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Simple Summary: At some point during long-term treatment, gastrointestinal stromal tumors (GIST)
stop responding to treatment due to new genetic changes (mutations). These mutations can be found
in the blood of patients using very expensive methods not covered by insurance. We discovered that
some mutations can be found in the blood when using cheaper methods that are available in most
university hospitals. If the blood was processed immediately, regular blood tubes could be used, and
a robot would be better in isolating the genetic information (DNA). Mutations were easier to find in
patients with bigger tumors. We compared two different methods to analyze the data. Mutations
that were found by both methods were mostly important resistance mutations, but many known
mutations from tumor tissue were missed. Taken together, we think that our method cannot replace
tumor biopsy or radiologic imaging in GIST, but more precise methods have to be investigated in
clinical trials.

Abstract: Circulating tumor DNA (ctDNA) from circulating free DNA (cfDNA) in GIST is of interest
for the detection of heterogeneous resistance mutations and treatment monitoring. However, method-
ologies for use in a local setting are not standardized and are error-prone and difficult to interpret.
We established a workflow to evaluate routine tumor tissue NGS (Illumina-based next generation
sequencing) panels and pipelines for ctDNA sequencing in an academic setting. Regular blood collec-
tion (Sarstedt) EDTA tubes were sufficient for direct processing whereas specialized tubes (STRECK)
were better for transportation. Mutation detection rate was higher in automatically extracted (AE)
than manually extracted (ME) samples. Sensitivity and specificity for specific mutation detection
was higher using digital droplet (dd)PCR compared to NGS. In a retrospective analysis of NGS
and clinical data (133 samples from 38 patients), cfDNA concentration correlated with tumor load
and mutation detection. A clinical routine pipeline and a novel research pipeline yielded different
results, but known and resistance-mediating mutations were detected by both and correlated with
the resistance spectrum of TKIs used. In conclusion, NGS routine panel analysis was not sensitive
and specific enough to replace solid biopsies in GIST. However, more precise methods (hybridization
capture NGS, ddPCR) may comprise important research tools to investigate resistance. Future clinical
trials need to compare methodology and protocols.
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1. Introduction

Gastrointestinal stromal tumor (GIST) is the most common primary mesenchymal
tumor of the gastrointestinal tract [1], with an incidence of 10–15 per million per year [2].
GISTs are characterized by activating mutations in the receptor tyrosine kinases c-KIT
(KIT, 80%) or platelet-derived growth factor receptor alpha (PDGFRA, ~10%) [3,4], which
represent actionable targets for tyrosine kinase inhibitory (TKI) treatment, such as imatinib.
Despite long-lasting disease control in patients with metastatic and/or irresectable GIST,
the development of imatinib resistance is inevitable in most patients. More than 50% will
develop a progressive disease in two years [5]. The most common mechanisms of resistance
to TKI therapy comprise secondary mutations in exons 13, 14 and 17, 18 of KIT as well as
exon 13, 14 and 15 of PDGFRA. For KIT, this affects the activation loop and ATP binding
regions [6], and for PDGFRA, mostly the ATP binding region [7]. An additional layer of
complexity is added by the possibility of multiple different resistance mutations within
one patient [8]. For patients in late lines of treatment a recent trial that used a combination
of both tumor and plasma sequencing revealed a landscape of more than 30 different
mutations [9]. Drugs that inhibit all known secondary mutations with equal efficacy have
not yet been identified [10].

The clinical relevance of detecting resistance mutations—apart from the important
scientific aspect—is still unclear. It is of particular interest whether detection of a resistance
mutation or combination of resistance mutations could positively impact the choice of
drugs or drug combinations. Clearly, single tumor biopsies fail to reveal the full spectrum
of resistance mutations within metastasized patients [9]. Therefore, plasma sequencing
approaches are much more likely—especially in the metastatic setting—to detect the full
degree of genomic heterogeneity of resistance.

A key limitation of plasma sequencing in clinical practice is the lack of reimburse-
ment of in-house assays as well as the high costs of third-party commercial vendors. We
therefore aimed to evaluate the feasibility of cost- and time-efficient plasma processing and
sequencing in GIST in an academic setting.

