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Abstract: Similar to Janus, the two-faced god of Roman mythology, the tumor microenvironment
operates two opposing and often conflicting activities, on the one hand fighting against tumor
cells, while on the other hand, favoring their proliferation, survival and migration to other sites to
establish metastases. In the tumor microenvironment, cytotoxic T cells—the specialized tumor-cell
killers—also show this dual nature, operating their tumor-cell directed killing activities until they
become exhausted and dysfunctional, a process promoted by cancer cells themselves. Here, we
discuss the opposing activities of immune cells populating the tumor microenvironment in both
cancer progression and anti-cancer responses, with a focus on cytotoxic T cells and on the molecular
mechanisms responsible for the efficient suppression of their killing activities as a paradigm of the
power of cancer cells to shape the microenvironment for their own survival and expansion.
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1. Introduction

The most recent studies on cancer onset and development have pointed the spotlight
on the intense crosstalk between cancer cells and a heterogeneous population of other
cells that reside in the tumor microenvironment (TME) [1]. Cancer-associated fibroblasts,
the most abundant stromal population in the TME, and cancer-associated fibroblasts-
derived extracellular matrix factors support the growth and survival of cancer cells by
establishing a tumor-promoting niche [2], further assisted by endothelial cells, which also
contribute to tumor growth by promoting angiogenesis, invasion, metastasis, and chronic
inflammation [3]. Several types of immune cells can also be found in the TME mainly
as a result of their active recruitment. Upon identification of tumor cells, immune cells
exploit their specific anti-cancer activities to eliminate them. However, notwithstanding
their ability to fight tumor cells, immune cells can become pro-tumoral within the TME.

A major step forward in understanding the dual behavior of immune cells in the TME
came from the finding that cancer cells themselves implement efficient suppressive strate-
gies toward immune cells in order to escape the tumor-targeted immune responses. The
loss of expression of tumor-associated antigens, major histocompatibility complex (MHC)
class I molecules and/or co-stimulatory molecules limits the immunogenicity of cancer
cells, making them “invisible” to infiltrating immune cells [4]. Additionally, in the TME,
tumor cells rewire their metabolism in response to nutritional stress in order to compete
for glucose and amino acids, releasing catabolites that become strongly suppressive for
immune cells [5]. Immune cells, which should eliminate tumor cells, become, therefore,
useless or even harmful. A paradigm of TME-derived immunosuppressive mechanisms
is represented by cytotoxic T lymphocytes (CTLs), whose killing functions are inhibited
either directly, by suppressing their anti-tumor activity, or indirectly, by the recruitment
of immunosuppressive cells and the release of soluble molecules of which cytokines are a
major class [6], in the TME [7] (Figure 1).
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Figure 1. Schematic representation of key immune cells found in the tumor microenvironment. Depending on the tumoral
context, immune cells exert either anti-tumorigenic or pro-tumorigenic functions. The balance between these two opposite
functions determines the outcome of the immune response against cancer.

In the complex TME scenario, immune cells exhibit, therefore, either anti- or pro-
tumoral activities, with profound consequences on disease outcome and response to
therapy. Of note, immune cell behavior in the TME is only beginning to be understood, as
well as being exemplified by CTLs, whose dysfunction in cancer is controlled by molecular
mechanisms that have not been fully uncovered [8]. In this review, we will discuss the most
recent findings concerning the dual role of immune cells in both cancer progression and
anti-cancer responses, focusing then on CTL suppression, one of the most striking features
of the tumor cell all-pervasive activity, and on the molecular mechanisms responsible for
efficient hampering of their cytotoxic functions.

2. The Janus-like Behavior of TME-Populating Innate Immune Cells

Solid tumors and hematologic malignancies have obvious differences in the identity
of the cell of origin, which affects the tumor architecture, therefore modulating not only
the surrounding stroma, but also the infiltration and effector responses of immune cells.
Indeed, while in hematologic malignancies, tumor cells intimately associate with cellular
infiltrates of the TME, in solid tumors, the dialogue between neoplastic cells and the
TME is codified by the tumor architecture, with tumor cells located in the center, and
the surrounding TME making a barrier, which hampers immune cell infiltration, thereby
protecting tumor cells from elimination [9].

The extent of immune cell infiltration has become an important evaluation parameter
of solid tumors, which, depending on the tumor “temperature”, are classified in “cold”
and “hot” tumors. Cold solid tumors, also called non-immune reactive, immune-excluded
or immune-desert tumors, produce anti-inflammatory cytokines and have low de novo
antigens and few mutations. Hence, these tumors display low or no immune cell infiltrates
and easily evade host recognition. On the other hand, high numbers of immune cells
infiltrate both the tumor stroma and the tumor tissue itself in hot solid tumors, characterized
by an inflammatory state and a high grade of immunogenicity [10]. The multidirectional
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crosstalk arising in the “hot TME” tunes immune cell transcriptomes and secretomes
and rewires their phenotype to either antagonize or promote tumor growth [11]. This is
clearly exemplified by macrophages, highly represented in the TME, a feature which earned
them the name of tumor-associated macrophages (TAMs), that carry out distinct functions
depending on signals received from the environment [12] (Figure 1). Chemoattractants,
such as CCL2 and CCL5, together with the complement component C5a, are involved in
monocyte recruitment to the TME [13] and in the activation of transcriptional programs,
which contribute to their functional skewing [14].

