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Abstract

Stressed cells coordinate a multi-faceted response spanning many
levels of physiology. Yet knowledge of the complete stress-
activated regulatory network as well as design principles for signal
integration remains incomplete. We developed an experimental
and computational approach to integrate available protein inter-
action data with gene fitness contributions, mutant transcriptome
profiles, and phospho-proteome changes in cells responding to salt
stress, to infer the salt-responsive signaling network in yeast. The
inferred subnetwork presented many novel predictions by impli-
cating new regulators, uncovering unrecognized crosstalk between
known pathways, and pointing to previously unknown ‘hubs’ of
signal integration. We exploited these predictions to show that
Cdc14 phosphatase is a central hub in the network and that modi-
fication of RNA polymerase II coordinates induction of stress-
defense genes with reduction of growth-related transcripts. We
find that the orthologous human network is enriched for cancer-
causing genes, underscoring the importance of the subnetwork’s
predictions in understanding stress biology.
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Introduction

All cells respond to stress by orchestrating complex responses

customized for each situation. When grown in optimal conditions,

Saccharomyces cerevisiae maintains high expression of growth-

related genes and low transcription of stress-defense genes, in part

via nutrient responsive TOR and RAS-regulated protein kinase A

(PKA) signaling (Smets et al, 2010; Broach, 2012). Suboptimal

conditions suppress these pathways in an unknown manner while

activating stress-specific signaling networks that coordinate changes

in transcription and translation, protein function, and metabolic

fluxes with transient arrest of growth and cell cycle progression.

How these disparate physiological processes are coordinated is

poorly understood but likely critical for surviving and acclimating to

stressful conditions.

At the level of gene expression, stressed yeast activate condition-

specific transcript changes that provide specialized stress defenses.

These responses are typically regulated by condition-specific tran-

scription factors (TFs) and upstream signaling pathways that are

activated under limited circumstances (Hohmann & Mager, 2003).

Concurrently, stressed yeast activate the common environmental

stress response (ESR) (Gasch et al, 2000; Causton et al, 2001). The

ESR includes ~300 induced ESR (iESR) genes that are broadly

involved in stress defense and ~600 repressed ESR (rESR) genes that

together encode ribosomal proteins (RPs) and proteins involved in

ribosome biogenesis/protein synthesis (RiBi). While the complete

set of ESR regulators remains elusive, it is clear that the program is

regulated by different upstream signaling factors under different

situations (Gasch et al, 2000, 2001; Gasch, 2002). Activation of the

ESR, and of transcript changes more broadly, is in fact not required

to survive the initial stressor, but rather is necessary for acquired
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resistance to subsequent stress (Berry & Gasch, 2008; Westfall et al,

2008; Mitchell et al, 2009; Berry et al, 2011). Therefore, screens for

mutants sensitive to a single dose of stress have likely missed many

signaling proteins, rendering stress-dependent signaling networks

incomplete. Although several isolated ‘pathways’ are well character-

ized, how signaling is integrated through a single cellular system is

poorly understood.

Here, we present an experimental and computational pipeline to

infer the complete sodium chloride (NaCl)-activated signaling

network from a combination of data types. A key feature of our

approach is that we generated several large-scale datasets (including

mutant transcriptome profiles, phospho-proteome changes, and

gene fitness contributions) under the same culture system in cells

responding to acute NaCl stress. Because stress responses are highly

context dependent (Van Wuytswinkel et al, 2000; O’Rourke &

Herskowitz, 2004; Berry & Gasch, 2008), we restrict our analysis to

datasets generated in our own laboratory, despite many insightful

prior studies characterizing the salt response in yeast (e.g., Causton

et al, 2001; Hirasawa et al, 2006; Capaldi et al, 2008; Melamed et al,

2008; Westfall et al, 2008; Halbeisen & Gerber, 2009; Soufi et al,

2009; Martinez-Montanes et al, 2010; Warringer et al, 2010; Miller

et al, 2011).

We wished to develop a computational method to integrate these

datasets and infer the stress-activated signaling subnetwork, both to

implicate missing regulators and to understand their connections.

Prior approaches tackling the challenge of network inference have

leveraged large-scale biological datasets, most commonly transcrip-

tome data (see Friedman (2004) and Schadt et al (2005)). Exten-

sions focusing on the osmotic response include the work of Gat-Viks

et al, whose probabilistic method described regulatory relationships

between known regulators of the Hog pathway, assuming a known

network topology (Gat-Viks et al, 2006; Gat-Viks & Shamir, 2007).

Several approaches leverage protein–protein and protein–nucleic

acid interactions to infer relevant connections between regulators

and their downstream gene targets (Liang et al, 1998; Ideker et al,

2000; Yeang et al, 2004; Yeung et al, 2004; Markowetz et al, 2005;

Tu et al, 2006; Suthram et al, 2008; Huang & Fraenkel, 2009, 2012;

Vaske et al, 2009; Yeger-Lotem et al, 2009; Novershtern et al,

2011). The method we present here is most closely related to meth-

ods that infer subnetworks by solving an integer linear program (IP)

(Ourfali et al, 2007; Gitter et al, 2011; Silverbush et al, 2011). In

particular, Gitter et al (2013) developed a combined probabilistic/IP

method to discern signaling in the potassium chloride-responsive

subnetwork from time series expression data (Gitter et al, 2013).

However, their approach incorporated transcriptome data only,

whereas we were interested in incorporating other data types. Meth-

ods that integrate disparate datasets are emerging, for example, the

work of Huang et al (2013) that considered existing transcriptomic

and proteomic data to study oncogene-induced signaling (Huang

et al, 2013). In our case, we wanted to design a method that could

also take mutant transcriptome profiles generated in our own

laboratory.

We therefore designed an integer linear programming (IP)

approach to integrate and interpret our disparate datasets by infer-

ring a signaling subnetwork. The novel facets of our computational

approach include a means to integrate these varied data sources,

using new types of input paths to the IP, and a multi-part objective

function. The resulting subnetwork generated many new insights

into stress signaling, by implicating new regulators, unveiling the

connections between them, and presenting organization principles

that shed light on stress biology.

Results

We previously identified 225 genes important for acquired stress

resistance after NaCl pretreatment (Berry et al, 2011), including a

subset of the known signaling proteins activated by NaCl (Supple-

mentary Fig S1). Because only a fraction of NaCl-dependent tran-

script changes are important for acquired stress resistance, the

selection misses many of the upstream transcriptome regulators.

Therefore, to implicate the complete upstream signaling subnet-

work, we began by profiling NaCl-dependent expression changes in

16 mutants implicated in NaCl-induced acquired stress tolerance

(Fig 1, see Materials and Methods). Together, this generated a

matrix of regulator–gene target predictions that encompassed 3,300

genes (Supplementary Fig S2 and Table 1). A third of the affected

genes were dependent on ≥ 2 regulators, and there was significant

overlap in several target-gene sets (hypergeometric test, Fig 1).

These results hint at the complex upstream signaling that controls

the NaCl-responsive transcriptome.

Because much of signal transduction occurs post-translationally,

we next measured changes to the phospho-proteome before and at 5

and 15 min after NaCl treatment, using chemical isobaric tags for

phosphopeptide quantification (see Materials and Methods). Nearly

600 of 1,937 identified phospho-sites (mapping to 973 proteins)

showed a ≥ 2-fold change in phosphorylation, roughly split between

Npr2

Pph3

Npr3 Swc3

Rim15
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Gpb2Tpk1
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Figure 1. Overlapping targets of interrogated ‘source’ regulators.
The number of genes whose osmotic response was defective in each of 16
mutants is represented by the size of each circle. Edge thickness represents the
fraction of the smaller node’s targets that overlap between two nodes. Edge color
is proportional to significance of the overlap (hypergeometric test), where black
represents a �log(P-value) of 5 or greater.
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sites with increased and decreased modification (Supplementary

Fig S3). Over 10% of the altered phospho-proteins represented

kinases and phosphatases (including regulators of cell cycle progres-

sion, actin organization, and signal transduction) as well as tran-

scriptional regulators (such as activators Hot1, Sko1, and Sub1 and

repressors Mot2, Dot6, and Dig1). Proteins affected at the later time

point were involved in cytokinesis, bud-site selection, and actin

reorganization (Bonferroni-corrected P < 0.01, hypergeometric test),

implying downstream physiological effects on these processes.

This analysis generated a rich source of datasets (outlined in

Fig 2). To integrate and interpret these disparate datasets, we

designed an integer linear programming-based (IP) approach (Fig 3

and Materials and Methods). Using a background network of

physical or chemical protein interactions, the method infers a

subnetwork that predicts the paths by which each interrogated

source regulator is connected to its downstream targets (identified as

dysregulated genes in the source mutant responding to NaCl treat-

ment). Each path is a directed, linear chain of interactions between

yeast proteins, where the terminal protein node represents a

sequence-specific transcription factor (TF) or RNA-binding protein

(RBP) known to bind the downstream promoters or transcripts,

respectively. The IP’s objective function favors the inclusion of salt-

responsive proteins, that is, those with differential phosphorylation

or required for acquired stress fitness after NaCl treatment, and

allows the sparing inclusion of additional proteins.

Specifically, we start with a background network of directed and

undirected intracellular interactions representing protein–protein,

kinase–substrate, and gene regulatory interactions between proteins

and genes/mRNAs (Guelzim et al, 2002; Ptacek et al, 2005;

MacIsaac et al, 2006; Stark et al, 2006; Hogan et al, 2008; Everett

et al, 2009; Pu et al, 2009; Breitkreutz et al, 2010; Scherrer et al,

2010; Tsvetanova et al, 2010; Abdulrehman et al, 2011; Fasolo

et al, 2011; Sharifpoor et al, 2011; Venters et al, 2011; Heavner

et al, 2012; Huebert et al, 2012). For each interrogated source regulator,

we identify candidate TFs and RBPs whose known binding targets

significantly overlap with the source’s targets (Fig 3A). We then

enumerate all possible directed candidate paths (using an iterative

deepening search up to a given length) that connect each of the 16

interrogated source regulators to the majority of their targets,

through candidate TFs or RBPs (Fig 3B). Other candidate paths

connect proteins required for fitness (Fig 3B, blue nodes), proteins

with NaCl-dependent phosphorylation changes (yellow nodes), and

two known upstream sensors (pink nodes). The candidate paths

serve as input to the IP, which encodes the relevance of each

network element as a binary variable and characterizes possible

subnetworks using a set of linear constraints over these variables

(Fig 3C). Subnetwork inference is performed by choosing a union of

relevant, directed paths that optimize a series of successively

applied objective functions that aim to connect experimentally

implicated proteins while minimally including proteins not currently

supported by experimental evidence. Because many distinct subnet-

works may score equally well, we use the IP to identify an ensemble

of high-scoring subnetworks. In turn, each protein, interaction, and

path is assigned a confidence value based on its frequency across

the ensemble.