2. Materials and Methods
2.1. Characteristics of This Study

This study was a retrospective analysis of patient plasma samples and related data
that were provided by the Westdeutsche Biobank Essen (WBE, University Hospital Es-
sen, University of Duisburg-Essen, Essen, Germany). The project was approved by the
institutional Ethics Committee, University of Duisburg-Essen, Germany (12-5279-BO) and
was conducted in compliance with the Declaration of Helsinki. All patients provided
informed consent. In total, 38 patients were included; all patients had a histologically
proven diagnosis of KIT or PDGFRA-mutant GIST. Between November 2010 and January
2017, 103 samples were collected and analyzed.

2.2. DNA Preparation

Blood samples (15 mL) were drawn from patients at multiple timepoints during TKI
therapy and from healthy donors using Sarstedt® 7.5 mL EDTA monovettes (EDTA) or
CELL-FREE DNA BCT® tubes (STRECK®), Streck, Lavista, NE, USA. Blood was centrifuged
immediately upon receipt at 2500 rpm for 10 min. The supernatant (plasma) was collected
and stored at −20 to −40 ◦C.

2.3. Isolation and Quality Control of Free Circulating DNA

cfDNA was isolated manually (ME) using the QIAamp® Circulating Nucleic Acid Kit
(Qiagen, Hilden, Germany) or automated (AE) using the Maxwell RSC ccfDNA Plasma
Kit (Promega, Walldorf, Germany). The DNA content was measured using the Qubit®

Fluorometer (ThermoFisher Scientific, Waltham, MA, USA). DNA quality was analyzed
by capillary electrophoresis using the High Sensitivity D1000 ScreenTape® on an Agilent
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2100 bioanalyzer (Agilent, Santa Clara, CA, USA). All steps were performed according to
manufacturer’s protocols.

2.4. Tumor Volumetry

If computed tomography (CT scan) or magnetic resonance imaging (MRI) was con-
ducted at similar timepoints as plasma sequencing was performed, tumor volume was
measured using the Centricity RIS System, GE Healthcare, Solingen, Germany. On every
5 mm CT slide, tumor tissue was marked by hand two-dimensionally, and 3D-volumes
were calculated.

2.5. Routine Next-Generation Panel Sequencing

Different technologies were compared. All runs were conducted on an Illumina
MiSeq (Illumina, San Diego, CA, USA) by high throughput massive parallel sequencing of
multiplex PCR amplicons. A GeneRead DNAseq Custom Panel V2 and V3 (Qiagen, Hilden,
Germany) was used and a library was generated using NEBNext Ultra DNA Library Prep
Kit for Illumina (New England Biolabs, Frankfurt am Main, Germany) and data were
analyzed using Cancer Research Workbench (CLC Bio, Aarhus, Denmark), Pipeline 1. The
panel contained the following genes and exons in brackets: BRAF (11, 15), EGFR (18–21),
ERBB2 (2, 3, 12, 17, 20, 26), FGFR1 (3, 7, 13, 17), FGFR3 (7, 9), HRAS (2–4) IDH1 (4), IDH2 (4),
KIT (9, 11, 13, 14, 17, 18), KRAS (2–4), MET (3, 8, 11, 14, 19), NRAS (2–4), PDGFRA (12, 14, 18),
PIK3CA (3, 5, 10, 16, 21), RET (7, 10, 11, 13–16), STK11 (1–9), TP53 (2–11). Different versions
of Qiagen MiSeqDx reagent kits were used: V2 was compared to V3, which—according to
manufacturer’s information, “features improved sequencing by synthesis (SBS) chemistry,
resulting in higher cluster densities, read lengths, and quality scores compared to previous
versions“ [11].

2.6. Research Pipeline (Pipeline 2)

For research purposes a Snakemake [12] pipeline: dna-seq-varlociraptor [13] was
adapted. Fork of this pipeline with changes, versions and settings of algorithms are
accessible on https://github.com/BauerLaboratory/dna-seq-varlociraptor/tree/cfDNA
(accessed on 27 September 2022). In summary, the raw panel sequence data were aligned
with BWA-MEM [14] to GRCh38 genome reference from Ensembl (release 106). Primer
sequences were trimmed (fgbio [15]), bases recalibrated (GATK [16]) and candidate variants
(single-nucleotide variants, small insertions and deletions) were called with Freebayes [17]
and Delly [18]. Final variant calling was performed with Varlociraptor [19] (events with
variant allele frequency ≥0.01). After annotation with Variant Effect Predictor [20], events
with moderate and high impact were filtered. Final filtering was conducted with Var-
lociraptor by controlling false discovery rate at 1%. All mutations detected were classi-
fied according to databases COSMIC v96, ClinVar (v20220624), JAX CKB (accession date
12 August 2022).