According to both the stimuli by which their polarization is induced and the type
of cytokines and transcription factors produced, TAMs are classified as M1 or M2 [15]
(Figure 1). M1-polarized macrophages, usually considered tumor-killing cells, produce
pro-inflammatory cytokines and reactive oxygen and nitrogen species to exert anti-tumor
and immune promoting activities [16]. However, interleukin (IL)-4 and IL-13 secreted by T
helper 2 (Th2) cells, eosinophils and basophils elicit an alternative polarization of TAMs to
M2 macrophages, which in turn promote vascularization, tumor growth and invasiveness,
cancer cell survival, and immunosuppression, all resulting in tumor progression [16]. In
healthy tissue, macrophages exist in both M1 and M2 phenotypes. However, in progressive
cancers, their balance shifts toward the M2 phenotype, with M1 macrophages mainly
populating regressing tumors [17]. Interestingly, chemokines, colony-stimulating factors,
and TGF-β secreted by tumor cells, together with other soluble factors provided by immune
and stromal cells (interleukins, immune complexes), promote and sustain macrophage
skewing to the M2 cancer-promoting phenotype [18].

Neutrophils, which represent the traditional first line of defense against infection [19],
are also found to be associated to many types of tumors (tumor-associated neutrophils,
TANs). TANs contribute to tumor clearance by releasing cytotoxic compounds contained in
their granules to destroy malignant cells [20] and by secreting cytokines and chemokines to
recruit other immune cells with anti-tumor activity [21]. However, in aggressive neoplasias,
TANs have been found to sustain tumor progression by acquiring a pro-tumorigenic
profile [22] with high expression of tumor growth-promoting factors [23]. As observed for
macrophages, TANs are classified in the N1 and N2 phenotypes, both derived from the
same initial population that polarizes under the influence of external stimuli [23] (Figure 1).

Another main type of tumor-promoting immune cells within the TME is represented
by myeloid-derived suppressor cells (MDSCs), classified as polymorphonuclear (PMN)-MDSC
or monocytic (M)-MDSC, reflecting their similarities to neutrophils and monocytes, respec-
tively [24] (Figure 1). The crosstalk between MDSCs and cancer cells is critical for tumor
development [25]. MDSCs are recruited to and proliferate in the TME in response to the
cytokines and chemokines present in the tumoral milieu [26]. Not surprisingly, the extent
of infiltration of these cells within tumor tissues is associated with poor prognosis [27].
Once infiltrated in the TME, MDSCs support tumor growth, on the one hand, by enhancing
angiogenesis and promoting metastasis [28] and, on the other, by inhibiting T cell functions
through the production of immunosuppressive factors [25].

While not abundantly represented, dendritic cells (DCs) are a key component of the
TME [29] (Figure 1). As professional antigen presenting cells (APCs), DCs recognize
dangerous cells and migrate to the draining lymph node, where they provide the co-
stimulatory signals for anti-tumor CD8+ T-cell priming [30,31]. In line with the dual role
of immune cells in the TME, DCs can also acquire an immunosuppressive phenotype
that results in immune tolerance and tumor dissemination [32]. Factors released in the
TME, such as vascular endothelial growth factor (VEGF) or tumor-derived mediators, can
impair the antigen-presenting ability of DCs, eventually suppressing their anti-tumoral
activities [33,34]. Furthermore, under the hypoxic conditions found in TME, DCs express
receptors usually found on myeloid cells to trigger pro-inflammatory signals [35].

Natural killer (NK) cells are a heterogeneous population of innate immune cells with
inherent capabilities in both recognizing and killing cancer cells. The presence of NK cells
in the TME correlates with disease outcome in a variety of cancers, emphasizing the critical
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role that NK cells play in anti-tumor immune responses [36] (Figure 1). However, as for
the other cell types described above, various alterations were recently found in the NK
cell phenotype, which alter their functions and contribute to immune evasion in cancer
patients. While on the one hand, NKs kill malignant cells expressing ligands for NK-specific
surface receptors, such as the natural killer group 2D (NKG2D) ligand MIC-A [37], on the
other hand, they paradoxically select and promote the expansion of neoplastic clones that
develop mutations, which reduce the expression of NK-receptor ligands, making them
resistant to immune attack [36].

3. Adaptive Immune Cells

Adaptive immune cells are considered the most specific and potent weapons against
foreign and dangerous molecules. However, notwithstanding their antigen selectivity, in
specific settings, they can become dysfunctional or even extremely dangerous. This is
clearly exemplified by autoimmune diseases, exacerbated cytokine storms as observed
in COVID-19 patients [38], and cancer, where adaptive immune cells do not function cor-
rectly, thereby favoring the onset and development of pathologic conditions. Lymphocytes
recruited to the TME, referred to as tumor-infiltrating lymphocytes (TILs), are a hetero-
geneous population of adaptive immune cells that include the Th1, Th2, Th17 and the
recently identified Th9 subsets, regulatory T and B cells (Tregs and Bregs), CTLs and B
lymphocytes [7,39–41].