Validation analysis provides strong support for the
inferred subnetwork

Using the datasets described above, the method identified a

consensus subnetwork encompassing 380 nodes (predicted regula-

tors) and 1,131 edges (relevant interactions) present at 75% confi-

dence (Fig 4A). To assess the inferred subnetwork’s predictive

accuracy, we performed precision–recall analysis using an assem-

bled list of known NaCl regulators and another list of unlikely

regulators that included metabolic enzymes and exclusively sub-

cellular proteins. We excluded from consideration proteins with

phospho-changes or fitness contributions (since they are preferen-

tially included by the inference) and plotted the precision and

recall over varying node-confidence thresholds (Fig 4B). The

inferred ensemble achieved substantially higher accuracy than the

Table 1. Gene targets identified in regulator mutants.

Mutanta Defectiveb Amplifiedb

Source regulators

hog1D (3) 1378 565

pde2D (3) 517 59

mck1D (3) 794 101

msn2D (3) 184 26

rim101D (3) 75 227

gpb2D (2) 202 37

rim15D (2) 438 106

npr2D (2) 75 69

npr3D (2) 184 89

swc3D (2) 108 257

swc5D (2) 84 55

whi2D (2) 118 201

pph3D (2) 235 21

sub1D (2) 431 97

tpk1D (2) 35 96

ygr122wD (2) 106 502

Validation mutants

cdc14-3 (3)c 929 346

nnk1D (1) 94 278

bck1D (1) 107 169

yak1D (1) 226 248

kin2D (1) 52 266

pho85D (1) 614 342

cka2D (2) 155 63

cka1D (2) 58 133

ckb1D ckb12D (2) 129 176

arf3D (2) 466 331

scd6D (2) 0 0

aMutant and number of replicates in parentheses.
bNumber of genes with smaller (defective) or larger (amplified) expression
changes compared to the wild-type strain. Note, this table includes non-
coding RNAs that were excluded from the inference. The table lists the
number of targets identified from the originally interrogated ‘source’
regulators and validation mutants.
ccdc14-3 was compared to its isogenic and identically treated wild-type.
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enumerated candidate paths provided as input to the IP method,

highlighting the power of the inference step (Fig 4B, green line).

To assess the effects of the topological properties in the back-

ground network, we ran the method on permuted source–target

pairs (maintaining the degree distribution from the real data; see

Materials and Methods). This permuted baseline achieved high

accuracy in the low-recall range, suggesting that some regulators

are highly central in the background network. However, our

inferred ensemble significantly outperformed the permuted base-

line at higher levels of recall; thus, our method’s accuracy is not

simply due to properties of the background network’s topology.

To understand the contribution of each component of our method,

we also performed additional enrichment analyses and other

computational evaluations, with results available in Supplementary

Information Section 2.

We found additional support for the inferred subnetwork in the

non-random inclusion of specific protein functional groups. When

compared to the background network, to the enumerated candidate

pathways used as input to the IP, and to the permuted subnetworks,

the inferred consensus subnetwork was enriched for proteins anno-

tated as ‘stress’ proteins (background, P = 5e-21; candidates,

P = 2e-6; permutations, P = 0.007) and for proteins encoded by

genes with genetic interactions (background and candidates, P � 0;

permutations, P = 0.003) (Stark et al, 2006), which suggests

functional dependencies. The consensus subnetwork was also

slightly enriched for kinases (relative to the candidate paths and

background network) and for essential genes (relative to the back-

ground network), but not relative to the permuted subnetworks

(suggesting its bias toward kinases and essential genes).

The inferred subnetwork included many regulators not previ-

ously linked to the NaCl response. To test some of the novel

predictions, we analyzed osmo-dependent transcriptome changes

in 14 mutants lacking predicted regulators, with preferences for

kinases and phosphatases (see Table 1; Supplementary Fig S4

and Supplementary Information). The results provided strong

support overall for the inferred subnetwork. All but one of the

mutants (93%) displayed a defect in osmo-responsive expression.

Furthermore, the predicted targets of 80% of these regulators

overlapped significantly (P < 1e-3) with their measured targets,

highlighting the accuracy of regulator–target predictions. To

garner support for the subnetwork’s structure, we investigated

the overlap in targets of each interrogated mutant and the

known or measured targets of proteins predicted to lie in

the interrogated regulator’s paths. Using stringent scoring, we

found support for 30–100% of nodes in most paths (53% on

average, Supplementary Table S1). Together, these results

provide strong support for the validity of the inferred consensus

subnetwork.

Phospho-proteomic changesGene Fitness Contributions
Yeast gene-deletion library
pretreated with NaCl and

challenged with severe stress
(from Berry et al. 2011)

List of 225 genes important 
for acquired stress resistance

after NaCl pretreatment

Downstream Targets
DNA microarray profiling
of 16 ‘source’ mutants

responding to NaCl

Matrix of 3,300 gene targets
of at least one of 16
‘source’ regulators

(Table 1, Figure 1)

Isobaric tagging of phospho
peptides before and 5, 15 min

after NaCl treament
(Figure S3)

List of 553 phospho-sites
on 173 proteins that change
>=2X after NaCl treatment

Subnetwork Inference

Background network of
5,130 proteins and 29,936 edges

Connect 16 ‘source’ regulators to downstream
targets, via implicated TF/RBPs

Minimize total number of nodes while
maximizing inclusion of proteins with fitness

contributions and phospho-changes

Protein–Protein/Kinase–Substrate
interactions

(see text for references)

101 TFs / RBPs whose
targets overlap specific source-targets

TF / RBP
gene / transcript targets

(see text for references)

Figure 2. Overview of the experimental data collection and analysis to generate IP input.
See text for details.

Molecular Systems Biology 10: 759 | 2014 ª 2014 The Authors

Molecular Systems Biology Inferred stress signaling subnetwork in yeast Deborah Chasman et al

4



Known and new players captured in the NaCl-responsive
signaling subnetwork

We therefore explored the consensus subnetwork for new insights

into stress signaling. Many expected pathways were captured,

including the canonical HOG, PKA, and TOR pathways. The inferred

subnetwork included other stress-activated pathways not previously

linked to the NaCl response, such as PKC, Pho85, Rim15 pathways,

and GSK-3 kinase Mck1 (Fig 5A). We tested the involvement of

these pathways by analyzing our phospho-proteomic data and

mutant transcriptome profiles: We found that members of all of

these pathways showed NaCl-dependent phospho-changes, and cells

Figure 3. Overview of the subnetwork inference method.

A The input to the method includes a background network of yeast interactions combined with experimental data that describes the yeast salt stress response,
including proteins with phospho-changes (yellow), fitness contribution (blue), or two known upstream regulators (pink), as described in the key.

B The three different types of paths that we enumerate using the background network and experimental data, where ‘hit’ refers to proteins identified in the original
fitness screen or with significant changes in phosphorylation.

C The IP for subnetwork inference and the output ensemble of inferred subnetworks.
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lacking specific pathway members (including BCK1, YAK1, PHO85,

RIM15, and MCK1) had defects in NaCl-dependent expression

changes (Supplementary Fig S4 and Supplementary Information).

The subnetwork also included the ‘STE’ mating pathway, which

shares upstream components with the Hog network and is known to

be suppressed by Hog1 signaling (O’Rourke & Herskowitz, 1998;

Marles et al, 2004; Zarrinpar et al, 2004; McClean et al, 2007; Shock

et al, 2009; Patterson et al, 2010; Nagiec & Dohlman, 2012). The

inclusion of the mating pathway indicates that some connections in

the consensus subnetwork represent signaling suppression that

prevents crosstalk to other pathways. We also validated several

newly implicated regulators, including the CK2 kinase complex (see

Supplementary Information) and the Cdc14 phosphatase (see

below).

Interconnectivity in the inferred signaling subnetwork

The structure of the subnetwork revealed surprising cross-

connectivity between previously defined pathways. We defined

stress-activated ‘pathways’ based on the literature and then summed

the number of direct connections between members of those path-

ways (Fig 5B). Many of the pathways were intricately connected,

with Tor1 and PKA pathways linked to the greatest number of other

pathways. We also identified individual subnetwork nodes as

A B
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Physical interaction
Kinase–substrate interaction

P
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Candidates
Permutations

1.00.80.60.40.20

Figure 4. Inferred NaCl-activated signaling network.

A Inferred consensus subnetwork at 75% confidence, where node size indicates degree (number of connections) and color is according to the key. Nodes representing
proteins with phospho-changes are outlined in bold.

B Precision–recall of the inferred consensus network was calculated using a list of true positives from the literature and a list of likely negatives, after excluding
proteins with phospho-changes and those required for fitness (see Materials and Methods). Precision is the fraction of predicted nodes known to be involved in the
osmo response, and recall is the fraction of true positives that are above the threshold. The curves represent the performance of the IP method on the real data (blue),
of the method on randomized permutations of the input network (yellow), and of the candidate enumerated pathways used as input (green, see Materials and
Methods).

▸Figure 5. Connectivity between known pathways and hubs of signal integration.

A A subregion of the inferred subnetwork, highlighting proteins in known pathways according to the key. Hexagons represent interrogated ‘source’ regulators, nodes
outlined in bold indicate validated players in the NaCl response, and asterisks represent proteins with phospho-changes upon NaCl treatment. Dashed edges
represent physical interactions and solid arrows indicate kinase–substrate relationships. Edge directionality is as predicted by the inference, and edge color is
according to the edge’s source node. Inhibitory edges were taken from the literature.