2.7. Droplet Digital PCR

Droplet digital PCR was conducted to detect KIT exon 13 V654A and KIT exon 14 T670I
mutations. Reagents and custom-designed primer/probe mixes were obtained from Bio-
Rad Laboratories (Feldkirchen, Germany). Samples of 25 µL containing ddPCR supermix
for probes, primer/probe mix (see Table 1 for primer and probe sequences), DNA template
and water were prepared in duplicates on a 96-well plate. Every run contained positive
and negative controls and no template contamination controls (NTC) controls. Droplets
were generated using the Biorad Droplet generator according to manufacturer’s protocol
and transferred to a new 96-well plate. PCR was performed on a Bio-Rad T100 Thermal
cycler (Bio-Rad, Herkules, CA, USA). PCR temperature steps were enzyme activation at
95 ◦C for 10 min, 45 cycles of 94 ◦C denaturation (30 s) and 58 ◦C annealing/extension
(60 s), enzyme deactivation for 10 min at 98 ◦C and infinite hold at 4 ◦C. Afterwards, the

https://github.com/BauerLaboratory/dna-seq-varlociraptor/tree/cfDNA
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plate was read by a QX200 Droplet Reader (Bio-Rad), and results were analyzed using
Quantasoft Version 1.7.4.0917 software (Bio-Rad).

Table 1. ddPCR primer and probe sequences used for ddPCR.

Target Forward Primer
Sequence

Reverse Primer
Sequence

Mutant Probe
5′ → 3′ FAM

Wild-Type Probe
5′ → 3′ HEX

KIT exon 13 V654A TCCTGTATGG
TACTGCATGC

GAGAGAACAA
CAGTCTGGGT

TGGTGCAGG
CTCCAAGTA
GATTCGCA

TGGTGCAGG
CTCCAAGTA
GATTCACA

KIT exon 14 p.T670I ATGGGAGGCA
GAATTAATCT

GATCTTCCTGC
TTTGAACAA

CCCACCCTG
GTCATTAT
AGAATA

CCCACCCTG
GTCATTACA

GAATA

2.8. Cell Lines and Reagents

GIST cell lines established from human GIST have been described previously [21].
GIST cell lines GIST-T1 and GIST430 are imatinib-sensitive. GIST-T1 contains a 57-bp
deletion in KIT exon 11 [22] and GIST430 has a KIT exon 11 deletion (51 bp del V560-Y578).
GIST-T1 subline GIST-T1-V654A was genetically modified using CRISPR/Cas9-mediated
gene editing [23]. The subline GIST-T1-T670I was generated by selective pressure (imatinib
treatment) and was kindly provided by Brian Rubin, Cleveland Clinic, Cleveland, Ohio.
Both cell lines are heterozygous for point mutations, leading to 2–3/5 mutant copies
per cell.

2.9. Statistical Analyses

Statistical analyses were conducted using IBM SPSS statistics 27 (IBM, Ehningen, Ger-
many), and GraphPad Prism version 5.0.0 for Windows, GraphPad Software,
(San Diego, CA, USA). Tests performed for statistical correlation were Kruskal–Wallis
tests, adjusted for multiple testing, and Mann–Whitney U test as well as Welch tests.