Each Th subset plays a distinct role in cancer development. While the IL-2- and
interferon gamma (IFNγ)-producing Th1 subset has been shown to play an essential role in
the induction and persistence of antigen-specific CTLs, acting therefore as an anti-tumoral
Th subset, the Th2 and Th17 subsets act as pro-tumoral subsets in a cytokine-dependent
manner [39,42]. Of note, naïve CD4+ T lymphocytes undergo polarization to Th subsets
in response to a specific cytokine milieu, which in the TME is composed of a mixture of
soluble factors belonging to pro- and anti-tumoral classes, with one class overcoming the
other depending on tumor type and prognostic status. Hence, the balance among pro- and
anti-tumoral Th subsets is regulated by the TME, with tumor cells themselves exerting a
skewing activity toward pro-tumoral and immunosuppressive Th phenotypes [39].

A frank tumor-promoting activity is exerted by Tregs, CD4+ T lymphocytes expressing
CD25 (the α subunit of IL-2 receptor) and the transcription factor Foxp3. Tregs accumulate
in a chemokine-dependent manner in tumor sites, especially those harboring large immune
cell infiltrates, where they exert potent suppressive activity not only toward other T cell
subsets, but also toward B cells, NK cells, DCs and macrophages via humoral and cell–cell
contact mechanisms [43,44]. The anti-tumor activity of Tregs is witnessed by the fact that
their presence in the TME is associated to unfavorable prognosis and reduced overall
survival [45]. Tregs are recruited to the TME by chemokines secreted by tumor cells. Here,
they prevent the anti-cancer response of effector T cells through multiple mechanisms that
include (i) depleting IL-2 from their surroundings through their high affinity IL-2 receptor,
making this cytokine unavailable to other effector T cells; (ii) constitutively expressing the
checkpoint protein CTLA-4, which binds to CD80 and CD86 on APCs, thereby impairing
their co-stimulatory activity toward effector T cells; (iii) secreting cytokines, such as IL-10,
IL-35, and TGF-β, which suppress the activity of both APCs and effector T cells, and
releasing lytic granules that directly kill these cells; and (iv) producing adenosine via the
nucleotidase activity of CD39 and CD73, which provides immunosuppressive signals to
both effector T cells and APCs through engagement of the adenosine receptor A2AR [43,44].

Tumor infiltrating B lymphocytes (TIL-B) have been found in the TME of several cancer
types, among which include breast cancer [46], melanoma [47], and non-small-cell lung
carcinoma [48,49]. Similar to innate immune cells, TIL-B cells play a controversial role. On
the one hand they serve as potent APCs to activate T cells and promote anti-tumor immu-
nity, as witnessed by the reported association of B cell infiltration with favorable tumor
prognosis [50]. On the other hand, TIL-B cells harbor tumorigenic activities. Immune com-
plexes, formed by antigens bound to antibodies secreted by infiltrating conventional B cells
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in the tumor milieu, engage Fc receptors on myeloid cells, inducing chronic inflammation-
dependent tumor growth [51]. Furthermore, TIL-B cells produce lymphotoxin and vascular
endothelial growth factor (VEGF) at the tumor site, which promote angiogenesis and
support tumor progression [52,53]. The tumor-promoting ability of B cells is mainly me-
diated by a subgroup of B cells known as regulatory B cells (Bregs) [54]. By secreting the
suppressive cytokines IL-10, IL-35 and TGF-β, Bregs suppress CD4+ T cell proliferation
and promote Foxp3 expression in Tregs [40,55], thereby favoring immunosuppression and
tumor development.

3.1. Cytotoxic T Cells (CTLs)

CTLs, the main subset of lymphocytes with cytotoxic activity toward cancer cells,
are professional effector T cells that develop from activated naïve CD8+ T cells. Two
types of stimuli are required to elicit differentiation of CD8+ T cells to CTLs following
antigen recognition: a first priming signal triggered by interaction of CD70 and B7.1/.2
(CD80/CD86) on DCs with the respective receptors CD27 and CD28 on CD8+ T cells, and a
second help signal provided by CD4+ T cells via CD40-CD40L interaction [8,56]. Specific
anti-cancer activity of CTLs has been proven for several tumor types, such as melanoma [57],
breast cancer [58], lung cancer [59], hepatocellular carcinoma [60], glioblastoma [61] acute
and chronic leukemias [62,63], lymphomas [64], and histiocytoma [65]. High frequencies
of tumor antigen-specific CTLs have been related to anti-tumor immune responses and
favorable disease outcome [66,67].

The classical picture of T cell–mediated cytotoxicity is based on the formation of a
polarized structure between CTLs and target cells, known as the immune synapse (IS).
During IS formation, the reorganization of receptors and molecules that are involved
in recognition and adhesion leads to the formation of specialized functional domains at
the interface between the CTL and target cell. The mature IS consists of three concentric
regions: the central supramolecular activation cluster (cSMAC), characterized by the
presence of T cell receptors (TCRs) and associated signaling molecules; the peripheral
SMAC (pSMAC), enriched in LFA-1 and other adhesion molecules; and the distal SMAC
(dSMAC), where receptors with bulky ectodomains are excluded, and with an underlying
dense ring of filamentous actin (F-actin) [68]. Active TCR signaling is accompanied by
the centripetal movement of TCR microclusters from the periphery to the cSMAC, where
they are internalized and either recycled or delivered for degradation, or alternatively
released as ectosomes [69,70]. Together with the TCRs, other co-stimulatory or inhibitory
molecules can be delivered to the IS either by lateral mobility along the plasma membrane
or through polarized vesicular trafficking [71]. A prerequisite for IS assembly and function
is the acquisition of cell polarity marked by the translocation of the microtubule organizing
center (MTOC) toward the synaptic interface [72,73], a complex event coordinated by the
cytoskeleton along with motor proteins [74]. CTL polarity allows for the directional release
of their killing machinery onto the target cells, leading to their apoptotic demise.