B Connectivity between known pathways, where blue boxes represent the number of interactions between any members of two pathways. Pathway membership is
indicated in parentheses.

C The top 15-ranked ‘integrator’ nodes with connections to the greatest number of different pathways, as shown in (B).
D A purified CTD peptide was incubated with Hrr25-TAP or Hog1-TAP purified from cells with and without NaCl treatment for 10 min, incubated with and without the

reversible p38-specific inhibitor SB203580 (INH) added in vitro. Reactions with buffer or yeast whole-cell extract (WCE) served as negative and positive controls,
respectively. CTD phosphorylated on serine 2 (Ser2) or Ser5 was detected by immunoblotting (see Materials and Methods). TAP-tagged proteins were subsequently
quantified on the same blot with the anti-TAP antibody. Quantification of Hog1 phosphorylation, shown to the right, was normalized to Hog1-TAP abundance and
then to the corresponding unstressed sample.
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‘integration’ points, defined as nodes with the greatest number of

connections to distinct pathways (Fig 5C). Nearly half of the top ten

integration nodes were kinases or phosphatases, including Mck1

and cell cycle regulator Cdc28, which regulates RP genes under opti-

mal conditions (Chymkowitch et al, 2012) but is suppressed during

osmotic shock (Alexander et al, 2001; Belli et al, 2001; Adrover
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et al, 2011). 14-3-3 proteins Bmh1 and Bmh2 were also identified

as integration points, confirming their known role as signaling

cofactors.

Several of the integration points are also hubs of high connectiv-

ity in the consensus subnetwork. While 11 of the top 15 most

connected nodes are kinases or phosphatases, the remaining four

are known regulatory cofactors—including stress-activated ubiquitin

(Ubi4), Sumo (Smt3), and Bmh1—and the core subunit of RNA

polymerase (Pol II), Rpb1. Modification of the Rpb1 carboxyl-

terminal domain (CTD) is the basis for the so-called CTD code of

transcriptional regulation (Buratowski, 2003; Zhang et al, 2012),

making it a logical downstream integration point for complex

upstream signaling. Consistent with the predictions of the subnet-

work, we found that two of the Rpb1-interacting kinases—Hrr25

and Hog1—phosphorylate the Rpb1-CTD in vitro. TAP-tag-purified

Hrr25-TAP phosphorylated Rpb1-CTD serine 5 (Ser5), regardless of

prior NaCl treatment (Fig 5D). In contrast, TAP-purified Hog1-TAP

phosphorylated both Ser2 and Ser5, but only after cellular NaCl

treatment and in a manner inhibited by a Hog1-specific inhibitor

added in vitro. Both Hrr25 and Hog1 are known to interact with

Pol II and influence transcriptional processes (Alepuz et al, 2003;

Phatnani et al, 2004; Proft et al, 2006; Cook & O’Shea, 2012;

Nadal-Ribelles et al, 2012) but neither had been implicated in direct

Rpb1-CTD phosphorylation. These results are consistent with the

model that the Rpb1-CTD is a direct target of the signaling network

and plays a central role in signaling (see more below).

We also dissected the regulatory connections surrounding a

second hub, Cdc14. In the process, we found that Cdc14 is critical

for coordinating distinct facets of the NaCl response. First, the defect

in NaCl transcriptome changes evident in cdc14-3 cells overlapped

significantly with the Hog1 response, raising the possibility that

Cdc14 is important for Hog1 regulation (Supplementary Fig S4). The

subnetwork predicts that Cdc14 is activated in part by the Hog1

regulator Pbs2 (reminiscent of Pbs2 control of Cdc14 localization

during the cell cycle (Reiser et al, 2006)) and that Cdc14 affects

Hog1 function via the nuclear exporter, Crm1. This prompted us to

follow Hog1 localization in the cdc14-3 mutant. Indeed, Hog1

nuclear localization was defective in the NaCl-treated cdc14-3

mutant (Fig 6A; Supplementary Information), despite Hog1 hyper-

phosphorylation under these conditions (Fig 6B). We found no

direct interaction between Cdc14 and Hog1, suggesting that the

hyper-phosphorylation of Hog1 is a secondary response to the defect

in nuclear localization rather than a deficit of direct Hog1 dephos-

phorylation by Cdc14. The aberrant Hog1 localization was not a side

effect of cell cycle arrest, since we found no defect in wild-type cells

progressing through G2/M phase or in nocodazole-arrested cells

(Supplementary Fig S6). Instead, these results suggest a direct

connection between Cdc14 activity and signaling through the Hog

pathway.

Second, the subnetwork predicts that Cdc14 regulates CK2

subunits to modulate the Hog1-regulated TF, Hot1. We uncovered a

salt-enhanced interaction between Cdc14 and CK2 subunit Cka2

(Fig 6C) and uncovered a constitutive association between CK2

subunits Cka1/Cka2 and Hog1 (Fig 6C and D). Although the

connection between CK2 and Hog1 was not known in yeast, our

results are reminiscent of regulation in mammalian systems, in

which CK2 is regulated by the human ortholog of Hog1, p38 (Sayed

et al, 2000; Hildesheim et al, 2005; De Amicis et al, 2011; Isaeva &

Mitev, 2011). As predicted by the subnetwork, we found that Cdc14,

Cka2, and Hog1 were all required for normal induction of Hot1

targets (Fig 6E).

Finally, and surprisingly, we discovered that Cdc14 suppresses

NaCl-dependent crosstalk to the cell cycle network: the cdc14-3

mutant at the non-permissive temperature strongly and aberrantly

induced G1 and S phase genes upon NaCl treatment (Fig 6F), even

though cells were completely arrested in M phase for the duration of

the treatment. This included genes encoding G1 and S phase cyclins

CLN1/2 and CLB5/6, respectively. To further understand this effect,

we turned to the subnetwork: Cdc14 is predicted to affect these

genes via direct interaction with the carbon-responsive kinase Snf1,

which is known to be activated by NaCl (Hong & Carlson, 2007; Ye

et al, 2008). Snf1 is also required for proper timing of cell cycle

entry in standard conditions (Pessina et al, 2010; Busnelli et al,

2013), raising the possibility that it is responsible for the inappropri-

ate G1/S gene induction in the absence of Cdc14. We found that

deletion of SNF1 in the cdc14-3 background largely abrogated the

hyper-activation of G1 and S genes in the cdc14-3 mutant (Fig 6G).

This presents a model for future dissection, in which Cdc14 helps to

suppress the cell cycle effect of Snf1 activation, thereby funneling

Snf1 activity toward its stress-specific gene targets. Together, our

results demonstrate the remarkable and central role of Cdc14 in

coordinating cellular signaling upon osmotic shock, while show-

casing the predictive power of our inferred subnetwork.

New insights into ESR regulation and coordination

We were especially interested in how distinct modules in the ESR—

including iESR genes important for stress defense and RP/RiBi

modules required for rapid growth—are regulated and coordinated.

Of the 178 nodes implicated in ESR regulation, over half were

predicted (Fig 7A)—and several confirmed (Fig 7B)—to lie

upstream of all three ESR modules. In contrast to common upstream

nodes that were enriched for kinases compared to the consensus

subnetwork (P = 2.6e-7), nodes exclusive to iESR regulation were

enriched for TFs (P = 5e-5), while rESR regulators showed a prepon-

derance of RBPs (P = 1e-5), implicating regulated RNA stability for

these genes. Many more regulators and regulatory connections were

unique to the iESR versus RP and RiBi modules (the latter being the

largest group) (Fig 7C). This is consistent with the extensive redun-

dancy in iESR control (Gasch, 2002) and hints at a more monolithic

regulation of rESR expression during times of adversity.

To better understand how cells coordinate repression of growth-

related genes with induction of stress-defense genes in the ESR, we

devised a bifurcation score based on information theory, to rank

nodes that (a) are upstream of many genes from both modules but

(b) have outgoing paths that relatively cleanly divide iESR and rESR

genes. A third of top 15-ranked bifurcating nodes are linked to

cAMP signaling (including adenylate cyclase Cyr1, cAMP response

regulator Bcy1, and phosphodiesterase Pde2). Indeed, we found that

the pde2Δ mutant has a defect in both iESR induction and rESR

repression (Fig 7B), confirming the role of cAMP in the growth/

stress-defense decision (see Discussion). Nearly half of the remain-

ing top-ranked bifurcation proteins associate with RNA Pol II

(including Pol II core subunit Rpb3, Pol II-associated Sub1 and

Ask10, transcription elongation factor Spt5, as well as Sds3 of

the Rpd3L chromatin remodeling complex). Together with the
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identification of Pol II subunit Rpb1 as a hub in the subnetwork,

these results implicate RNA Pol II at a key decision point in ESR

coordination.

To investigate this, we started by checking in vivo bulk modifica-

tion of Rpb1-CTD in wild-type and hog1Δ cells responding to NaCl.

The hog1Δ mutant showed an initial drop in Ser5 and Ser2 phos-

phorylation similar to the wild-type, but displayed a reproducible

defect in the normal subsequent transient increase in Ser5 and Ser2

phosphorylation (Fig 8A). The timing of the transient peaks in bulk

Rpb1-CTD phosphorylation correlates with the timing of transcrip-

tion initiation and elongation upon osmotic stress (Berry & Gasch,

2008; Lee et al, 2011; Miller et al, 2011), consistent with the known

roles of Hog1 as well as Ser5 and Ser2 phosphorylation in

these processes (Alepuz et al, 2003; Proft et al, 2006; Zhang et al,

2012).

To test our hypothesis that direct modification of Rpb1-CTD is

important for ESR regulation, we measured transcriptomic changes

upon salt stress in Rpb1-CTD mutant strains that could not be phos-

phorylated normally on CTD-Ser2 or CTD-Ser5 (S2A and S5A

mutants, respectively). Since S2A or S5A substitution in all CTD

repeats is lethal, the mutant cells expressed chimeric CTD sequences

with half mutant and half wild-type repeat sequences (West &

Corden, 1995; see Materials and Methods). Neither mutant showed

significant expression differences in the absence of stress; further-

more, the S2A mutant showed only a subtle defect in NaCl-

dependent expression changes (Fig 8B). In contrast, the S5A mutant
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Figure 6. Cdc14 is a central regulator in the NaCl response.