3. Results
3.1. EDTA Blood Sampling Tubes Require Immediate Processing

In most parts of Germany, plastic EDTA monovettes (e.g., Sarstedt) are used for routine
blood withdrawal. Specialized DNA-stabilizing tubes (e.g., STRECK) require adaptors
and withdrawal sets unfamiliar to the staff, which may prolong (or even prevent) blood
withdrawal. We therefore evaluated the differences in cfDNA content in pre-defined clinical
scenarios that could impact the quality of cfDNA (storage time, storage temperature and
physical stress due to transport), comparing standard tubes and STRECK tubes as displayed
in Figure 1A. Higher cfDNA amounts were assumed as normal cell free DNA contamination.
Full blood of three healthy donors was drawn in Sarstedt monovettes (EDTA) and STRECK
tubes (STRECK), respectively, and 2 mL each was separately processed before storage at
−20 ◦C. One aliquot of each sample was directly processed, and others were each kept for
72 h at 4 ◦C or room temperature (RT) with and without slow rotation (1 s−1), respectively.
Next, cfDNA was extracted manually and cfDNA concentrations were compared. Instant
processing consisted of centrifugation within 10 min after blood withdrawal and freezing
at −20 ◦C, and led to a median DNA concentration of 8.9 ng/µL in STRECK tubes and
6 ng/µL in EDTA monovettes, respectively. After 72 h at 4 ◦C, median cfDNA concentration
was stable in STRECK tubes (7.8 ng/µL, factor 0.9) and doubled in EDTA tubes (11.1 ng/µL,
factor 1.9). Additional rotation—mimicking physical stress by transportation—increased
cfDNA concentrations by 1.7-fold (15.3 ng/µL) in STRECK and 3.2-fold (13.8 ng/µL) in
EDTA tubes, respectively. The highest concentrations of cfDNA were observed after 72 h at
room temperature (4.6-fold; 23.7 ng/µL), which was further elevated by additional rotation
(45-fold; 70.0 ng/µL); in EDTA tubes, this effect was less pronounced than in STRECK
tubes (factors 1.8 (13.8 ng/µL) and 5.1 (36.9 ng/µL), respectively, Figure 1A).
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Figure 1. Impact of storage time, storage temperature and physical stress due to prolonged transport
of samples on cfDNA concentrations. (A) cfDNA concentrations rise over time and physical stress.
S: STRECK tubes; E: EDTA tubes; Temp.: temperature. (B) cfDNA content of immediately processed
blood samples from EDTA and STRECK tubes. Lines connect samples of one patient. Black: median.

Next, blood was drawn from 12 patients into EDTA and STRECK tubes and processed
immediately. Following AE, cfDNA concentrations were comparable between both groups
(medians of 0.1 ng/µL each, Figure 1B).

3.2. Impact of Isolation Protocol on cfDNA Yield and Detection of Mutations

Circulating free DNA analyses are not part of routine blood laboratory testing work-
flows in many institutions. We therefore (retrospectively) compared two commonly used
methods in a pathology and research environment to isolate DNA from 133 plasma samples.
In 10 patients, a side-by-side comparison was possible. For manual extraction (ME), we
used the QIAamp circulating nucleic acid kit, which yielded a median concentration of
62 ng/mL plasma (range: 12 ng to 948 ng; n = 62). For automated extraction (AE), the
Maxwell RSC ccfDNA Plasma kit was used, resulting in a significantly lower median
DNA concentration of 3.55 ng/mL plasma (range: 0.03–48.23 ng/mL; n = 70; p = 0.00003;
Figure 2A). In contrast, we detected known KIT or PDGFRA primary mutations in only
3/50 samples (6%) following ME, while AE yielded detection of 13/64 (20%), p = 0.02.
These displayed a trend towards higher median cfDNA concentrations than those without
detectable mutations when AE was used (Median STRECK: 19.64 vs. 2.33 ng/mL plasma,
p = 0.14; EDTA 8.97 vs. 3 ng/mL plasma, p = 0.11). For ME samples, DNA concentration
was higher when no primary mutations were found (EDTA 17.38 vs. 62.75 ng/mL plasma)
(Figure 2B). In these 10 samples, isolated by both methods, concentrations were 1.2–64-fold
higher using ME (median ME: 50.1; AE 6.3 ng/mL plasma). Primary mutations were
detected in 4/10 using AE and in 2/10 using ME. Importantly, analyses of AE and ME
samples were conducted using either V3 or V2 technology, respectively, which may be a
confounder for direct comparisons.