CTLs exert their tumor-specific killing activity mainly through the release of cytotoxic
granules (CGs). CG-mediated cytotoxicity is triggered by TCR engagement by MHC class I-
associated peptide antigen on the target cell, which promotes the polarized secretion of CGs
in the synaptic cleft. This process involves the association of CGs with the microtubules
and their dynein-mediated, minus-end directed transport toward the centrosome, which is
in close apposition with the synaptic membrane [75]. There, CGs dock and release their
contents in a process dependent on Ca2+ and SNAREs [76]. Morphologically, CGs are
characterized by a distinctive dense core, containing a number of cytotoxic components,
including the pore-forming protein perforin (Prf1) and a battery of proteases known as
granzymes (Gzm), which are packed together on the anionic proteoglycan, serglycin
(Srgn). Although alternative models of CG-mediated killing have been proposed, the
most established model posits that Prf1 polymerizes on the target cell membrane to form
pores that allow for the entry of the Gzms, which cleave critical intracellular substrates
controlling cell death and survival [77–79]. In addition to these cytolytic components,
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CGs also contain lysosomal hydrolases, such as cathepsins and β-hexosaminidase, and
lysosomal membrane proteins, such as CD63, LAMP1 and LAMP2 [80], which highlights
their lysosomal origin. This is further supported by the fact that Gzms are transported
to CGs via the CI-mannose 6-phosphate receptor (MPR) [81], which is exploited for the
transport of acid hydrolases to lysosomes.

In addition to CG secretion, CTLs exert their killing activity through the activation of
the Fas apoptosis pathway in target cells. CTLs have an intracellular store of FasL associated
with secretory lysosomes that have been identified as multivesicular bodies [82]. FasL is
sorted to the secretory lysosomes by a mechanism involving a proline-rich domain in its
cytoplasmic tail [83] as well as FasL phosphorylation and ubiquitylation [82]. Following
TCR engagement, FasL-enriched vesicles are released at IS, where they bind Fas on Fas-
bearing target cells, triggering a signaling cascade that leads to the activation of caspases
and target cell death [84]. FasL activity is tightly regulated both transcriptionally [85] and
post-transcriptionally [86]. Although both FasL “granules” and CGs are lysosome-like
organelles, the different protein compositions, kinetics of release and responsiveness to
TCR strength indicate that they may represent two different classes of cytotoxic organelles
that cooperate to allow for serial target cell killing by CTLs [87].

Recently, using supported lipid bilayers (SLBs) functionalized with anti-CD3 Fab
and LFA-1 as a surrogate APC to promote IS formation [88], Balint and colleagues iden-
tified new cytotoxic multiprotein complexes released by CTLs, which they referred to
as supramolecular attack particles (SMAPs) [89]. Through a mass spectrometry analysis
of the material captured by SLBs after CTL removal, they found that SMAPs have a cy-
totoxic core of Prf1, GzmB and Srgn, surrounded by a shell of glycoproteins, of which
thrombospondin-1 (TSP1) and galectin-1 (Gal-1) are prominent components. They showed
that within CTLs, SMAPs are stored in multicore granules and that, following release, they
can kill cells autonomously [89] (Figure 2).
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Figure 2. The cytotoxic immune synapse. Upon TCR recognition of tumoral antigens, CD8+ T
cells activate cytotoxic mechanisms to kill target cells. The two classical cytotoxic mechanisms are
represented by the release of cytotoxic granules (CGs), with perforin and granzymes released into
the synaptic cleft, and the Fas/FasL pathway. Together with these well-characterized mechanisms of
cytotoxicity, a new mechanism based on SMAP release contributes to tumoral cell killing. Signals
triggered by the inhibitory receptors CTLA-4, PD-1, LAG-3 and TIM-3 antagonize TCR-dependent
signaling, causing abnormalities in IS assembly and dysfunctions in the lytic granule transport
and release.
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Similar to other secretory lysosomes, CG mobilization and secretion first requires
activation through the TCR complex. It is well established that the strength of TCR signal
affects polarized CTL secretion. TCR engagement by MHC-I-bound cognate ligand results
in the activation of the Src family tyrosine kinases, Lck and Fyn [90], which allows for
recruitment of the tyrosine kinase ZAP-70 by phosphorylating the ITAMs of the CD3
complex subunits [91]. Downstream ZAP-70 activation, adaptor molecules among which
the linker for activation of T cells (LAT) and the SH2 domain-containing leukocyte protein
of 76 kDa (SLP-76) are recruited to the nascent lytic synapse to help mobilize several
key signaling modules, leading to MTOC polarization, Ca2+ signaling and cytoskeletal
reorganization [90]. Other pathways that are activated following TCR engagement are
involved in selective cytotoxic granule movement toward the IS, including the kinase
PKCδ [92], the phospholipase Cγ1 (PLCγ1)- and diacylglycerol kinase α-dependent synap-
tic accumulation of diacylglycerol [93], and the fine tuning of the local concentration of
specific phosphoinositides by lipid kinases and phosphatases [94]. Molecules implicated
in other cellular functions, such as the cell cycle-related serine/threonine kinase Aurora
A kinase [95], the ciliary protein Bardet Biedl syndrome 1 [96] and the ciliogenesis path-
ways orchestrated by Hedgehog signaling [31], were recently implicated in lytic synapse
formation and CTL-mediated killing, only to mention a few.