A Wild-type (WT) and cdc14-3 cells were shifted to 35°C for 90 min and then exposed to 0.7 M NaCl for up to 20 min. Images represent nuclear DNA (DAPI, left) and
Hog1-GFP (right) before and at 10 min after NaCl treatment. The plot below quantifies the fraction of cells (n ≥ 75) with nuclear Hog1-GFP signal that overlapped
the DAPI signal, in WT and cdc14-3 cells.

B Levels of phospho-Hog1 normalized to total Hog1 in WT and cdc14-3 cells responding to NaCl at 35°C. Data represent the average of biological duplicates (paired t-test).
C, D GST-tagged Cka2 (C) or GST-tagged Cka1 (D) were immunoprecipitated and blotted for Cdc14 and total or phospho-Hog1.
E The average log2 fold-change of 67 Hot1 targets in replicated WT, hog1Δ, cdc14-3, and cka2Δ strains responding to NaCl. Data for each mutant and its paired WT

were scaled to the plotted WT so as to accurately represent the mutant defect. Asterisks represent a significant difference in the mutant versus its paired WT
(paired t-test).

F Expression data in WT or cdc14-3 cells responding to NaCl at the non-permissive temperature and in cdc14-3 cells versus WT at the non-permissive temperature
before NaCl addition. Each column represents one of three triplicated expression responses, and each row represents one of 131 cell cycle genes aberrantly induced
in cdc14-3 after NaCl treatment (FDR < 0.05). Red represents higher and green represents lower expression in response to NaCl (or in the cdc14-3 mutant in the
case of the last columns), according to the key. Cell cycle classification of the genes (Spellman et al, 1998) is shown to the right; cyclins are annotated to the left.

G Average log2 expression change of genes shown in (F), as described in (E).

Source data are available online for this figure.
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had a significant defect in iESR induction and even more so in rESR

repression, comparable to the defect seen in the hog1Δ mutant.

We reasoned that aberrant ESR coordination may be caused by

an inability of polymerase to re-localize from rESR genes, which are

highly transcribed before stress, to stress-induced iESR genes. To

test this, we measured chromatin occupancy of RNA Pol II subunit

Rpb3 in both wild-type and S5A mutant strains responding to NaCl

stress, using ChIP-chip. In wild-type cells responding to stress, Rpb3

occupancy increased at iESR genes but decreased in the body of RP

and RiBi genes, with slight accumulation in the promoter regions of

specific repressed genes (Fig 8C; Supplementary Fig S7). In contrast,

the S5A mutant showed a reproducible defect in Rpb3 recruitment

to iESR genes and a concomitant defect in Rpb3 release from rESR

genes (Fig 8C; Supplementary Fig S7). These results show that
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Molecular Systems Biology 10: 759 | 2014 ª 2014 The Authors

Molecular Systems Biology Inferred stress signaling subnetwork in yeast Deborah Chasman et al

10



direct modification of the Rpb1-CTD is required for normal regula-

tion of iESR and rESR genes (see Discussion).

The orthologous mammalian networks are enriched for growth-
regulating and disease-causing genes

Striking the correct balance between growth rate and stress defense

is fundamental for proper cellular function, and improper balance is

thought to be a critical driver in diseases such as cancer (Jones &

Thompson, 2009). We therefore interrogated the set of human genes

orthologous to the yeast NaCl subnetwork. We found that this set is

enriched for genes linked to cancer, mostly through somatic muta-

tion, according to the COSMIC database (Forbes et al, 2011): of the

35 human genes in the COSMIC dataset with yeast orthologs, 8 were

orthologous to nodes in the consensus-node network, representing a

2.5-fold enrichment above chance (P = 0.0068, Supplementary Data-

set S4A). We also compared the yeast network to Mendelian disease

genes in the OMIM database (Hamosh et al, 2005). We identified 25

additional yeast genes whose orthologs are linked to heritable

disease (Supplementary Dataset S4B), with weak enrichment for

genes associated with prostate cancer (P = 6e-3, (Woods et al,

2013)). The network was also enriched for yeast proteins whose

mouse orthologs are required for pre/perinatal viability, normal

growth rate and body size, and male and female fertility (FDR

< 5%, Supplementary Dataset S5) (Woods et al, 2013). These

results highlight that stress-responsive signaling is likely important

for proper regulation of growth rate, and thus may provide insights

into cancer biology (see Discussion).

Discussion

A major challenge in network biology remains integrating disparate

large-scale datasets in a manner that reveals new insights into biol-

ogy. The approach we developed here provides a new route to iden-

tifying the extensive set of players activated during a response, as

well as the connections between them and the flow of information

toward the processes they regulate.

The computational approach we developed provides several

contributions. First, we provide a means to selectively integrate

disparate datasets via four types of paths between proteins in the

background network. Each dataset is prioritized separately by a

series of objective functions, whereas related approaches for infer-

ring signaling networks use a single objective function. One class of

related methods essentially maximizes the number of paths between

sources and targets (Yeang et al, 2004, 2005; Ourfali et al, 2007;

Gitter et al, 2011). In contrast, our method’s preference for sparse

inferred subnetworks is also employed by approaches based on the

prize-collecting Steiner Tree algorithm (Huang & Fraenkel, 2009,

2012; Yosef et al, 2009; Huang et al, 2013) and flow-based algo-

rithms (Yeger-Lotem et al, 2009; Lan et al, 2011). However, those

methods require the use of a weight parameter to trade off between

subnetwork sparsity and the inclusion of known relevant proteins.

Another contribution of our approach is the representation of

uncertainty in the underlying network. We assign a confidence

value to each protein and interaction according to its frequency in

an ensemble of optimal inferred subnetworks. This is similar to the

score used by Yeang et al (2005), who actually enumerate all
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Data are representative of several replicates.
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optimal solutions; doing so is practically intractable for our input

and our model. In contrast, Ourfali et al (2007) assign confidence

values based on the change in objective value when each protein or

interaction is individually excluded, and Gitter et al (2011) present

several methods for ranking paths based on input experimental data

and local topological features of the inferred subnetworks. The

confidence values generated by our approach provide useful

guidance for subsequent biological examination.

The resulting subnetwork put forward by our approach identified

new regulators in the NaCl response and provides a glimpse of their

connections in a single cellular signaling system. The extensive

physical connectivity between what are traditionally considered

‘distinct’ pathways suggests much greater signaling integration than

previously realized. The cross-connectivity between pathways,

either direct or through apparent ‘integration’ points, may coordi-

nate the magnitude or timing of signaling through distinct branches,

prevent signaling crosstalk, and/or provide important feedback to

dampen signaling as cells acclimate to new conditions (Schwartz &

Madhani, 2004; Waltermann & Klipp, 2010). Our results implicate

Cdc14 as a critical integrator that bridges HOG and CK2 signaling,

suppresses inappropriate activation of the cell cycle network, and

connects to several other pathways including Tor1, which is report-

edly suppressed by Cdc14 (Breitkreutz et al, 2010). Members of the

growth-regulating TOR1 pathway as well as the RAS/PKA pathway

show the greatest connectivity to other stress-activated pathways,

suggesting that growth regulation is sensitively tuned according to

stress conditions.

Our results also shed new light on how growth control and stress

defense are related. Optimal growth and maximal stress tolerance

are competing interests in the cell: The fastest growing cells are typi-

cally the least tolerant of adversity, whereas stress-resistant cells are

frequently slow-growing or arrested (Elliott & Futcher, 1993;

Sumner & Avery, 2002; Lu et al, 2009; Zakrzewska et al, 2011; Levy

et al, 2012). Our results here, along with prior studies, suggest that

competition for cellular resources—namely those related to tran-

scription and translation—drive the anti-correlated expression of

genes involved in stress defense versus growth promotion. Under

optimal growth conditions, rESR transcripts are among the most

highly transcribed and the most highly translated (Ingolia et al,

2009; Lipson et al, 2009), consuming the bulk of cellular ribosomes

(Warner et al, 2001). We previously proposed that the drop in rESR

transcripts helps to direct translational capacity to iESR genes by

releasing sequestered ribosomes (Lee et al, 2011). Work by You

et al (2013) suggests that cAMP abundance dictates whether transla-

tional capacity is directed to growth versus other processes such as

stress defense. That our results implicate cAMP in the iESR/rESR

regulatory balance is consistent with these models.

In addition to implicating cAMP metabolism, our results show

that direct regulation of the RNA Pol II CTD plays a crucial role in

the iESR/rESR transcriptional balance, by triggering redistribution of

polymerase from highly transcribed growth-related genes to stress-

induced defense genes. The ability to fully phosphorylate Ser5 of the

Rpb1-CTD is required for normal repression of rESR genes, as indi-

cated by the defect in transcript repression and Pol II redistribution,

and is also required for normal recruitment of Rpb3 to iESR promot-

ers for gene induction (Fig 8). Ser5 phosphorylation has been impli-

cated in both gene repression and induction (Hengartner et al,

1998), in support of our findings. The stress-activated redistribution

of Pol II from rESR to iESR genes is at least partly dependent on

Hog1 (Cook & O’Shea, 2012; Nadal-Ribelles et al, 2012), which we

show phosphorylates the Rpb1-CTD in vitro (Fig 5D) and is required

for its normal modification in vivo (Fig 8A). Thus, we propose that

direct regulation of RNA Pol II, perhaps in part by the Hog1 kinase,

plays a central role in coordinating these opposing transcriptional

modules.

Establishing the correct balance between stress tolerance and

growth rate is critical for surviving fluctuating environments in

nature. But the enrichment for cancer-causing genes in the ortholo-

gous human subnetwork highlights the importance of this decision

in disease biology, and it suggests that stress signaling in yeast may

serve as a model for cancer signaling in humans. It is notable that

orthologs of three key regulators in our network—Hog1, Cdc14, and

CK2—have all been implicated in regulating the mammalian tumor

suppressor p53 (Meek et al, 1990; Bulavin et al, 1999; Li et al,

2000), which controls the growth/survival/ apoptosis decision in

human cells and is mutated in many human cancers (Carvajal &

Manfredi, 2013). These results underscore the importance of the

growth/survival decision and hint that the yeast subnetwork could

be used to implicate as-yet-unidentified human disease genes. An

exciting area of future study will be to distinguish signaling dynam-

ics and condition-specific versus common aspects of the signaling,

with an eye toward their role in disease biology.