3.3. Implementation of Panel NGS of Plasma Using Clinical Routine Panels: Sequencing Artifacts
as a Pitfall

Panel sequencing of plasma samples using Qiagen MiSeq DX V2 reagent kits by ME
revealed a multitude of mutations in KIT and PDGFRA at low variant allelic fractions
(VAF). Primary mutations were detected in 12 samples of seven patients (total: 38 patients,
123 samples) and only one previously identified secondary mutation in a single patient
(Figure 2B). To validate low-abundance reads and exclude possible PCR or sequencing
errors, healthy donor control plasma was analyzed using two different pipelines. One is
used in clinical routine and the other was specifically developed for research purposes.
Analysis of 10 healthy donors’ cfDNA (five male, five female) by V2 technology revealed
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no known secondary resistance mutation in the ATP-binding pocket or the activation loop
of KIT. However, several point mutations at low VAF (median 1.09% (0.52–1.89%)) rated
pathogenic by fathmmMKL score in the COSMIC database [24] were detected. Recurrent
mutations were found in different healthy donors using the routine panel 1: KIT V559A
in 5/10, N680K and V569A in 2/10, respectively (Supplemental Table S1), at a coverage
between 20 and 3280. Of note, we found no mutation that could be simultaneously detected
by both pipelines. Due to the high noise detected in these samples using V2 technology, we
switched to the Qiagen MiSeqDx Reagent Kit V3 in all subsequent analyses.
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content in automatically and manually extracted (AE; ME) cfDNA of directly processed EDTA-
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To assess the recovery rate of known mutations by NGS and digital droplet PCR
(ddPCR), we conducted spike-in experiments with GIST cell lines. Using panel sequencing,
healthy donor plasma was spiked with 2% DNA of GIST882 carrying a KIT exon 13
mutation and GIST430, carrying a KIT exon 11 deletion. The recovery rate was 1.49%
and 1.52%, respectively. To determine sensitivity and specificity of ddPCR primers and
probes for KIT V654A and T670I mutations, parental GIST-T1 DNA was spiked with mutant
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cell-line DNA. No template controls (NTC) did not show false positives. In parental cell
lines, wild-type droplets were detected but no false-positive droplets. Concentrations as
low as 0.1 ng mutant DNA could still be detected with V654A and T670I primer-probe
pairs. Importantly, using high amounts of healthy control cfDNA (174 ng), no false-positive
droplets were detected (Supplemental Figure S1).

3.4. Analysis of GIST Patient Plasma Samples

Patient and sample characteristics: We included 38 patients in our analysis. Primary
localization was small intestine in 23/38 and stomach in 8/38. One-third of patients
carried liver or peritoneal metastases, whereas 18% had both. Plasma samples were mainly
obtained from metastatic patients (36/38). The primary mutational status of KIT/PDGFRA
was known in all patients. Nine of thirty-eight patients had confirmed KIT/PDGFRA
secondary mutations (Table 2).

Table 2. Patient and sample characteristics.

AGE (DIAGNOSIS) Median: 50.5 years (27–76)

GENDER Male: 25 (66%)
Female: 13 (34%)

PRIMARY TUMOR LOCALIZATION Gastric: 8 (21%)
Small intestine: 23 (61%)

Rectum: 2 (5%)
Other: 5 (13.2%)

METASTASIS LOCALIZATION Liver: 12 (32%)
Peritoneum: 12 (32%)

Both: 7 (18%)
Other 6 (16%)

DISEASE STATUS AT DIAGNOSIS Localized 22 (58%)
Metastatic 16 (42%)

DISEASE STATUS AT FIRST PLASMA
SEQUENCING Localized 2 (5.2%)

Metastatic 36 (94.7%)
PRIMARY MUTATION KIT exon 9 10 (26%)

(TUMOR TISSUE) KIT exon 11 24 (63%)
KIT exon 17 1 (3%)

PDGFRA exon 18 3 (8%)
SECONDARY MUTATIONS KIT exon 11 1 (3%)

(TUMOR TISSUE) KIT exon 13/14 1 (3%)
KIT exon 17/18 7 (18%)

PDGFRA exon 14 1 (3%)
None: 28 (73%)

NUMBER OF SAMPLES PER PATIENT 1 12 (31.6%)
2 11 (28.9%)
3 5 (13.2%)

>3 10 (26.3%)
TECHNOLOGY V2 87 (64.4%)

V3 48 (35.6%)

- Samples with V2 and V3 21

DNA-ISOLATION METHOD Qiagen 63 (46.7%)
Maxwell 72 (53.3%)

BLOOD TUBES STRECK 14 (10.4%)
EDTA 121 (89.6%)

- EDTA and STRECK 12 (8.9%)
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3.5. Location and Tumor Size May Determine Shedding Rates

