-fatigue effects of RES are positive, the pretreatment protocols are
time-consuming, possibly due to the low bioavailability of RES.

RES (trans-3,5,4′-trihydroxystilbene) is a phytoalexin present in red wine, some grapes and berries,
and various herbs. Apart from its anti-physical-fatigue effects [10], RES has demonstrated extensive
bioactivities, such as anti-inflammatory [12], cardioprotective [13], and cancer prevention [14] activities.
Although RES has numerous health benefits, its therapeutic use has been hindered by its low aqueous
solubility and dissolution rate, which reduce its oral bioavailability. Furthermore, the in vivo biological
effects of RES appear to be strongly limited by its low bioavailability. Low solubility and high
permeability are typical of class II compounds [15,16], of which RES is one; consequently, they often
exhibit solubility-limited absorption, leading to low absorption of the active ingredient. In addition,
RES is rapidly metabolized in vivo [17]. Walle et al. reported that after administering a single 25-mg
oral dose in humans, only trace amounts of unchanged RES (<5 ng/mL) were detected in plasma [18].

Many strategies have been applied to enhance RES solubility and oral absorption.
The proliposomal formulation prepared by Basavaraj et al. significantly improved the absorption
rate of unmetabolized RES [19]. Teskač et al. demonstrated the cell uptake of RES-loaded solid lipid
nanoparticles, which enhanced the effects of RES on cellular fate [20]. Sessa et al. hypothesized
that encapsulation of RES in the inner core of nanoemulsions could limit chemical degradation,
consequently improving transport through the cell monolayer [21]. Of the various pharmaceutical
dosage forms, self-nanoemulsifying drug delivery system (SNEDDS) is ideal for delivering lipophilic
substances. SNEDDS is a colloidal dispersion consisting of oils and surfactants that emulsify
under gentle agitation, similar to the conditions encountered in the gastrointestinal tract (GIT) [22],
forming oil-in-water nanoemulsions with nanodroplets [23]. SNEDDS is characterized by their
excellent stability, which helps overcome the stability problem of solid lipid nanoparticles and
liposomes, and their higher ease of manufacture relative to emulsions. In addition, SNEDDS can
improve the rate and extent of absorption, thus enhancing the bioavailability of lipophilic drugs.
Moreover, interactions between certain excipients (e.g., Cremophor, Solutol HS-15, Tween 20, Tween 80,
Labrasol, and vitamin E-TPG) and enzymes or transporters have raised considerable academic
interest regarding the effects of such systems on drug absorption and metabolism [24], and significant
improvements in the oral bioavailability of these drug compounds have been demonstrated. Although
some previous studies have proposed the use of SNEDDS for RES, the lack of pharmacokinetic data of
these studies could hardly confirm the absorption effect of RES [25–27]. Only one study has accessed the
oral bioavailability of the developed RES-SNEDDS [28]. In this study, we focused on the alleviation of
physical fatigue, which is an important issue in the field of sports medicine. Therefore, we hypothesized
that the use of nano-formulation might improve the oral bioavailability and anti-fatigue efficiency of
RES. The purpose of this study was to develop and characterize a RES-SNEDDS in order to enhance
RES solubility and further improve RES oral bioavailability. In addition, this study investigated
whether pretreatment with a single dose of the developed RES-SNEDDS enhances anti-fatigue effects
and exercise performance in rats.