3.2. Altered Killing Capacities of CTLs in Cancer

Although antigen-driven TCR activation in the presence of co-stimulatory signals
leads to the generation of CTLs able to effectively kill their specific cell target, in cancer
patients, the persistence of tumor-derived antigens gradually dampens CTL functions.
Both hot solid tumors and hematologic malignancies show a profound subversion of the
complex molecular machinery exploited by CTLs to kill tumoral target cells, a process
known as T-cell exhaustion [97]. This functional state, caused by the continuous antigen-
driven activation of CD8+ T cells, leads to the upregulation of receptors with inhibitory
function, known as immune checkpoints, and to the subsequent subversion of the tight
balance between co-stimulatory and inhibitory molecules that controls both the duration
and the outcome of the signaling cascade initiated by the TCR (Figure 2). Natural con-
sequences of this imbalance are dampened TCR-dependent responses. These include
impaired activation of key TCR-dependent signaling molecules [98–100], abnormalities in
IS architecture [99,101,102], and a dysfunctional lytic machinery, with decreased expression
of Gzms [103] and impaired cytotoxicity [63]. Furthermore, exhausted T cells in the TME
lose their proliferative potential and their ability to produce cytokines, such as IL-2, tumor
necrosis factor-alpha (TNF-α), and IFNγ [97]. Tumor-specific CTLs display hallmarks of
T cell exhaustion and dysfunction in several types of human cancers, including, among
others, melanoma [104], ovarian cancer [105], non-small cell lung carcinoma (NSCLC) [106],
Hodgkin lymphoma [107], and chronic lymphocytic leukemia [63,97,108].

A paradigm of this inhibitory signaling module is the surface co-inhibitory receptor
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), also known as cluster of differ-
entiation 152 (CD152), which consists of two isoforms, a membrane-bound receptor iso-
form (mCTLA-4) with both extracellular and intracellular domains, and a soluble isoform
(sCTLA-4) with only the extracellular domain for ligand-binding [109]. CTLA-4 binds the
co-stimulatory molecules B7.1 and B7.2 expressed on the surface of APCs [110] with an
approximately 10–20-fold higher affinity than the surface co-stimulatory receptor CD28,
thereby competitively inhibiting CD28 binding to B7. Additionally, the CTLA-4-mediated
trans-endocytosis of B7s on neighboring cells results in surface B7 depletion, which con-
tributes to the suppression of CD28 co-stimulation [111]. The intracellular domain of
CTLA-4 has also been implicated in the inhibition of T cell signaling. While B7-engaged
CD28 delivers a phosphoinositide 3-kinase (PI3K)-dependent co-stimulatory signal for
T cell activation, CTLA-4 triggers an inhibitory signal [112,113], which hampers TCR-
mediated activation of signaling molecules [114]. Evidence suggests that this inhibitory
activity relies on the ability of CTLA-4 to associate with the serine/threonine phosphatase
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PP2A [115] and with Src homology 2 (SH2) domain-containing phosphatase (SHP)-1, which
counteract the phosphorylation steps that are critical for T cell activation [116]. PP2A de-
phosphorylates and inhibits PI3K, directly antagonizing CD28 signaling, while SHP-2
both represses TCR phosphorylation and stimulates ERK activation [117,118]. CTLA-4
engagement also interferes with CD28 localization at the cSMAC [119] and leads to the dis-
ruption of TCR microcluster formation [120], impaired IS assembly and T cell anergy [121]
(Figure 3A). Particularly affected by CTLA-4 engagement is the activity of several transcrip-
tion factors, including nuclear factor-κB (NF-κB), AP-1, and nuclear factor of activated cells
(NF-AT) [122], cytokine production, cell cycle, which is usually arrested at G1 [123,124],
and glycolysis [125].
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The TME indirectly deprives CTLs of the metabolic nutrients required for their survival
and activities, and is exemplified by the accumulation of the ion K+ in the interstitial fluid
of the TME, which suppresses the activity of amino acid and glucose transporters, thereby
contributing to starve T cells [126]. Interestingly, CTLA-4 expression also affects T cell
metabolism by promoting downregulation of the glutamine transporters SNAT1, SNAT2
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and the main glucose transporter Glut1, ultimately preserving the metabolic profile of
unstimulated T cells in the TME and further contributing to suppress T cell activities [5,127].

CTLA-4 was found to be expressed on CTLs isolated from several tumor types (re-
viewed in [128]), where it contributes to suppress host immune surveillance. CRISPR-
mediated knock out of CTLA-4 has indeed been found to enhance the anti-tumor activity of
CTLs [129,130]. Hampered antigen-driven signaling, together with downregulation of the
production of IFN-γ and of glutaminase, which promotes and sustains T cell metabolism
in the glucose-deprived TME [131], impairs the ability of cytotoxic T cells to fight tumors.
Furthermore, in contrast to CD28, which is constitutively expressed at the T cell surface,
CTLA-4 expression is induced both via de novo transcription and via trafficking from
intracellular compartments, where it is sequestered in naïve T cells, to the cell surface, with
maximal expression occurring two to three days following T-cell activation [4].