To evaluate the impact of primary tumor and metastasis location on cfDNA concentra-
tion, Kruskal–Wallis tests were conducted. The median cfDNA concentration following AE
was higher in patients with liver and peritoneal metastases compared to liver or peritoneum
alone (liver and peritoneum n = 25 median 0.33 ng/µL; liver n = 22, median 0.12 ng/µL;
peritoneum n = 23 median 0.2 ng/µL, liver vs. liver and peritoneum: p = 0.005, Figure 3A).
These relations were not observed in samples isolated manually (liver and peritoneum
n = 22 median 3.76 ng/µL; liver n = 6, median 7.74 ng/µL; peritoneum n = 22 median
4.48 ng/µL). cfDNA concentrations of healthy donors were comparable to GIST patients
(n = 10, Median 4.29 ng/µL, Figure 3A). Tumor volumetry was conducted on CT and MRI
scans in 22 cases. Tumor volume did not correlate with ctDNA concentrations or detection
of known primary KIT mutations (Figure 3B). However, the median tumor volumes were
417 mL in patients with any detectable KIT mutation and 158 mL in those without (p = 0.3;
Figure 3C). The cfDNA concentration was then correlated with radiological response. In
AE samples concentrations were significantly higher in patients with progressive disease
(n = 45, mean 0.53 ng/µL dilution buffer, STD 0.77) compared to stable disease (n = 18,
mean 0.15 ng/µL, STD 0.16; p = 0.003).
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3.6. Distribution of KIT/PDGFRA Mutations from 133 Plasma Sequencing Analyses

The KIT mutations found in our plasma analyses were then compared to tumor
samples. Primary mutations were detected in 12/135 samples of 7/38 patients. The
detection of deletions of >2 amino acids was significantly lower compared to smaller
deletions (5/43 vs. 7/22, respectively, p = 0.043). A known secondary mutation was
detected in one sample. As resistance mutations do occur in KIT exons 13, 14, 17 and
18, only these exons were included in our further analyses. All secondary mutations
were categorized according to their clinical significance as stated in databases COSMIC,
ClinVar, JAX CKB and our institutional GIST patient database (Figure 4A). Furthermore,
63% of all mutations were reported. Of those, five different mutations were reported and
validated in GIST tumors (K642E, V654A, T670I, D820N, N822K) and an additional five
(D820E/G/Y, N822Y, Y823D) were found in our institutional database. A further 28 were
classified pathogenic and 2 of unknown potential by COSMIC FATHMM score. Seven
single nucleotide variants (SNVs) of unknown significance were found and 39 mutations
were not reported (Figure 4B).

During this project, bioinformatic pipelines were improved. To evaluate the progress
with a focus on detection of sequencing errors and false positives as well as improvement of
sensitivity and minimizing false negatives we analyzed the raw data again using the open-
access dna-seq-varlociraptor pipeline (Pipeline 2). Using a false discovery rate of 1%, the
analysis revealed 182 mutations in KIT, of which 53 were detected with both pipelines. Of
these mutations, 10 were known primary mutations and one a known secondary mutation.
Of note, pipeline 2 detected two primary exon 9 duplications (A502_Y503dup) not detected
by the routine pipeline. Seven of the detected mutations in KIT exons 13, 14, 17, and 18
were validated GIST resistance mutations. The novel pipeline detected 15 known primary
mutations in five patients and 3 known secondary mutations in two patients.

3.7. Evolution of Primary and Secondary Mutations of Known Malignant Potential
during Therapy

We then evaluated the detectability of primary and secondary mutations with known
malignant potential in GIST in our cohort. To identify timepoints with a higher probability
of detection we first analyzed six patients with more than four longitudinal samples
(Figure 5). All patients had visible disease at all timepoints in correlating CT/MRI scans
and the radiologic response state to the current drug was documented. In this cohort, the
number of mutation-positive samples per patient ranged between 20% (2/10) and 57%
(4/7). Most mutations were detected at progressive disease state. To validate these results,
disease status and detection rate for known resistance mutations were correlated in the
whole cohort. The detection rate was 14% (5/37) at stable disease (SD) and 27% (20/73)
at progressive disease (PD) state. There was no difference in the proportion of positive
samples for these mutations comparing V2 and V3 technology following AE (primary
mutations: V2 18% (4/22) vs. V3 21% (9/42); secondary mutations: V2 17% (4/24) vs. V3
15% (7/46)).