2. Results and Discussion

2.1. Characterization and Optimization of the RES-SNEDDS

The solubility of RES in various carriers was investigated, and Capryol 90 was found to have the
highest RES solubility of 23.58 mg/mL among all oils (Figure 1). Among the investigated surfactants,
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Cremophor EL and Tween 20 exhibited high RES solubilities of 82.84 ± 1.94 and 107.75 ± 2.50 mg/mL,
respectively. Because RES is practically insoluble in water [15], the excipient for the SNEDDS must
be selected through solubility studies. We chose Capryol 90 as the oil phase and Cremophor EL and
Tween 20 as the surfactants for the SNEDDS formulation.
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F8 60:30:10 A A 44.8 ± 11.9 1.00 ± 0.3 76.3 ± 0.6 
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mean (n = 3 for each group). 
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size. When transmittance is close to 100%, the formulation is clear and more transparent and its 
absorbability within the GIT is high. F7 had higher percentage transmittance than did F8, indicating 
that F7 might have relatively higher absorbability in the GIT. Therefore, we used F7 (Figure 2c) for 
the subsequent experiments in this study. The particle size of all formulations was less than 100 nm; 
F7 exhibited a unimodal particle-size distribution pealing at 41.3 ± 4.1 nm with a polydispersity index 
of 0.38 ± 0.12, and the droplet size of F7 was verified through transmission electron microscopy 
(TEM), which indicated a droplet size of approximately 50 nm (Figure 2d). 

Figure 1. Solubility of resveratrol (RES) in different solvents. Results were expressed as mean± standard
error of the mean (n = 3 for each group). * p < 0.05 compared with water group. *** p < 0.001 compared
with water group.

The self-emulsification efficiency of the RES-SNEDDS was evaluated through dispersibility testing.
Only formulation 7 (F7) and 8 (F8) were found to be of grade A (Table 1); that is, capable of rapidly
emulsifying within the GIT fluid (Figure 2a,b). In dispersion testing, no differences were observed
when purified water or 0.1 N HCl was used as the dispersion medium, and both media could stimulate
SNEDDS emulsification in the GIT after oral ingestion. By contrast, formulations involving other
dispersion media either required longer emulsification time or did not emulsify at all.

Table 1. Composition of resveratrol self-nanoemulsifying drug delivery system formulations and the
results of dispersibility test, droplet size, polydispersity index (PDI) and percentage transmittance.

Formulation
Capryol 90/Cremophor

EL/Tween 20
(%, w/w/w)

Dispersibility Droplet
Size (nm) PDI Transmittance

(%)Water 0.1 N HCl

F1 30:65:5 D D 29.5 ± 1.8 0.91 ± 0.2 84.3 ± 0.3
F2 30:60:10 D D 34.1 ± 10.9 1.10 ± 0.3 86.5 ± 1.0
F3 40:55:5 D D 31.3 ± 6.8 0.98 ± 0.4 68.9 ± 0.7
F4 40:50:10 D D 18.9 ± 5.6 1.15 ± 0.1 81.5 ± 1.4
F5 50:45:5 C C 26.0 ± 3.3 0.84 ± 0.2 89.4 ± 1.4
F6 50:40:10 C C 18.3 ± 6.6 1.86 ± 0.2 91.3 ± 0.3
F7 60:35:5 A A 41.3 ± 4.1 0.38 ± 0.1 90.2 ± 0.5
F8 60:30:10 A A 44.8 ± 11.9 1.00 ± 0.3 76.3 ± 0.6

Droplet size, PDI and percentage transmittance data are expressed as mean ± standard error of the mean (n = 3 for
each group).

The formulations were diluted with water to measure percentage transmittance and particle
size. When transmittance is close to 100%, the formulation is clear and more transparent and its
absorbability within the GIT is high. F7 had higher percentage transmittance than did F8, indicating
that F7 might have relatively higher absorbability in the GIT. Therefore, we used F7 (Figure 2c) for
the subsequent experiments in this study. The particle size of all formulations was less than 100 nm;
F7 exhibited a unimodal particle-size distribution pealing at 41.3 ± 4.1 nm with a polydispersity index
of 0.38 ± 0.12, and the droplet size of F7 was verified through transmission electron microscopy (TEM),
which indicated a droplet size of approximately 50 nm (Figure 2d).
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plasma sample obtained at 30 min after the oral administration of 50 mg/kg RES-SNEDDS. Figure 4 
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administration of RES-solution (1 mg/kg, i.v.). The pharmacokinetic parameters are illustrated in 
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SNEDDS was 2.2-fold higher than that of RES-solution (869.2 ± 112.2 and 386.2 ± 68.4 ng/mL, 
respectively). The elimination half-life (t1/2) did not differ significantly between RES-SNEDDS and 
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Figure 2. Resveratrol self-nanoemulsifying drug delivery system (RES-SNEDDS) dispersed in:
(a) water; and (b) 0.1 N HCl; (c) the appearance of F7 RES-SNEDDS; and (d) transmission electron
micrograph of F7 RES-SNEDDS.