Along with CTLA-4, the transmembrane type I molecule lymphocyte-activation gene
3 (LAG-3; also known as CD223) was found to contribute to immune escape in cancer. Its
peculiar structure, composed of four extracellular immunoglobulin domains, the first of
which, containing an extra proline-rich loop with high binding affinity for MHC class II
molecules, mediates its association with the TCR/CD3 complex, making it remarkably
similar to the co-receptor CD4. However, as opposed to CD4, the intracellular region
of LAG-3 inhibits signaling downstream of the TCR [132], resulting in decreased T-cell
proliferation and cytokine production [133] and contributing to the onset of exhausted
phenotypes (Figure 3B). Although the molecular mechanism underlying the immunosup-
pressive function of LAG-3 remains as yet unknown, the general agreement is that discrete
motifs, which are conserved in other mammals and contain a potential phosphorylation site
at position S454, act, following MHC class II binding, by recruiting or excluding signaling
mediators to or from the IS [132]. In the early 2000s, a conserved ‘KIEELE’ motif containing
a single lysine residue (K468) was found, whose mutation abrogated the inhibitory activity
of LAG-3 [134]. However, these data have not been confirmed and the molecular mecha-
nism underlying the inhibitory activity of LAG-3 remains to be defined. LAG-3 ligands
other than the MHC class II were recently identified, which might contribute to immune
regulation by triggering or blocking signaling cascades, including fibrinogen-like protein 1,
whose upregulated expression correlates with the development of solid tumors [135] and
Galectin-3, a 31-kDa lectin that suppresses T cell effector functions via LAG-3 in mice [136].
Similar to CTLA-4, LAG-3 is largely retained in early and recycling endosomal compart-
ments, and rapidly translocates to the plasma membrane following T cell activation [137],
suggesting that its subcellular localization might concur to immune suppression.

In CTLs, LAG-3 negatively regulates proliferation and homoeostasis and promotes
exhaustion [138,139]. Notably, it was found to be highly expressed in several tumor
types [140], where it correlates with marked dysfunction of CD8+ TILs [141], aggressive
phenotypes and overall poor prognosis [132]. Of note, in some cancer types, including
breast cancer, gastric cancer and esophageal squamous cell carcinoma, LAG-3 plays anti-
tumoral functions [142–144], underscoring the importance of a complete understanding
the full range of biological functions of LAG-3 in different tumor contexts for translation to
the clinics.

Discovered in the early 1990s as a transmembrane protein involved in T cell apoptosis,
programmed death-1 (PD-1) is a co-inhibitory checkpoint and a marker of T cell exhaustion.
The high expression in neoplastic cells from several cancer types of its ligands, programmed
death-ligands 1 and 2 (PD-L1 and PD-L2), surface molecules involved in the suppression
of T cell responses in vivo [145] have drawn, on the PD-1/PD-L1 axis, the attention of
the scientific and pharmaceutical community [9,146]. PD-1 is a 288-aa protein consisting
of an N-terminal immunoglobulin domain, a transmembrane domain, and a cytosolic
tail containing two motifs essential for its inhibitory functions, named immunoreceptor
tyrosine-based inhibitory motif (ITIM) motif and immunoreceptor tyrosine-based switch
motif (ITSM), respectively [146]. Following antigen recognition, PD-1 binding to its ligands,
PD-L1 [147] and PD-L2 [148] expressed on tumor cells and APCs, respectively, elicits
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tyrosine phosphorylation of the cytoplasmic ITIM and ITSM motifs [149]. Interestingly,
while mutation of the ITIM motif has little effect on either the signaling or functional
activity of PD-1, mutation of the ITSM motif abrogates the ability of PD-1 to dampen
cytokine production and T cell expansion [150]. Transiently phosphorylated ITSM recruits
the tyrosine phosphatase SHP-2 [149]. In turn, SHP-2 (i) triggers a positive feedback
loop by linking two PD-1 molecules together to form active PD-1 dimers [151], and (ii)
dephosphorylates tyrosines within proteins critical for TCR signaling, such as CD3ζ,
ZAP-70 and PKCθ [152], thereby downregulating T-cell activation signals. CD28 is also
dephosphorylated by PD-1 [153]. However, the overall PD-1 inhibition of T cell responses
was found to be comparable in the presence or absence of CD28 co-stimulation, suggesting
that CD28 dephosphorylation is not required for the inhibitory activity of PD-1 [154]
(Figure 3C).

Although considerable progress has been made in our understanding of the biology
of PD-1, its underpinning suppressive mechanism remains, in part, unclear. The ability
of PD-1 to block T cell activation following antigen recognition seems to require its re-
cruitment to co-stimulatory microclusters in close proximity to the IS to become rapidly
phosphorylated by Src family kinases [150,155]. Within these negative co-stimulatory
microclusters, proximal TCR signaling molecules become dephosphorylated [149]. Fur-
thermore, engaged PD-1 has been found to invade the CD2 “corolla”, a membrane region
localized at the outer edge of the mature IS which contains engaged CD28, ICOS, and
other co-stimulatory molecules, thereby suppressing CD2-mediated amplification of TCR
signaling [101]. Of note, a recent work by Tocheva and colleagues [156] identified a com-
plex and branched PD-1-regulated dephosphorylation network, which extends far beyond
the expected proximal TCR signaling and whose functional consequences involve cellular
scale events, including reduced or suppressed cytoskeletal reorganization and IS matura-
tion [156]. The PD-1-triggered signaling cascade also inhibits the PI3K/Akt/mTOR axis,
essential to upregulate glucose metabolism in effector T cells, suggesting a role for PD-1 in
modulating CTL metabolism [157].