Materials and Methods

Growth conditions

All strains were of the BY4741 background, primarily from the dele-

tion collection (Winzeler et al, 1999) (Thermo Scientific, Waltham,

MA), except for cdc14-3 and its isogenic wild-type (kindly provided

by Miller et al (2009)). BY4741 ckb1Δckb2Δ was kindly provided by

Bergkessel et al (2011). Knockout strains were verified by diagnos-

tic PCR to ensure correct integration of the drug cassette and to

confirm absence of the deleted gene. Unless otherwise noted, cells

were grown to log phase in batch YPD cultures at 30°C for at least

seven generations before addition of a final concentration of 0.7 M

NaCl, after which cells were grown for 30 min. cdc14-3 and isogenic

wild-type cells were grown at 25°C, shifted to the non-permissive

temperature of 35°C for 90 min (or 120 min for experiments from

Fig 6G), and then treated with a final concentration of 0.7 M NaCl

at 35°C for an additional 30 min before sample collection. Relative

physiological changes were compared to the time point collected

immediately before addition of NaCl (i.e., 35°C for 90 min without

NaCl).

Microarray analysis

Cell collection, RNA preparation, cDNA synthesis and labeling,

array hybridization, and normalization were performed as previ-

ously described in Berry & Gasch (2008) and Lee et al (2011), using

cyanine dyes (Flownamics, Madison WI) and Superscript III

(Life Technologies, Carlsbad, CA). Samples were hybridized to

whole-genome tiled DNA microarrays (Roche Nimblegen, Madison,

WI), comparing cDNA from the salt-treated sample to cDNA gener-

ated from the unstressed culture. Dye orientation was performed on
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select samples to assess dye-specific biases; dye orientation for

paired mutant–wild-type samples was maintained for statistical

analysis to avoid dye-specific effects. Comparison of unstressed

strains was done as previously described Lee et al (2011) by retriev-

ing and comparing single-channel data from mutant and wild-type

arrays. Array data are available through the NIH GEO accession

#GSE60613 and Supplementary Dataset S1.

Genes whose expression was altered in wild-type cells respond-

ing to NaCl were identified based on five biological replicates, using

the Bioconductor package limma (Smyth, 2004) and Q-value (Storey

et al, 2005) to assess the false discovery rate (FDR) and taking

q < 0.05 as significant. This analysis identified 5,056 genes with a

significant change in expression in response to NaCl. Genes with a

defect in NaCl-responsive expression in mutants shown in Fig 1

were assessed in biological triplicate (for hog1Δ, mck1Δ, pde2Δ,
msn2Δ, and rim101Δ strains) or duplicate (all other strains). Expres-

sion defects were identified using contrast matrices to wild-type

expression in limma for triplicated samples, with q ≤ 0.025 taken as

significant. For duplicated samples, expression defects were identi-

fied if both mutant replicates were outside the wild-type mean +2

standard deviations (95th confidence level), based on five replicates

of the wild-type samples. Identified targets (summarized in Table 1)

are available in Supplementary Dataset S2. Data for the dot6Δtod6Δ
mutant were taken from Lee et al (2011).

Validation experiments were performed on 10 deletion mutants

responding to NaCl. For samples done in duplicate, significant

expression changes were identified using limma with q < 0.05 taken

as significant. Expression defects from singleton experiments were

identified based on a 1.5-fold difference in expression in that mutant

versus the paired wild-type sample. Identified expression defects are

summarized in Table 1 and Supplementary Dataset S2. Expression

in unstressed mutant cells was also assessed by comparing the

mutant response to unstressed wild-type cells as described above.

Unless otherwise noted, we detected few expression differences in

unstressed cells. For Figs 6–8 where average expression values are

plotted, data for some paired mutant–wild-type experiments (namely

cdc14-3, dot6Δtod6Δ, and ck2 mutants) were scaled such that their

paired wild-type data matched the plotted wild-type data taken from

other experiments, in order to accurately represent those mutant

defects by accounting for day-to-day variation of paired samples.

Expression analysis for Fig 8 was done in strains generously

provided by JL Corden (West & Corden, 1995). Cells lacking endoge-

nous RPB1 carried a plasmid expressing RPB1 with 14 wild-type

CTD repeats (YSPTSPS) or a plasmid expressing chimeric RPB1

genes: the Rpb1-CTD was composed of five repeats of S5A (YSP-

TAPS) followed by seven wild-type sequenced repeats in the so-

called S5A mutant, or 8 S2A repeats (YAPTSPS) followed by seven

wild-type sequenced repeats in the S2A mutant. There was no differ-

ence in salt-responsive gene expression for control plasmids with 14

versus 21 wild-type repeats (not shown). Expression was measured

as described above, before and at 30 min after treatment with 0.7 M

NaCl. There were few expression differences in the strains before

stress (see Fig 8B).

Phospho-proteomic analysis

BY4741 was grown as described above, except that samples were

taken before and at 5 min and 15 min after NaCl addition. Cells

were lysed by three passages through the French press at 4°C in

3 ml of lysis buffer consisting of 50 mM Tris pH 8, 4 M urea,

75 mM NaCl, 1 mM DTT, complete Mini EDTA-free Protease Inhibi-

tor (Roche Diagnostics, Indianapolis, IN), and phosSTOP phospha-

tase inhibitor (Roche Diagnostics). The lysate was centrifuged at

14,000 g for 10 min and the protein concentration determined by a

bicinchoninic acid assay. Cysteine residues were reduced and alkyl-

ated by incubating lysate with 5 mM DTT for 45 min at 37°C

followed by incubation in 15 mM IAA for 45 min at room tempera-

ture in the dark. After adding an additional aliquot of DTT to cap

the alkylation reaction, the urea concentration was diluted to a final

concentration of 1 M with 50 mM Tris and 1 mM CaCl2. Proteins

from each time point were digested overnight (37°C, pH 8) with

trypsin (Promega, Madison, WI) at an enzyme:substrate ratio of

1:50. TFA was added to a final concentration of 0.5% to quench

each digest, and the resulting peptides were desalted via solid phase

extraction on a 50 mg tC18 SepPak cartridge (Waters, Milford, MA)

and the eluant lyophilized.

The desalted peptides from each time point were each labeled

with a different tandem mass tag (TMT) isobaric label (Thermo-

Pierce, Rockford, IL) according to the manufacturer’s instructions.

The differentially labeled TMT samples were pooled in equal

volumes and dried-down. Labeled peptides were fractionated by

strong cation exchange (SCX) on a polysulfoethyl A column

(9.4 mm × 200 mm; PolyLC) with mobile phases A: 5 mM KH2PO4

pH 2.65 and 30% acetonitrile; B: 5 mM KH2PO4 pH 2.65, 350 mM

KCl, and 30% acetonitrile; C: 5 mM KH2PO4 pH 6.5 and 500 mM

KCl; and D: water. The gradient was generated by a Surveyor LC

quaternary pump (Thermo Scientific, Waltham, MA) at 3 ml/min

flow rate. Peptides were eluted over the following gradient and

detected via a PDA detector (Thermo Scientific): 0–2 min, 100% A;

2–5 min, 0–10% B; 5–41 min 10–100% B; 41–48 min 100% B;

followed by washes with C and D prior to re-equilibration with

mobile phase A. Fifteen fractions were collected, lyophilized, and

desalted. A small portion, 5%, of each was retained for unmodified

protein analysis and the remaining material used for phosphopep-

tide enrichment.

Each fraction was enriched for phosphopeptides using immobi-

lized metal ion affinity chromatography (IMAC). Magnetic beads

(Qiagen, Valencia, CA) were washed three times with water, incu-

bated with 40 mM EDTA (pH 7.5) for 30 min, and washed with

water again. The beads were then incubated with 100 mM FeCl3 for

30 min and washed four times with 80% acetonitrile and 0.1%

TFA. Peptides from each fraction were resuspended in 1 ml of 80%

acetonitrile and 0.1% TFA and incubated with the beads for 30 min.

Unbound peptides were removed from the beads by washing four

times with 80% acetonitrile and 0.1% TFA. Phosphopeptides were

eluted using 1:1 acetonitrile:5% NH4OH in water, immediately acidi-

fied with 4% formic acid, and lyophilized.

Phosphopeptide-enriched and protein fractions were resuspended

in 0.2% formic acid and analyzed by reverse-phase liquid chroma-

tography on a nanoAcquity LC (Waters) coupled to an ETD-enabled

LTQ Orbitrap Velos (Thermo Scientific). Samples were first loaded

onto a 10 cm, 75 lm i.d. precolumn packed with 5 lm C18 particles

(Bruker-Michrom, Fremont, CA) in 98% A (0.2% formic acid in

water), 2% B (0.2% formic acid in acetonitrile) and then separated

across a 25 cm, 50 lm i.d. analytical column packed with 5 lm C18

particles (Bruker-Michrom) using the following gradient: 0–3 min,
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2–5% B; 3–123 min, 5–35% B; 123–133 min, 35–70% B; 133–

138 min, 70% B; 138–165 min, 2% B. Phosphopeptide and protein

fractions were each analyzed in duplicate. Methods to acquire mass

spectra started with one MS1 survey scan (R = 30,000, 300–1,500 Th)

followed by data-dependent MS2 fragmentation and analysis

(R = 15,000) of the ten most intense precursors. The exclusion dura-

tion was 60 s for �0.55 Th to +2.55 Th of the sampled precursor.

Ions with an unassigned charge state or a single charge were

excluded. The QuantMode instrument control method was

employed to reduce reporter ion interference caused by co-isolation

of multiple precursors (Wenger et al, 2011a).