2.2. Pharmacokinetic Study

The optimized RES-SNEDDS (F7) was subject to pharmacokinetic studies. Figure 3 presents
the representative chromatograms of rat blank plasma, rat blank plasma spiked with standard RES,
and plasma sample obtained at 30 min after the oral administration of 50 mg/kg RES-SNEDDS.
Figure 4 presents the concentration–time curves of RES in rat blood after the oral administration
of the RES-SNEDDS (50 mg/kg, p.o.) and RES-solution (50 mg/kg, p.o.) and those after the
single intravenous administration of RES-solution (1 mg/kg, i.v.). The pharmacokinetic parameters
are illustrated in Table 2. After oral administration, the mean maximum concentration (Cmax)
of the optimized RES-SNEDDS was 2.2-fold higher than that of RES-solution (869.2 ± 112.2 and
386.2 ± 68.4 ng/mL, respectively). The elimination half-life (t1/2) did not differ significantly between
RES-SNEDDS and RES-solution groups. The area under curve (AUC) in the optimized RES-SNEDDS
and RES-solution were 77,055.4 ± 4857.7 and 23,950.5 ± 3691.3 ng min/mL (50 mg/kg, p.o.),
respectively. The oral bioavailability of the RES-SNEDDS was 9.5 ± 1.5%, which was significantly
higher than that of the RES-solution group (3.0 ± 0.8%).
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The extremely low oral bioavailability of RES is primarily due to its low solubility and extensive 
intestinal first-pass metabolism [17]. In this study, the low solubility of RES was improved, as 
evidenced by solubility test results. In addition, the developed SNEDDS improved the oral 
bioavailability of RES. Previous studies have also reported that such a system for delivering 
hydrophobic compounds could be an effective oral dosage form for enhancing oral bioavailability 
[29,30]. Many studies have shown that reducing the particle size increases the absorption of the active 
ingredient and the particle uptake by enhancing the mechanisms of passive transport through the 
intestinal walls [31]. Under the gentle digestive motility in the GIT, SNEDDS self-emulsify and 
rapidly present the drug as small droplets <100 nm in size in the aqueous contents of the stomach 
[22]. Moreover, the lymphatic transport substantially contributes to the total oral absorption of drugs 
because the oil phase, which promotes lipophilic drug absorption, constitutes more than 25% of the 
self-emulsifying drug delivery system [32]. In addition, SNEDDS can protect drugs against enzymatic 
degradation in the GIT, such as quercetin, luteolin, and epigallocatechin gallate, thus enhancing the 
stability of the active ingredient [33,34]. 

The efficiency of self-nanoemulsification is strongly related to the hydrophilic–lipophilic balance 
(HLB) of surfactants. In this study, because of the high HLB of Cremophor EL and Tween 20, uniform 
nanoemulsion droplets formed easily within the GIT. Pharmaceutical excipients are generally 
considered pharmacologically inert; nevertheless, the usage of surfactants may increase permeability 
by interfering with the lipid bilayer of the epithelial cell membrane. Moreover, efflux system (e.g., P-
glycoprotein) and cytochrome P450 (CYP) metabolizing system are major physiological hurdles for 
the bioavailability of many orally administered drugs. The modulation of efflux transports by 
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Table 2. Pharmacokinetic parameters of resveratrol (RES) after administration of RES self-nanoemulsifying
drug delivery system (RES-SNEDDS) and RES-solution in rats.

Parameters RES-SNEDDS
(50 mg/kg, p.o.)

RES-Solution
(50 mg/kg, p.o.)

RES-Solution
(1 mg/kg, i.v.)