PD-1 is expressed by a variety of innate and adaptive immune cells, including NK
cells, monocytes, DCs, NKT cells, T cells, and B cells [158]. Its expression is high in CD8+

TILs and increases exponentially along with tumor growth [159], strongly underscoring its
role as promoter of tumor aggressiveness. In turn, as is extensively documented, tumor
cells upregulate surface PD-L1 and PD-L2 [160,161] that engage PD-1 on CTLs, thereby
triggering the immunosuppressive signaling cascade described above.

Of note, PD-1 expression impairs CTL effector function by downregulating glycolysis,
increasing the rate of fatty acid β-oxidation and markedly decreasing mitochondrial res-
piration, thereby supporting CTL persistence in the tumor but preventing their cytotoxic
activities [127,162]. Furthermore, elevated Akt signaling in TILs potently represses the
transcriptional co-activator PGC-1α, a key regulator of mitochondrial biogenesis [162].
Altogether, these data provide evidence that the suppressive mechanism exploited by PD-1
in the TME is in part related to its effects on the metabolic rewiring of CTLs. On the other
hand, overexpression of PD-L1 enhances glucose uptake on tumor cells, further depriving
T cells use of this critical energy substrate [163].

To the group of immunosuppressor molecules also belongs T cell immunoglobulin and
mucin domain-containing protein 3 (TIM-3), a member of the TIM family of immunoreg-
ulatory proteins originally identified as a T cell-specific molecule and now known to
be expressed by other immune cells, including Tregs, myeloid cells, NK cells and mast
cells [164]. Its heterogeneous structural organization—an N-terminal immunoglobulin
domain with five noncanonical cysteines, a mucin stalk, a transmembrane domain and
a cytoplasmic tail—does not contain any obvious inhibitory signaling motif. However,
its cytoplasmic tail is characterized by five conserved tyrosines, of which three are of
unknown function, while the other two, Y256 and Y263, mediate its mutually exclusive
interaction with HLA-B-associated transcript 3 (BAT3) [165] and with the tyrosine kinase
Fyn [164,166]. TIM-3 localizes in membrane lipid rafts and becomes recruited to the IS
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following T cell activation [167], where it can interact with both BAT3 and the tyrosine
kinase Lck [168]. The current hypothesis is that TIM-3, in its unbound state, promotes T cell
activation by binding BAT3 and recruiting active Lck, thereby enhancing TCR-proximal
signaling [167]. Both soluble TIM-3 ligands, the lectin Galectin-9 and the adhesion molecule
carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) trigger Y256 and
Y263 phosphorylation [169]. Upon phosphorylation, BAT3 is released from TIM-3, thereby
shifting the function of TIM-3 from activation to suppression. TIM-3 can indeed now bind
Fyn, which, by recruiting the Lck inhibitory kinase Csk, can in turn suppress antigen-
dependent signaling. Moreover, in CTLs, TIM-3 colocalizes with the receptor phosphatases
CD45 and CD148, an interaction that is enhanced in the presence of Galectin-9 [168], further
highlighting the suppressive activity of TIM-3 [164] (Figure 3D).

TIM-3 expression is increased in CD8+ TILs in solid tumors, and correlates with poor
outcome in several tumor types, among which include neck squamous cell carcinoma [170],
urothelial carcinoma [171] and colorectal cancer [172]. However, much remains to be
understood about the circuitry by which TIM-3 operates to mediate its effects in different
tumoral contexts.

Other mechanisms that promote CTL dysfunction but do not rely on the expression
of inhibitory receptors on CTLs or the respective ligands on tumor target cells have been
also discovered. Among these, it is worth mentioning the Ras GTPase-activating protein
(GAP) Ras protein activator-like 1 protein (Rasal1), which inhibits Ras/MAPK activation
and whose reduced expression in cancer cells is linked to tumor progression [173]. In CD8+

T cells, Rasal1 binding to ZAP-70 directly inhibits ZAP-70 activation. Together with its
RasGAP activity, it therefore contributes to negatively regulate CD8+ T cell activation and
anti-tumor immunity [98]. Furthermore, cancer cells can operate inhibitory mechanisms
other than those induced by inhibitory surface molecules to escape immune surveillance.
An example of this mechanism is represented by the intense late endosome/lysosome
trafficking of melanoma cells at the lytic synapse, which promotes lysosome secretion and
subsequent cathepsin-mediated Prf1 degradation as well as defective GzmB penetration
into the target tumoral cell [174].

4. Conclusions and Perspectives

Over the past two decades, advances in our understanding of the TME have played
a fundamental role in the development of new anti-cancer strategies designed to target
the immune dysfunctions that are established in the TME. Cancer cells evolve to evade
innate and adaptive cell-mediated tumor clearance by both secreting strategic soluble
molecules and expressing surface inhibitory ligands. Among the Janus-faced components
of the TME, CTLs are those with the most noticeable dual face. They are, on the one hand,
intrinsically equipped with the most relevant and target-specific activities, but on the other
hand, are most heavily affected by the suppressive activities of the TME. A more in-depth
understanding of the molecular mechanisms controlling the normal killing activities of
CTLs and how these mechanisms are made dysfunctional in the specific context of the
immunosuppressive TME is expected to result in the development of strategies to deprive
CTLs of their pro-tumoral functions, restoring them to their unambiguous identity of
serial killers.