Spectral reduction was performed using DTA Generator. Gener-

ated text files were searched for fully tryptic peptides with up to

three missed cleavages against a UniProt target-decoy database

populated with yeast plus isoforms (downloaded 29 July 2011)

using the Open Mass Spectrometry Search Algorithm (OMSSA)

(Geer et al, 2004). Carbamidomethylation of cysteine (+57.021464),

TMT 6-plex on lysine (+229.162932), and TMT 6-plex on peptide

N-terminus (+229.162932) were searched as fixed modifications for

all samples. Phosphopeptide-enriched fractions were additionally

searched for variable phosphorylation modifications. Search results

were filtered to 1% FDR at the unique peptide level and identified

peptides quantified within the COMPASS software suite (Wenger

et al, 2011b). Peptides were grouped into proteins according to

previously reported rules and filtered to 1% FDR (Nesvizhskii &

Aebersold, 2005). Protein quantification was performed by

summing all reporter ion intensities within each channel for each

non-phosphorylated peptide mapping uniquely to that protein

group.

Phosphorylation events were localized to specific residues using

probabilistic methods (Phanstiel et al, 2011). Localized phosphory-

lated peptides were grouped together by identical modification sites,

and their reporter ion intensities were summed. For simplicity,

phosphorylation isoforms are referred to as phospho-sites. The aver-

age of two technical replicates was taken per time point, and

phospho-sites with at least twofold change in recovery were taken

as significant for downstream analysis. Average fold-changes of

phospho-sites are available in Supplementary Dataset S3.

Immunoprecipitation analysis

BY4741-cka2D and cka1D cells were transformed with empty vector

or plasmids encoding GAL-inducible Cka2-GST or Cka1-GST (Zhu

et al, 2001; Sopko et al, 2006) (Thermo Scientific), respectively.

Cells were grown in YP-2% galactose medium in log phase to 0.6–

0.8 OD600, subjected to osmotic stress (0.7 N NaCl) for the indicated

length of time, and lysed by bead-beating on ice. Cell lysates were

incubated with glutathione Sepharose beads (GE Healthcare) at 4°C

overnight in 1× PBS buffer with 1 mM DTT, 0.1% NP-40, 10%

glycerol and protease inhibitors (Millipore, Billerica, MA). Proteins

were eluted with 1× SB buffer and resolved by SDS–PAGE and

detected by immunoblotting. Antibodies used were goat polyclonal

anti-Hog1 (Santa Cruz Biotech, Dallas, TX), rabbit polyclonal anti-

phospho-p38 MAPK (Cell Signaling), mouse monoclonal anti-actin

(Pierce Biotech), goat polyclonal anti-Cdc14 (Santa Cruz Biotech)

and goat polyclonal anti-GST (Abcam, Cambridge, MA). All blots

shown in the manuscript are representatives of at least biological

duplicates.

Microscopy

Harvested cells were fixed with 4% final concentration of formalde-

hyde for 15 min, and GFP was visualized on a Leica DM LB2 micro-

scope with standard GFP filters. DNA was detected via cell staining

with 1 lg/ml DAPI for 5 min. Viability of cdc14-3 cells was

measured with Live-Dead staining (Life Technologies), which

showed that NaCl-treated cdc14-3 maintained viability close to WT

cells for over 30 min after treatment with 0.7 M NaCl (not shown).

Nuclear Hog1 was scored by visual inspection by comparing GFP

signal to DAPI signal, in at least 75–100 cells per sample.

In vitro CTD phosphorylation

Cells expressing C-terminally TAP-tagged proteins (Ghaemmaghami

et al, 2003) (Thermo) were exposed to NaCl for the denoted times,

snap-frozen, and then cryo-lysed with a Retsch Mixer Mill MM 400

as described in Churchman and Weissman (2011). Ground yeast

was added to TAP Buffer A, and TAP-tagged kinase was purified as

described in Puig et al (2001) and Liu et al (2004), with minor

modifications. Kinases were eluted overnight at 4°C in 25 ll TAP
Buffer A with 1 mM DTT and 10 U AcTEV (Invitrogen).

Peptide substrate GST-CTD14 (fourteen repeats of YSPTSPS fused

to GST) was purified essentially as described in Patturajan et al

(1998). Before elution, glutathione Sepharose beads were resus-

pended in 1 ml FastAP buffer (10 mM Tris–HCl pH 8.0, 5 mM

MgCl2, 100 mM KCl, 0.02% Triton X-100, 100 lg/ml BSA) and incu-

bated with 100 U FastAP Thermosensitive Alkaline Phosphatase

(Thermo Scientific) for 1 h at 37°C to remove any phosphates

placed by the bacteria. Beads were washed, and GST-CTD14 was

eluted. Any remaining alkaline phosphatase was heat-inactivated at

75°C for 5 min. The concentration of GST-CTD14 was determined

via Bradford assays.

In vitro kinase assays were performed in at least biological dupli-

cate using 5 ll of tandem affinity purified (TAP) kinase and 3 lM
GST-CTD14 in 30 ll Buffer D as described in Ansari et al (2005),

with minor modifications. For Hog1 inhibition assays, the kinase

was pre-incubated with the inhibitor 4-(4-fluorophenyl)-2-(4-meth-

ylsulfinylphenyl)-5-(4-pyridyl)imidazole (Cell Signaling Technology)

for 10 min prior to the reaction. Reactions were performed at 30°C

for 2 h and resolved via SDS–PAGE and Western analysis using anti-

bodies targeting CTD-Ser2P (Bethyl Laboratories), CTD-Ser5P (clone

3E8, gift from Dirk Eick), or the TAP tag (Thermo Scientific).

Quantitation was performed using ImageJ. All images are represen-

tative of several biological replicates. The plot in Fig 5D shows

background-subtracted levels of Ser2P and Ser5P normalized to

Hog1-TAP abundance in each lane, then referred to levels seen in

unstressed cells to calculate fold-change in phosphorylation.

Analysis of novel predicted salt-response regulators

Fourteen predicted regulators not previously known to respond to

NaCl were chosen for validation analysis. NaCl-responsive gene

expression was measured in ten mutants, focusing on kinases and

phosphatases not known to respond to NaCl and two RBPs (Scd6

and Arf3), as described above. Data for Rpd3, Bem1, Gal11, and

Tpk2 were taken from previous studies probing the osmotic

response (Alejandro-Osorio et al, 2009; Gitter et al, 2013), taking
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q < 0.05 from limma q-value analysis as significant. Mutants were

considered to have a defect in NaCl-dependent expression if there

were at least fifty affected genes. Overlap between measured and

predicted target genes was based on the hypergeometric test, scoring

the probability of getting the number of observations or more

compared to random expectation from the 3,330 genes used for IP

input. Genes affected in unstressed cells were also identified (see

above) and compared to predicted genes in cases where the NaCl-

measured targets did not significantly overlap with predicted

targets.

We also assessed the connections predicted between the interro-

gated regulators and other nodes predicted to lie in their paths.

From the nodes predicted to lie in each regulator’s path (based on

the consensus-paths network), we identified those with known

downstream targets (e.g., TF and RPBs) or targets measured in this

study. We then scored the enrichment of each predicted node’s

known targets within the measured targets of the interrogated regu-

lator, taking P < 1e-6 from the hypergeometric test as significant.

Because the test lacks statistical power for large gene groups, we

scored enrichment against the total list of measured targets as well

as induced and repressed targets with defective or amplified expres-

sion changes considered separately. The results (Supplementary

Table S2) indicate a lower bound of supported in-path nodes, since

the hypergeometric test has lower statistical power for small gene

groups (including known targets of several regulators), and targets

of several in-path nodes were marginally enriched (1e-5 < P < 0.01)

among measured targets of interrogated regulators but did not meet

our stringent threshold. It is also possible that regulators that serve

redundant roles are difficult to score with our assay, since single-

gene knockouts may not identify all of the downstream targets.

Chromatin immunoprecipitation (ChIP)

ChIP was done similarly to as described in Tietjen et al (2010), on

cells before and 20 min after treatment with 0.7 M NaCl. Rpb3 was

immunoprecipitated using anti-Rpb3 antibody W0012 (Neoclone,

Madison, WI) in strain Z26 carrying ‘wild-type’ or ‘S5A’ RPB1 gene

expressed on a CEN plasmid (West & Corden, 1995), described

above. Chromatin was sonicated on a Misonix 4000 machine

(Qsonica, Newtown, CT), input and immunoprecipitated material

were amplified using ligation-mediated PCR as previously described

Tietjen et al (2010) and hybridized to tiled Nimblegen arrays

designed against the yeast genome (Lee et al, 2011). Data were

normalized as in Tietjen et al (2010), except without the baseline

adjustment procedure. All two-color arrays from two biological

replicates were quantile-normalized together before further analysis.

This procedure did not change any of the trends reported in the

manuscript but helped to adjust the baseline across biological

replicates done on different days. ChIP-chip data are available in the

NIH GEO database under accession # GSE60613.

Ortholog analysis

To assess the relationship of the yeast consensus network ensemble

to human diseases, we analyzed the orthologous set of human

genes. We used the stringent RSD method of ortholog assignment

(Wall et al, 2003), using a BLAST Evalue cut-off of 1e-5 and requir-

ing fewer than 20% gapped positions in the global alignment. The

method identified 2,381 yeast-human orthologs; we focused on the

1,619 of these genes that are reviewed in humans. We compared

these genes to those annotated in the COSMIC v67 (Forbes et al,

2011) and OMIM (Hamosh et al, 2005) databases. We also analyzed

orthologous mouse proteins using the phenology.org database

(Woods et al, 2013).

Network Inference Methods

Background network for IP method

To construct the background network, we identified a variety of

binary interactions that are relevant to intracellular signaling and

gene expression regulation. The background network, gathered from

numerous public databases, represents interactions between pairs of

proteins (Ptacek et al, 2005; Pu et al, 2009; Fasolo et al, 2011;

Sharifpoor et al, 2011; Heavner et al, 2012), including kinase–

substrate interactions, as well as protein–DNA interactions (Guelzim

et al, 2002; MacIsaac et al, 2006; Everett et al, 2009; Ni et al, 2009;

Abdulrehman et al, 2011; Venters et al, 2011; Huebert et al, 2012)

and protein–RNA interactions (Hogan et al, 2008; Scherrer et al,

2010). After manual inspection of the background network neigh-

borhoods of the interrogated mutants, we added a set of 17 missing

interactions between the mutants and nearby regulators based on

known interactions in the literature.