Tmax (min) 42.0 ± 7.3 30.0 -
C0 or Cmax (ng/mL) 869.2 ± 112.2 * 386.2 ± 68.4 3379.6 ± 431.7

t1/2 (min) 94.5 ± 11.1 78.9 ± 12.5 16.1 ± 3.8
AUC0–t (ng min/mL) 77,055.4 ± 4857.7 * 23,950.5 ± 3691.3 16,215.8 ± 1892.5

Relative bioavailability (%) 321.7 - -
Absolute bioavailability (%) 9.5 3.0 -

Tmax is time of occurrence for maximum RES concentration, C0/Cmax is maximum concentration of RES, t1/2 is RES
half-life, AUC0–t is RES area under the plasma concentration–time curve from zero (0) h to time (t). * Significantly
different compared to RES-solution (50 mg/kg, p.o.) group (p < 0.05). Data are expressed as mean ± standard error
of the mean (n = 5 for each group).

The extremely low oral bioavailability of RES is primarily due to its low solubility and extensive
intestinal first-pass metabolism [17]. In this study, the low solubility of RES was improved, as evidenced
by solubility test results. In addition, the developed SNEDDS improved the oral bioavailability of RES.
Previous studies have also reported that such a system for delivering hydrophobic compounds could
be an effective oral dosage form for enhancing oral bioavailability [29,30]. Many studies have shown
that reducing the particle size increases the absorption of the active ingredient and the particle uptake
by enhancing the mechanisms of passive transport through the intestinal walls [31]. Under the gentle
digestive motility in the GIT, SNEDDS self-emulsify and rapidly present the drug as small droplets
<100 nm in size in the aqueous contents of the stomach [22]. Moreover, the lymphatic transport
substantially contributes to the total oral absorption of drugs because the oil phase, which promotes
lipophilic drug absorption, constitutes more than 25% of the self-emulsifying drug delivery system [32].
In addition, SNEDDS can protect drugs against enzymatic degradation in the GIT, such as quercetin,
luteolin, and epigallocatechin gallate, thus enhancing the stability of the active ingredient [33,34].

The efficiency of self-nanoemulsification is strongly related to the hydrophilic–lipophilic balance
(HLB) of surfactants. In this study, because of the high HLB of Cremophor EL and Tween 20,
uniform nanoemulsion droplets formed easily within the GIT. Pharmaceutical excipients are generally
considered pharmacologically inert; nevertheless, the usage of surfactants may increase permeability
by interfering with the lipid bilayer of the epithelial cell membrane. Moreover, efflux system
(e.g., P-glycoprotein) and cytochrome P450 (CYP) metabolizing system are major physiological hurdles
for the bioavailability of many orally administered drugs. The modulation of efflux transports by
Cremophor EL was reported [35]. In addition, according to a previous study, Cremophor EL could
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competitively inhibit the formation of extensive presystemic glucuronidation metabolites of raloxifene
in a human liver microsome experimental model [36]. Thus, the usage of Cremophor EL might also
modulate in vivo metabolism of RES to enhance its oral absorption. The optimized RES-SNEDDS in
this study improved oral bioavailability by 3.2-fold relative to that of the unformulated RES-solution;
this result is attributable to the increase in the solubility of RES and the reduction in its particle
size, which in turn increases the surface area for drug absorption [37]. These results evidenced that
the developed SNEDDS is an efficient strategy of improving RES oral bioavailability.

2.3. Lactate Production and Clearance during High-Intensity Swimming

The lactate production ratio in the vehicle, RES-solution, and RES-SNEDDS was 3.63 ± 1.87,
4.83 ± 2.42, and 4.50 ± 1.30, respectively (Figure 5a), and the corresponding lactate clearance ratio was
0.47 ± 0.09 0.46 ± 0.05, and 0.66 ± 0.06 (Figure 5b). The relationships between lactate accumulation
and work intensity and capacity as well as the correlation between lactate accumulation and muscular
fatigue have long been a major research topic [38]. During high-intensity exercise, the muscles produce
large quantities of lactate through anaerobic glycolysis-induced energy production. A high lactate
level reduces the pH, which in turn induces various biochemical and physiological side effect [39].
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Figure 5. Effect of resveratrol (RES) on: (a) lactate production ratio; and (b) lactate clearance ratio.
Data are expressed as mean ± standard error of the mean (n = 5 for each group). ** p < 0.01
compared with vehicle group. ### p < 0.001 compared with RES-solution group. Lactate production
ratio = (Lactatepost-swimming − Lactatepre-swimming)/Lactatepre-swimming; Lactate clearance ratio
= (Lactatepost-swimming − Lactate30 min later after post-swimming)/Lactatepost-swimming.