Traditional chemotherapy has major effects not only on cancer cells, but also on the
TME, by strengthening the response of CTLs, increasing cancer antigenicity, and inhibiting
immunosuppressive pathways [175]. More recently, therapies specifically targeting im-
mune checkpoints (immune checkpoint inhibitors), especially the PD-1/PD-L1 axis, have
led to remarkable advances in treating several malignancies. However, most patients do
not respond to immune checkpoint inhibitors and even develop resistance, spurring the
search for new therapeutic TME targets. The molecular mechanisms whose dysfunction in
CTL is related to cancer progression are only beginning to be elucidated. The expanding
evidence of the immunomodulatory function of the TME underscores the need to study
these mechanisms in the context of the TME. Although this is a daunting task due to the
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multitude of cell types that form the TME and the complexity of their interaction network,
unravelling the interplay of CTLs with the TME will bring us a major step forward to the
identification of new therapeutic targets for cancer treatment based on counteracting CTL
suppression by the TME. Still, the knowledge accumulated to date has already led to a
revolution in cancer treatment, as witnessed by the current checkpoint inhibitor-targeted
therapies. Combination therapies targeting two different immune checkpoints are one of
the most promising approaches, as exemplified by the interplay of LAG-3 with PD-1 [176].
PD-1 and LAG-3 are extensively co-expressed in CD8+ TILs [177] and cooperate to suppress
their cytotoxic effector functions [178]. Currently, clinical trials are ongoing to explore
the therapeutic benefits of simultaneously targeting LAG-3 and PD-1 [179]. Intriguing
co-regulatory mechanisms have also been reported for LAG-3 and CTLA-4, which were
found to be co-expressed in CD8+Foxp3+ Tregs, where they participate in immune tolerance
through a co-inhibitory signaling pathway, leading to the suppression of alloreactive T
cell responses [176,180]. Interestingly, the anti-CTLA-4 antibody, ipilimumab, increases
the frequencies of LAG-3-expressing TILs in metastatic melanoma patients [181], further
supporting co-regulatory mechanisms for these receptors.

TIM-3 and PD-1 are also significantly co-expressed in cancer. In preclinical tumor
models, both cytotoxic functions and expression of the effector cytokines IL-2, IFN-γ
and TNF-α are severely suppressed in CD8+ T cells co-expressing TIM-3 and PD-1 [182].
Interestingly, PD-1-directed pharmacological therapies result in TIM-3 upregulation [183],
and combined anti-PD-1 and anti-TIM-3 therapies in mouse models of cancer result in the
substantial recovery of T cell responses, compared to single agents [184], supporting the
notion that combined therapies against these surface molecules might be of greater impact
than single-agent therapy in cancer treatment.

A new phase I/II clinical trial (NCT03459222) was recently opened to investigate the
efficacy of co-targeting LAG-3, PD-1, and CTLA-4, which, by further enhancing the efficacy
of single and double targeting approaches, might become a novel combinatorial strategy for
cancer treatment in the near future. In this context, it is noteworthy that PD-1, LAG-3, and
TIM-3 expression is coordinately increased in gastric cancer patients with better disease
prognosis [185].

Ligands of checkpoint inhibitors are also promising targets for anti-cancer therapy.
PD-L1 blockade by specific antibodies, which are currently approved treatment options
for a broad range of cancer types [186], has noticeable effects on the CTL compartment,
with enhanced tumor-specific cytotoxic activity and release of GzmB, Prf, and IFN-γ at
the tumor site [187]. A report recently published by Yang and colleagues suggests the
TIM-3 ligand Galectin-9 (Gal-9) as a target for immunotherapy based on the fact that
(i) high Gal-9 expression correlates with poor prognosis in multiple human cancers [188],
and (ii) in PD-1+TIM-3+ T cells, PD-1 sequesters Gal-9, hampering its binding to TIM-3
with subsequent TIM-3-dependent T cell death, thereby contributing to the persistence of
the exhausted T cell population [189].

The building and persistence of a pro-tumoral microenvironment requires angiogene-
sis, a process which, by bringing new vessel branches to the tumor site, promotes tumor
growth, local invasion, and metastasis. Once again, TME components strongly contribute to
angiogenesis mainly generating hypoxia, a state of low oxygen tension common in cancer,
which associates to abnormal vasculature and ultimately promotes tumor invasiveness
and metastasis [190]. Of note, in the hypoxic TME, activated signaling molecules, such as
hypoxia-inducible factor 1 (HIF-1) inhibit both innate and adaptive immune components by
inducing the expression of immunosuppressive factors and immune checkpoint molecules,
including VEGF and PD-1/PD-L1 [191], highlighting a network connecting angiogenesis,
hypoxia, and immune system suppression. Angiogenesis is a recognized hallmark of
cancer, often associated with increased aggressiveness and poorer prognosis [191,192].
Agents designed to specifically target VEGF and/or its cognate receptor VEGFR could be,
therefore, considered promising candidates to block angiogenesis and ameliorate cancer
prognosis [193].
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In this multifaceted scenario, where each molecule within the TME can potentially
become an interesting new target for cancer treatment, therapies combining anti-angiogenic
drugs to immune checkpoint inhibitors represent the new horizon to explore. These new
pharmacological candidates, some of which are in phase III clinical trials [194], could
improve tumor outcomes by overcoming resistance to cancer immunotherapy via tumor
vessel normalization.
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