Several publications indicate differential sensitivity of KIT resistance mutations to-
wards tyrosine kinase inhibitors [25]. We analyzed the detected resistance mutations with
regard to TKI resistance profiles (Table 3). All exon 13 mutations resulted in the V654A ex-
change, whereas exon 17 mutations comprised D820E/G/Y, N822K/Y, N822_Y823delinsKH,
and Y823D. The highly TKI-resistant exon 17 D816V mutation was reported separately. In
most cases, the outgrowth of mutations fitting the known resistance spectrum was observed
except for ponatinib, where mainly exon 17 mutations occurred in 5 of 10 samples.
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Figure 5. Longitudinal assessment of KIT mutations in GIST patients. Variant allele fractions (VAF)
are displayed for each timepoint. Mutations of each exon were grouped. In case of multiple samples
per timepoint mean VAF is shown. Y: yes; PD: progressive disease, SD: stable disease, PR: partial
remission; IM: imatinib, SU: sunitinib, RE: regorafenib; NI: nilotinib; PO: ponatinib; OT: other; PA:
pazopanib; SP: sunintib + ponatinib; CA: cabozantinib; WT: wild-type; 11: exon 11; 9: exon 9.

Table 3. Detection of resistance mutations subdivided by TKI. Expected resistance is shown by color
(red: resistant, yellow: intermediate, green: sensitive, grey: unknown).

Untreated Imatinib Sunitinib Regorafenib Pazopanib Avapritinib
Sunitinib

and
Sirolimus

Ponatinib Nilotinib Other

n = 11 n = 34 n = 14 n = 18 n = 11 n = 3 n = 2 n = 13 n = 10 n = 7

Exon 13 0 1 0 0 1 0 0 0 0 0

Exon 17 0 4 1 1 0 0 2 4 5 0

Exon 17 D816 0 2 0 3 0 0 0 0 0 1

Exon 13 and 17 0 1 0 0 0 0 0 0 0 1

3.8. The Costs for Periodical ctDNA Testing Are Comparable to Radiological Imaging

We tried to evaluate the costs of plasma sequencing compared to regular CT or MRI
imaging. Costs were calculated according to the German cost calculation for treatments
and diagnostic in patients with state-mandated health insurance “EBM” (einheitlicher
Bewertungsmaßstab der Kassenärztlichen Bundesvereinigung), Table 4, [26]. We found
that costs using our workflow slightly exceeded costs for regular radiological imaging by
22.29–58.89 € as far as comparisons are suitable.

Table 4. Costs of radiological imaging compared to cfDNA analysis.

Cost per Sample (€)

EBM Research Costs

CT Scan MRI Scan CT-Guided Biopsy NGS Panel
Sequencing

ddPCR per Sample and
Mutation

abdominal CT 80.54 abdominal MRI 117.14 biopsy 103.93 STRECK tube 10.50 STRECK tube 10.50

contrast agent 24.03 contrast agent 24.03 DNA Extraction 26.25 DNA Extraction 26.25 DNA extraction
(Maxwell) 20.83
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Table 4. Cont.

Cost per Sample (€)

EBM Research Costs

CT Scan MRI Scan CT-Guided Biopsy NGS Panel
Sequencing

ddPCR per Sample and
Mutation

infusion 7.45 infusion 7.45 flagfall fee 16.13 flagfall fee 16.13 primers and
probes 5.60

flagfall fee
tumorgenetics 42.61 flagfall fee

tumorgenetics 42.61 ddPCR reagents 5.12

Mutation analysis
per 250 bp 75.42 Mutation analysis

per 250 bp 75.42 ddPCR
consumables 6.40

personnel costs 8.33

total 112.02 total 148.62 total 264.34 total 170.91 total 56.78

4. Discussion

Plasma sequencing using next-generation sequencing is an emerging companion
diagnostic technology for various indications such as BRCA1/2 testing in ovarian cancer,
ALK rearrangements in lung cancer and PIK3CA gene mutations in breast cancer patients
eligible for treatment with alpelisib [27].

A multitude of clinical trials have evaluated the detection of KIT primary mutations
in a neoadjuvant/adjuvant setting in localized disease. A single-center study from Sweden
was able to detect known primary mutations in 9/32 patients and 22 of 161 plasma samples.
However, this was mainly during surgery or progression but not after complete resection
using simple, multiplexed, PCR-based barcoding of DNA for sensitive mutation detection
using sequencing (SiMSen-Seq). Primary mutations were detectable in two patients at the
time of progression [28]. Using NGS, Kang et al. were able to detect KIT mutations in 13/18
cases before treatment and surgery. Interestingly, in tumors with KIT deletions, only point
mutations in the affected gene stretch were detected [29].