In this study, the lactate production ratios of the vehicle, RES-solution, and RES-SNEDDS did
not differ significantly; however, the lactate clearance ratio of RES-SNEDDS decreased significantly
(by 40.4%) compared with that of the vehicle, whereas the lactate clearance ratio of the RES-solution
did not significantly differ from that of the vehicle. Supplementation with certain antioxidant nutrients
has previously been demonstrated to be a practical approach for rapid recovery from fatigue and for
preventing exercise-induced oxidative damage [40]. Accordingly, we hypothesized that pretreating rats
with the optimized RES-SNEDDS before exercise would accelerate recovery from lactate accumulation.

2.4. Blood Biochemical Variables after Swimming

The plasma ammonia level in the vehicle, RES-solution, and RES-SNEDDS was 284.8 ± 69.7,
165.4 ± 36.4, and 98.6 ± 3.6 µmol/L, respectively (Figure 6a). Ammonia is a major protein and
an amino-acids metabolite. During exercise, the muscles rapidly produce ammonia because of
adenosine monophosphate deamination [41]; this increase in ammonia during exercise has been
linked to peripheral and central fatigue [42]. In rats pretreated with the RES-SNEDDS before exercise,
the plasma ammonia level decreased significantly (by 65.4%) compared with that in the vehicle
group, whereas no significant differences were observed between the RES-solution and vehicle groups.
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The plasma creatinine phosphokinase (CPK) level in the vehicle, RES-solution, and RES-SNEDDS
was 1658.2 ± 627.3, 983.4 ± 316.5, and 895.6 ± 300.7 U/L, respectively (Figure 6b). CPK is a clinical
biomarker for muscle damage [43]. The result indicated that CPK in the RES-SNEDDS decreased by
46.0% compared with that in the vehicle group; however, CPK did not differ in both groups because of
the large standard error of the mean.
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The glucose level is a major index for performance maintenance during exercise, because the
energy required for exercise is initially sourced from glycogen decomposition [44]. The glucose level in
the vehicle, RES-solution, and RES-SNEDDS was 123.6 ± 30.5, 198.0 ± 27.2, and 220.6 ± 14.9 mg/dL,
respectively (Figure 6c). The glucose level in the RES-SNEDDS group was significantly (approximately
1.8-fold) higher than that in the vehicle group, whereas the glucose levels did not differ significantly
between the RES-solution and vehicle groups. RES functions, in part, as an allosteric activator of SIRT1,
which directly activates FOXO1 in hepatocytes to shift glucose metabolism to gluconeogenesis, thereby
promoting glucose release [45,46]; this phenomenon may explain the enhanced blood glucose levels
in the RES-SNEDDS group.

2.5. Exhaustive Swimming Test

The exercise endurance levels of rats administered the vehicle, RES-solution, and RES-SNEDDS
was 15.0 ± 2.8, 17.6 ± 2.9, and 30.8 ± 4.0 min, respectively (Figure 7a). Exercise endurance is a major
variable in evaluating anti-fatigue treatment. According to our data, pretreatment with RES-solution
did not increase the swimming time to exhaustion, which might be due to the low RES absorption.
By contrast, pretreatment with the RES-SNEDDS increased the swimming time to exhaustion by
2.1- and 1.8-fold compared with the vehicle and RES-solution groups, respectively, confirming that the
RES-SNEDDS improves not only RES bioavailability but also the exercise performance of rats.
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2.6. Tissue Glycogen Determination