While the types of biological interactions in the background

network are rich and diverse, we use a simplified representation as

input to the computational method (illustrated in Figs 2 and 3A).

The background network is represented as a graph, in which nodes

represent genes and gene products, and edges represent interac-

tions. A gene may be represented as two separate nodes in the

background network: one representing the protein, and, for targets,

one representing the DNA or mRNA. Each interaction may have a

direction: for example, transcriptional regulatory interactions are

directed, but most protein–protein interactions are not. The prove-

nance of the background network and the interactions themselves

are provided in Supplementary Information 1.2.3, Supplementary

Table S2, and Supplementary Dataset S6.

IP method input data and candidate paths

The primary goal of the IP approach is to provide explanations for

the salt-specific transcriptomic changes measured for this article.

We also use two additional sources of salt-specific experimental

data. From these data, we generate directed, acyclic candidate paths

that serve as input to the IP (Fig 3B):

Source–target pairs and paths, source–source paths From the tran-

scriptomic data measured in each of the original signaling mutants,

we identified the set of downstream genes with dysregulated salt-

responsive expression. We then extracted what we refer to as

source–target pairs, each consisting of a single source protein and a

target gene that was dysregulated in the source mutant under salt

stress. Next, for each source, we used the hypergeometric test to

identify candidate transcription factors (TFs) and RNA- binding

proteins (RBPs) whose known binding targets (promoters or tran-

scripts, respectively) are significantly enriched with the genes repre-

sented by the source’s targets (P < 0.05). We also include TFs that

are known to bind any number of targets under osmotic stress (Ni

et al, 2009; Huebert et al, 2012). Candidate source–target paths
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were enumerated to connect signaling mutants to their gene targets

via candidate TFs/RBPs with up to three intermediate proteins

between the source and TF/RBP (for a total of five interactions).

Candidate path enumeration for each source was performed in an

iterative deepening procedure, which was stopped at the path length

at which at least 50% of candidate TFs/RBPs were reached.

Fitness-contribution hits and hit–source paths Previously, we iden-

tified yeast mutants that conferred a defect in acquired stress resis-

tance after salt pretreatment (Berry et al, 2011). We refer to the

gene products represented by these mutants as fitness-contribution

hits because of the mutation’s negative effect on yeast fitness under

salt stress. Candidate hit–source paths and source–source paths

were generated by finding short paths (including at most one inter-

mediate protein) between these hits and the source proteins, and

between pairs of source proteins. These paths are useful for inter-

preting the fitness-contribution hits in terms of connections to

known regulators.

Phospho-proteomic hits We use this name to refer to the proteins

that showed differential phosphorylation under salt stress.

Receptor–source paths Our method can take advantage of domain

knowledge about the salt stress response in order to provide a scaf-

fold for the inferred subnetwork. Here, we wanted to capture the

most upstream stress sensors that may otherwise be missed in

connecting sources to their downstream targets. We identified

well-known indirect relationships between two transmembrane

receptors, Sln1 and Sho1, and one of the sources, Hog1 (Saito &

Tatebayashi, 2004). We enumerated candidate receptor–source

paths (up to four intermediates) from Sln1 to Hog1 and Sho1 to

Hog1 and provided them as input to the IP method.

Further details on the data and the generation of candidate paths

are available in Supplementary Information 1.2.4. To measure the

contribution of each input data set, we ran computational experi-

ments in which each component was held aside. We also tested the

effect of varying the length of the candidate paths. The results of

these experiments are available in Supplementary Information

Section 2.3 and 2.4.

IP notation and variables

The salt-specific signaling subnetwork is inferred by solving an inte-

ger linear program (IP, for short). We encode the relevance of each

node, edge (physical interaction), and candidate path, and the direc-

tion of each edge, as binary variables. We characterize possible

subnetworks using a set of linear constraints over those binary vari-

ables. Subnetwork inference is performed by choosing a union of

relevant, directed paths that together satisfy our constraints and

optimize a series of successively applied objective functions.

The values of some variables were determined by data provided

as input to the inference process (for example, directions of directed

edges), while others are inferred by solving the IP.

Notation (summarized in Supplementary Table S3) The input to

the method is represented as a graph of nodes N , edges E, and

candidate paths P. A node represents either a protein or a target

gene/mRNA. Protein nodes may belong to one or more of the

following subsets: sources N S, fitness-contribution hits N F ,

phospho-proteomic hits N P, and known membrane receptors N R.

The set N T describes targets, and for a given source node n,

N T ðnÞ, is the set of its targets.

The set of edges is E ¼ ðED [ EUÞ, where ED is the set of directed

edges and EU is the set of undirected edges. We denote an edge e

between nodes ni and nj as e = (ni, nj). N ðeÞ refers to the nodes

connected by a particular edge e, and E ðnÞ refers to the edges that

touch a particular node n.

We consider four subsets of candidate paths P: source–target

paths between sources and their targets PST , hit–source paths

between fitness-contribution hits and sources PFS, source–source

paths PSS, and receptor–source paths PRS that connect known recep-

tor proteins to sources. (Phospho-proteomic hits and additional

fitness-contribution hits may appear in any of these paths.) To refer

to the paths between a specific source s and target t, we use the

notation PST (s, t). We use the same notation to refer to other kinds

of paths with specific endpoints: PFS (f, s) PSS (si, sj), PRS (r, s).

Each path p specifies a direction for each of its undirected edges e,

which is denoted as dir(p, e). E ðpÞ and N ðpÞ refer to the edges and

nodes in a particular path p.

Variables (summarized in Supplementary Table S4) The predicted

relevance of a path p is represented with the variable rp which takes

the value 1 if the path is included in the inferred subnetwork and 0

if it is not. As many as two variables describe each edge. The

predicted relevance of an edge e is represented with the variable xe,

which takes the value 1 if the edge is in at least one relevant path.

For undirected edges in the background network, the variable de
represents the inferred direction of the edge. Each node n has one

variable: yn, representing whether or not the node is present in any

relevant paths. Finally, for all pairs of sources (ni, nj), and also

for all pairs consisting of one source and one fitness-contribution

hit, the variable cij represents whether or not the relevant

subnetwork provides a directed path between the two nodes in

the pair.

IP constraints

The following linear constraints define a subnetwork that, at mini-

mum, provides consistently directed paths between source–target

pairs and receptor–source pairs. Additional constraints are used to

count up the number of connected fitness-contribution hit–source

pairs and source–source pairs. These counts are optimized during

the optimization procedure.

Provide at least one path between each source–target pair Each

source must be connected to each of its targets by at least one rele-

vant path. The following constraint requires that, for each source s,

for each of its targets t, at least one source–target path p in PST (s, t)

from s to t must have rp = 1.

X
source�target paths p inPST ðs;tÞ

rp � 1 for all sources s in N S;
targets t inN TðsÞ (1)

Provide at least one path between each receptor–source pair We

must provide at least one path showing the indirect relationship

between an upstream receptor and a source. Similar to the previous

constraint, this one requires that for each receptor r and each of its

Molecular Systems Biology 10: 759 | 2014 ª 2014 The Authors

Molecular Systems Biology Inferred stress signaling subnetwork in yeast Deborah Chasman et al

16



downstream sources s, there must be at least one receptor–source

path p in PRS (r, s) for which rp = 1.

X
receptor�source paths p inPRSðr;sÞ

rp � 1 for all receptors r in N R;
source s inN s ðrÞ (2)

Record whether or not there is a path between each fitness-
contribution hit–source pair and source–source pair Rather than

require that each of these pairs is connected, we use the optimization

procedure to maximize the total count of connected pairs. We use

the following constraints to count up the number of connected pairs.

If there is a path between a fitness-contribution hit f and a source s,

set the variable cfs = 1. Otherwise, set cfs = 0:

X
hit�sourcepathsp in ðPFSðf ;sÞ[PFSðs;f ÞÞ

rp � cfs�0
for all fitness-contribution
hits f inN F ; sources s inN S

(3)

cfs �rp�0
for all fitness-contribution hits f inN F

;
sources s inN S

; hit�source paths p in
PFS ðf ;sÞ [ PFSðs; fÞ

(4)

Similarly, if source si is connected to source sj, we set cij = 1.

Otherwise, set cij = 0.

X
source�sourcepathsp in ðPSSðsi ;sjÞ[PSSðsj ;siÞÞ

rp � cij�0
for all pairs of sources
ðsi; sjÞ inN S �N S

(5)

cij �rp�0
for all pairs of sources ðsi; sjÞ inN S �N S

;
source�sourcepaths p in PSS ðsi; sjÞ [ PSS ðsj; siÞ (6)

All edges in a relevant path are relevant For an edge e to be

relevant (that is, have xe = 1), there must be at least one relevant

path that contains it (that is, a path p for which rp = 1). Similarly, a

relevant path p must contain all relevant edges e. The set P ðeÞ
refers to the paths that contain edge e.

X
paths p inPðeÞ

rp � xe � 0 for all edges e in E (7)

xe � rp � 0 for all pathsp inP; edges e in E ðpÞ (8)

All nodes in a relevant edge are relevant A node n is relevant if it is

connected to a relevant edge e (where xe = 1). Each node n for a

relevant edge e must be relevant (yn = 1).

X
edges e in EðnÞ

xe � yn � 0 for al l nodesn inN (9)

yn � xe � 0 for all edges e in E; nodesn inNðeÞ (10)

All paths must be uniquely directed For a relevant path p, all undi-

rected edges e in that path (e in EðpÞ ∩ EU) must be uniquely

oriented so that the path proceeds only in one direction. This

required direction for each edge is determined when the candidate

path is generated, and is given by dir(p, e). (For source–target paths,

the required direction allows the path to proceed from the source to

the target.) The term including I(�), the indicator function, returns 1

if an edge’s inferred direction corresponds to the direction that the

path requires for it.

Iðde ¼ dirðp;eÞÞ�rp�0
for all paths p inP;
undirected edges e in EðpÞ \ EU (11)

Solving the IP to find an ensemble of subnetworks

An optimal inferred subnetwork satisfies two goals: maximizing the

inclusion of salt-response-relevant proteins that are supported by

experimental evidence, and minimizing the number of additional

nodes that are necessary for connecting each source to each target.

To achieve this, we apply four successive objective functions. To

accompany the following description, a diagram of the process is

depicted in Supplementary Fig S8.

To model and solve the IP, we used the GAMS modeling system

v. 23.9.3 and the ILOG CPLEX solver v. 12.4.0.1. Both are commer-

cial packages for which an academic license available at a reduced

cost. We provide our GAMS code in Supplementary Dataset S7.

Step 1: Maximize connections between hits and sources This

involves solving the IP to identify max_connections, the maximum

number of connections possible between pairs of sources,

and between pairs of fitness-contribution hits and sources. The

purpose of this step is to reveal proximal connections between salt-

responsive proteins, whether or not they occur between sources and

targets. In this constraint, the set (N S × N S) ∪ (N F × N S) gives all

source–source pairs and fitness-contribution hit–source pairs, and

the sum counts up the number of pairs that are connected by

relevant paths.

max connections ¼ max
X

hit�source pairsðni ;njÞ in ðN S�N SÞ [ ðN F�N SÞ
cij (12)

After optimizing this criterion, we add a new constraint to the IP:

X
hit�source pairsðni ;njÞ in ðN S�N SÞ [ ðN F�N SÞ

cij ¼ max connections (13)

Step 2: Maximize inclusion of fitness and phospho hits Next, we

solve the IP to identify max_hits, the maximum number of fitness-

contribution hits and phospho-proteomic hits that can be included

in the relevant subnetwork. This step prioritizes the use of nodes

with experimental evidence of being relevant to the salt stress

response.

max hits ¼ max
X

nodesn in ðN F [N PÞ
yn (14)

After identifying the maximal number of hits that can be

included in the subnetwork, we add a new constraint to the IP:

X
nodesn in ðN F [N PÞ

yn ¼ max hits (15)

Step 3: Minimize total nodes and find multiple solutions Now, we

solve the IP with a new objective function, which minimizes the

number of nodes required to satisfy all of the constraints. The resulting
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subnetwork will include only those nodes that are required to

explain the experimental data.

min
X

nodesn inN
yn (16)

At this point, we find an ensemble of solutions to the IP,

where each solution identifies a minimum set of nodes (while

still satisfying all other constraints). The CPLEX solver allows for

the identification of multiple solutions. First, the CPLEX solver

uses a branch-and-cut algorithm to find one optimal solution; this

algorithm entails maintaining a tree of linear relaxations of the

IP. Next, the solver proceeds down previously rejected branches

of the tree to identify additional optimal solutions with different

variable settings. For our experiments, we identified 10,000 solu-

tions.

Step 4: Maximize the number of paths in each solution After

predicting the relevant nodes in the previous step, we would like to

see all possible relevant connections between them, to aid in their

interpretation. For each of the solutions identified in the previous

step, we solve the IP again to maximize the number of relevant

directed paths between the nodes included in the solution. This step

does not change the node content of each solution, but instead

reveals all possible directed paths that connect the node set chosen

in the previous step.

For each solution:

First, we introduce constraints to fix each value of yn to its value

from the previous solution, cyn :
yn ¼ cyn for all nodesn (17)

Next, we maximize the number of relevant paths:

max
X

paths p inP
rp (18)

At this point, we assemble the solutions into an ensemble of

inferred subnetworks. Using the ensemble, we assign a confidence

value for a prediction based on the number of solutions in the

ensemble that support the prediction. We performed several experi-

ments to assess the effect of each component of our four-part objec-

tive function, as well as their ordering. These can be found in

Supplementary Information Sections 2.3 and 2.5.

Precision–recall analysis

To assess the predictive accuracy of the ensemble (as shown in

Fig 4B), we curated a list of true positives and a list of likely nega-

tive proteins. True positives were defined as genes previously iden-

tified in the Hog network based on literature curation (de Nadal &

Posas, 2010; Tiger et al, 2012), genes with ‘osmotic’ or ‘osmolar-

ity’ in their Saccharomyces Genome Database (SGD) (Cherry et al,

2012) annotations, and genes with ‘stress regulator’ in their SGD

annotations, if they were also linked to the osmotic response in at

least one publication. In all, this identified 112 true positives.

Likely negatives were taken as genes with no evidence for nuclear

localization and whose GO compartment annotation was ‘mito-

chondrion’, ‘mitochondrial envelope’, ‘peroxisome’, ‘vacuole’,

‘Golgi’, and/or ‘endoplasmic reticulum’. Proteins annotated in SGD

as ‘metabolic enzymes’ were also added to this list of likely nega-

tives. From this list, we removed 32 well-known signaling proteins,

many of which were already on the true positive list; in all, this

left 1,865 likely negative proteins for the network assessment.

Among these test cases, the background network contained 108

positives and 1,512 likely negatives. In order to separate out the

effect of the experimental hits on predictive accuracy, we omitted

all hits from the test cases, leaving 70 true positives and 1,416

likely negatives. For each test case (true positive or likely nega-

tive), we measured the inferred subnetwork ensemble’s confidence

that it is relevant to the salt response. This is calculated as the

fraction of the 10,000 solutions in which the test case appears as a

protein node in the subnetwork.

We compared our ensemble’s precision–recall curve to two

baselines, which we refer to as the candidate baseline (Fig 4B,

green) and permuted baseline (Fig 4B, yellow). For the candidate

baseline, we computed the precision and recall of the test cases

using the complete set of protein nodes present in candidate paths.

For the permuted baseline, we compared the inferred ensemble’s

accuracy to that of a set of 1,000 ensembles inferred using

permuted experimental data. For each of 1,000 permutations, we

randomly drew a set of sources, proteins with fitness defects, and

proteins with phospho-changes from the background network,

equal in number and degree distribution to the true experimental

data. To generate receptor–source pairs, we randomly drew two

proteins from the background network and paired each with a

randomly chosen source. To generate permuted source–target

pairs, for each source, we randomly drew an equal number of

targets from the entire background network. We inferred an

ensemble of 1,000 solutions for each permutation and measured

the confidence of each test case as the average confidence over all

1,000 ensembles.

Ranking of putative ESR bifurcation points

We constructed the salt-relevant ESR consensus subnetwork shown

in Fig 7A and C as follows. First, we gathered three clusters of genes

defined by (Gasch et al, 2000) based on expression profiles under

multiple stress conditions: iESR (induced ESR) and two rESR

(repressed ESR) subclusters, RiBi and RP. Using the protein–nucleic

acid interactions from the background network, we identified poten-

tial transcriptional regulators of the three ESR gene clusters. These

were TFs and RBPs whose targets were enriched for a cluster (deter-

mined by hypergeometric test, using a threshold of FDR = 0.1,

calculated by the Benjamini–Hochberg procedure). For iESR targets,

we identified 25 total potential TFs/RBPs, of which 22 are TFs and

three are RBPs. We found 16 TFs and 10 RBPs for the combined

rESR clusters.

Next, we extracted the consensus source–target paths (having

confidence ≥ 75%) that end in an interaction between an ESR-

relevant TF/RBP and ESR-relevant target gene (of the same cluster).

For each protein node in each ESR-relevant consensus path, we

assigned a label based on the ESR cluster(s) represented by the

downstream ESR-relevant TF/RBPs. These labels were used to

perform the coloring in Fig 7. Finally, we removed the targets that

were not a member of any ESR cluster.

Using the ESR consensus paths, we identified candidate bifur-

cation points, defined as nodes that are upstream of both rESR
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and iESR targets (yellow and orange nodes in Fig 7), according to

how well their outgoing paths show a distinct division between

the induced and repressed clusters. To rank the candidates, we

defined a bifurcation score, B(n), that is related to the concept of

information gain ratio (Quinlan, 1986). B(n) is calculated as

follows. An illustration of this process is provided in Supplemen-

tary Fig S9.

First, we define the count C (T), which counts the number of bits

required to represent the cluster membership of all of the targets in

a set T. Considering the clusters c 2 {iESR, rESR}, let Tc (n) be the

set of targets downstream of n that belong to the ESR cluster c.

CðTðnÞÞ ¼ �
X

clusters c in fiESR;rESRg
jTcðnÞjlog2

jTcðnÞj
jTðnÞj (19)

An ideal bifurcation point would have a high C(T(n)) compared

to the paths that emanate from it. To perform this comparison, we

next calculate C(�) for each of the paths downstream from n. If the

subnetwork were a tree, n’s targets would simply be partitioned by

n’s children. However, since the paths leading out from n’s children

may converge on the same targets, we instead partition T (n) into

disjoint subsets of targets, each of which is reachable via a unique

combination of n’s children. We refer to n’s outgoing partitions as

P1 (n). . .. Pm (n).

After having calculated C(Pi (n)) for each partition, we then

calculate the information gain, I(n), which measures the number of

bits that are saved by partitioning the targets downstream of n:

IðnÞ ¼ CðTðnÞÞ �
Xm
i¼1

CðPiðnÞÞ (20)

Finally, to calculate the bifurcation score B(n), we normalize

I(n) by the split information S(n), which measures the number of

bits required to describe the partition assignment of one of n’s

targets. I(n) is strongly biased toward nodes whose outgoing parti-

tions split each target each into its own partition. The normalized

score B(n) prioritizes nodes that have a small number of (relatively)

cleanly split outgoing paths and many downstream targets.

SðnÞ ¼ �
Xm
i¼0

jPiðnÞj
jTðnÞj log2

jPiðnÞj
jTðnÞj (21)

BðnÞ ¼ IðnÞ
SðnÞ (22)

The complete ranking of the 92 candidate bifurcation points (yel-

low and orange nodes in Fig 7) according to B(n) is available in

Supplementary Dataset S9.

Data availability

Microarray and ChIP-chip data are available in the NIH GEO

database under accession #GSE60613. Proteomic data are available

in the Chorus mass spectrometry repository under accession

#YeastSaltStress.

Supplementary information for this article is available online:

http://msb.embopress.org
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