Carbohydrates and catabolized fat are the two major sources of energy during the exercise [47].
Thus, the glucose storage ability of the liver and muscles strongly influence exercise endurance.
Glycogen is the main storage form of glucose in vivo. The exhaustive swimming test revealed that the
liver and muscle glycogen contents did not differ significantly among the three studied groups, which is
consistent with the results of a previous study; this is because RES reduces PGC-1α, a phenomenon
likely triggered by SIRT1 activation. SIRT1-induced PGC-1α activation in hepatocytes, can result
in downregulation of glycolytic pathways and the upregulation of gluconeogenic pathways to maintain
the glycogen level [10], although the plasma glucose level increased (glycolysis process) during
exercise (Figure 6c). Moreover, PGC-1α regulates fuel utilization in muscle cells by increasing fatty
acid oxidation and shutting down glucose oxidation. In low-glucose conditions, SIRT1 enhances
the oxidation of the fatty acid instead of the glycogen to obtain energy in skeletal muscles [48].
These behaviors might explain the improved exercise performance in the RES-SNEDDS group despite
only non-significant changes in the liver and muscle glycogen contents among the studied groups
(Figure 7b,c).

3. Materials and Methods

3.1. Materials

RES (purity > 98%), Span 80, Tween 80, and Tween 20 were obtained from Tokyo Chemical
Industry (Tokyo, Japan). Capryol 90 (propylene glycol monocaprylate) was purchased from
Gattefosse (Saint-Priest Cedex, France). Tricaprylin (glycerol trioctanoate), Cremophor EL (polyoxyl
35 hydrogenated castor oil) and α-tocopherol were supplied by Sigma-Aldrich (St. Louis, MO, USA).
Triacetin (glyceryl triacetate) was obtained from Alfa Aesar (Ward Hill, MA, USA). Span 65 was
purchased from Merck (Darmstadt, Germany). Acetonitrile for HPLC were obtained from Tedia
(Fairfield, OH, USA).
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3.2. Preparation of RES-SNEDDS

The solubility of RES in different types of oils and emulsifiers were determined. An excess of
RES powder was added into each vehicle followed by vortex mixing for 30 s. Then, the mixture
was shaken at 37 ◦C in a water bath for 48 h and centrifuged at 10,000 rpm for 15 min (Mikro 22R,
Hettich Zentrifugen, Tuttlingen, Germany) to separate the undissolved RES. The clear supernatant
was diluted with appropriate 50% (v/v) methanol and measured spectrophotometrically at 310 nm
(U-5100, Hitachi, Tokyo, Japan). The calibration cure of RES solution, constructed by UV-visible
spectrophotometer (U-5100, Hitachi) at 310 nm, was in the range of 1–25 µg/mL.

The RES-SNEDDS preparation procedures were modified from a previous report [49]. Briefly,
in the dark environment, RES (120 mg) was dissolved in 12 grams of oil phase (Capryol 90) by magnetic
stirring to completely dissolve. The mixture of surfactant (Cremophor EL) and co-surfactant (Tween 20)
were added in dropwise to prepare of a total weight of 20 grams and the resulting mixture was stirred
for 30 min. Different ratios of oil phase, surfactants were prepared and examined to fine an optimal
RES-SNEDDS. The formulation components of RES-SNEDDS were listed in Table 1.

3.3. Dispersibility Test and Percentage Transmittance of RES-SNEDDS

Dispersibility test was performed to assess RES-SNEDDS efficiency of self emulsification.
An aliquot of 1-mL each formulation was added to 500 mL of 0.1 N HCl or purified water at 37± 0.5 ◦C
using a standard US Pharmacopeia XXII dissolution apparatus with paddle rotating at 50 rpm provides
gentle agitation [50]. In vitro performance of the formulations were visually assessed using the
following grading system [51]: Grade A: Denoting a rapidly forming (within 1 min) emulsion which
was clear or slightly bluish in appearance; Grade B: Denoting a rapidly forming, slightly less clear
emulsion which had a bluish white appearance; Grade C: Denoting a bright white emulsion (similar in
appearance to milk) that formed within 2 min; Grade D: Denoting a dull, greyish white emulsion
with a slightly oily appearance that was slow to emulsify (longer than 2 min); Grade E: Denoting a
formulation which exhibited either poor or minimal emulsification with large oil droplets present
on the surface. Percentage transmittance was assessed using UV-visible spectrophotometer (U-5100,
Hitachi). Using double distilled water to dilute the formulation 100 times and analyzed at 500 nm by
using double distilled water as blank [52].

3.4. Morphological Characterization and Particle Sizing

TEM analysis was used to determine the morphology of RES-SNEDDS. The TEM sample of
the selected RES-SNEDDS was diluted and placed on a 300 mesh copper grid coated with carbon.
Sample was negatively stained by using a 2% (w/v) phosphortungsten acid (PTA) solution and
removed the excess PTA. The dried grid was examined under TEM (JEM-2100, JEOL, Tokyo, Japan)
at a voltage of 200 kV. Approximately 50 mg of the RES-SNEDDS was diluted in a 50 mL volumetric
flask by double distilled water (or 0.1 N HCl) before determining the droplet size. Photon Correlation
Spectroscopy (Beckman Coulter N5) at an angle of 90◦ was applied to determine the droplet size
and polydispersity index of the RES-SNEDDS at room temperature. Each sample was carried out
in triplicate.

3.5. Animals and Pharmacokinetic Studies

Animal experimental protocols were reviewed and approved by the Institutional Animal Care
and Use Committee (IACUC-104042, approval date: 13 July 2015) of Kaohsiung Medical University
Hospital (Kaohsiung, Taiwan). Sprague-Dawley rats weighing 250 ± 50 g were used for the study,
which were obtained from BioLASCO Taiwan Co., Ltd. (Taipei, Taiwan). Rats were randomly
assigned into three groups (n = 5 for each group). For the intravenous group, each rat was given
the RES-solution (Dose: 1 mg/kg) through the femoral vein. Blood samples were collected as blank
plasma before drug administration, and further blood samples were collected at 1, 5, 15, 30, and 60
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min after administration. For the oral group, RES-SNEDDS were administered by gastric gavage
(Dose: 50 mg/kg) and RES-solution (Dose: 50 mg/kg) which suspended in 0.25% (w/v) carboxyl
methyl cellulose aqueous solution was used to be control group. Blood samples were collected at 5, 10,
20, 30, 60, 90, 120, 180, 240, 300 and 360 min after administration. An aliquot of 300 µL blood plasma
was withdrew manually via the jugular vein catheter and placed into a vial rinsed with heparin. Each
blood plasma was centrifuged at 3000 rpm for 10 min and plasma fraction was separated and directly
precipitated before HPLC analysis. Briefly, An aliquot of 100 µL plasma were mixed with an equal
volume mixture of acetonitrile and 6% (w/v) perchloric acid (60:40, v/v), and then vortex-mixed for
1 min to precipitate protein molecules. The supernatant was collected after centrifugation at 10,000 rpm
for 10 min and was then filtered through a 0.22-µm syringe filter prior to HPLC analysis.

3.6. Analysis of RES by HPLC

The HPLC system consisted of a chromatographic pump (5160), a sample injector (5260) (Hitachi).
A Kinetex XB-C18 column (100 mm× 2.1 mm i.d., 2.6 µm, Phenomenex, Torrance, CA, USA), protected
by a guard column was used for sample separation. The mobile phase consisted of acetonitrile-0.01 M
Na2HPO4 (23:77, v/v, pH 2.5 adjusted by orthophosphoric acid) was filtered through a membrane filter
(0.45 µm, Merck Millipore, Tullagreen, Carrigtwohill, Ireland) and sonicated (Branson, CT, USA)
before used. The flow rate of the mobile phase was 0.4 mL/min and the volume of injection
was 20 µL. Electrochemical detection was performed by using an amperometric detector (BAS LC-4C,
West Lafayette, IN, USA) equipped with a glassy carbon electrode cell and an Ag/AgCl reference
cell. The working electrode was set at an applied potential of +1.0 V relative to an Ag/AgCl reference
electrode, filter setting was 0.1 Hz, and range setting was 20 nA. The linear calibration curves were
obtained and validated over the range of 10–1500 ng/mL in plasma with the quantitation limit
of 10 ng/mL.

3.7. Lactate Production and Clearance during High-Intensity Swimming

The swimming test was carried out according to a pervious report [10] with slight modification.
Rats were pretreated vehicle, RES-solution (50 mg/kg) and RES-SNEDDS (50 mg/kg), and, 6 h after
administration, followed by lactate production and clearance test. The rats were individually placed in
a water container (40 cm length, 40 cm width and 50 cm height) with 30-cm water depth maintained at
27 ± 1 ◦C. A weight equivalent to 5% of body weight was attached to the rat and a 10 min swimming
test was performed. Blood samples were collected at pre-swimming, post-swimming and 30 min later
after post-swimming. Blood lactate levels were analyzed using Lactate Pro™ 2 (LT-1730, Kyoto, Japan).

To realize the blood lactate production and clearance ratio during swimming test, a value of blood
lactate production and clearance ratio were obtained using the following equation: Lactate production
ratio = (Lactatepost-swimming − Lactatepre-swimming)/Lactatepre-swimming; Lactate clearance ratio
= (Lactatepost-swimming − Lactate30 min later after post-swimming)/Lactatepost-swimming.

3.8. Blood Biochemical Variables after Swimming

Plasma ammonia, CPK, and glucose were evaluated after swimming. After 6 h of administration,
a weight equivalent to 5% of body weight was attached to the rat and a 15 min swimming test
was performed. Blood samples were collected immediately from facial vein of rats. All of the blood
biochemical levels were determined using an autoanalyzer (Beckman Coulter DXC800, Brea, CA, USA).

3.9. Exhaustive Swimming Test

After 6 h of administration, the rat was taken out from each treatment for exhaustive swimming
test, and a weight equivalent to 15% of body weight was attached to the rat, as described previously [53].
Swimming time from the beginning to exhaustion was used to measure the endurance of each rat.
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The rats were considered exhausted when they loss of coordinated movements and failure to return to
the surface within 7 s.

3.10. Tissue Glycogen Determination

Liver and skeletal muscles were used to investigate whether glycogen contents of these two tissues
could enhance by RES-SNEDDS administration. Glycogen levels were measured using a glycogen
colorimetric assay kit (BioVision, Milpitas, CA, USA). For each rat, 10 mg of liver and muscle was cut
and weighed and then the tissues were rapidly homogenized with 100 µL ice cold glycogen hydrolysis
buffer. After centrifugation at 12,000 rpm for 5 min at 4 ◦C, the supernatant was collected and added
into a 96-well plate and brought the volume of 50 µL with glycogen hydrolysis buffer, following by
adding 2 µL hydrolysis enzyme mix and 48 µL reaction mix containing glycogen development buffer,
development enzyme mix and probe. After incubated at room temperature for 30 min, absorbance
was read at 450 nm using a Varioskan Flash plate reader (Thermo Scientific, Waltham, MA, USA).

3.11. Statistical Analysis

Data are expressed as the mean ± standard error of the mean. Pharmacokinetic parameters
were calculated by non-compartmental analysis [54]. PSS v14.0 (SPSS Inc., Chicago, IL, USA) was used
to conduct the analysis of variance and the differences between formulations were compared using
one-way analysis of variance followed by the least significant difference test. The p value less than 0.05
was regarded as significant.

4. Conclusions

An SNEDDS formulation for RES, which optimized self-emulsification ability, percentage
transmittance, and particle size range, was developed. Pharmacokinetic studies in rats indicated
that the developed RES-SNEDDS significantly (3.2-fold) improved the oral bioavailability of RES
compared with RES in aqueous solution. Pretreatment with a single dose of the RES-SNEDDS before
swimming exercise increased the swimming time to exhaustion of rats. In addition, RES-SNEDDS
supplementation positively modulated exercise-induced fatigue-related parameters, namely lactate,
ammonia, CPK, and glucose levels. Overall, our results indicated that the developed RES-SNEDDS
improves RES absorption and protects against physical fatigue. This study first investigated the
anti-fatigue effects of RES-SNEDDS in vivo by the enhancement of RES bioavailability and overcome
the shortcomings of time-consuming pretreatment of pure RES. The designed SNEDDS efficiently
enhanced the applicability of RES for improved oral absorption and anti-fatigue purpose, as evidenced
by in vitro characterization, in vivo pharmacokinetics, and pharmacodynamics assessments.
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