In the context of metastatic GIST, cfDNA analyses have been used as a research tool
that can help to detect novel resistance mutations but also to better understand the level of
genomic heterogeneity of resistance [7,9]. However, treatment sequence in metastatic GIST
solely relies on the order of the registration trials and not on detection of specific resistance
mutations. Sunitinib and regorafenib have highly differential activity on ATP-binding
pocket and activation loop mutations [10] and it is tempting to assume that the presence of
these mutations in plasma could be predictive of response and also guide the treatment
sequence in GIST.

However, to our knowledge, plasma sequencing has not been confirmed to have
a meaningful clinical benefit by prospective clinical trials in metastatic GIST. Moreover,
plasma sequencing is not reimbursed by health insurances in most European countries
and commercial vendors still remain expensive, with rates of up to USD 5000 for a single
analysis with the most advanced technology [30]. The development of academic testing
could greatly decrease cost and allow prospective testing in a routine setting.

In this project, we sought to evaluate the feasibility and reliability of plasma sequencing
in GIST using pre-existing panel NGS workflows and at the same time establish a cost- and
time-efficient protocol for sample processing and biobanking at a European high-volume
sarcoma center.

In clinical practice, plasma sequencing remains a rare exception. Outpatient specimen
collection for the vast majority of patients includes potassium EDTA tubes, serum tubes, or
sodium citrate tubes. Plasma sequencing by commercial providers typically requires cell-
stabilizing blood-collection tubes in order to prevent contamination of plasma by cellular
DNA from white blood cells [30,31]. These tubes are 100-fold more expensive than regular
EDTA tubes (EUR 0.13 vs. 12.76 [32,33]). In addition, special needle adapters are required
to use these test tubes with regular blood draw kits in many countries. However, we show
that potassium EDTA tubes allow plasma collection for circulating DNA when storage
conditions and processing time are well defined. From an economical perspective, the use of
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EDTA tubes would therefore be desirable. In an experimental setting, we compared blood
cell stability in regular EDTA tubes with STRECK DNA blood-collection tubes and found
similar amounts of cfDNA when samples were immediately (within 10 min) processed.
Notably, when EDTA tubes were kept at 4 ◦C without mechanical stress, cfDNA remained
stable. However, room temperature and mild physical stress increased plasma DNA levels
dramatically in EDTA tubes but much less in STRECK tubes. Therefore, the use of EDTA
tubes for plasma sequencing should be limited to a setting where immediate processing
can be provided or samples can be kept in cool storage without longer transportation
(Figure 1). Unfortunately, the small number of samples collected with STRECK tubes in
our study does not allow further conclusions, but previous studies have clearly shown
the advantages of STRECK tubes [34]. Therefore, when setting up plasma sequencing
workflows, the requirement of immediate manual sample processing needs to be weighed
against the higher costs of specialized DNA-conserving tubes. Most studies about plasma
sequencing in GIST used normal EDTA tubes and processing within 4–24 h [35–39] while
blood collected in STRECK tubes was processed within 7 days [31,35,40].

DNA preparation is more commonly performed in molecular pathology laboratories
and not in routine laboratories that process blood samples. Plasma sequencing workflows
therefore need to incorporate standardized DNA-extraction protocols to ensure compara-
bility. Notably, the majority of studies in GIST used manual extraction [31,35–37,39–41]. In
line with previous studies of van der Leest et al., in our experiments, manual extraction
yielded higher rates of cfDNA compared to an automated extraction [42]. This can be
explained by the higher concentrations of long DNA fragments after column-based ME.
However, ctDNA has been shown to consist of mostly short fragments (90–150 bp) which
are enriched in the automated protocols that use magnetic beads for isolation [43]. This
may explain why in our study the detection rate of mutant DNA was higher with the AE
despite lower yields of cfDNA. Based on these results, we completely switched from ME to
AE for future studies.

To evaluate the feasibility of plasma sequencing, we performed panel NGS using
routine panels and pipelines designed for GIST tumor pathology. During the course of this
project, Qiagen technology was further developed from V2 to V3 to improve sequencing-by-
synthesis results to reduce artifacts. The ongoing development of this project over several
years led to the use of different NGS panels and analysis pipelines as well as DNA-isolation
methods. However, the KIT and PDGFRA exons covered did not change and there was no
difference in the detection rate of primary mutations and secondary mutations commonly
found in GIST comparing V2 and V3 technology. Based on these results, we decided to pool
all results to analyze the clinical relevance and to identify timepoints with a high likelihood
of detection and useful therapeutic readout.

We found that cfDNA concentrations were higher in combined liver and peritoneal
metastasis and tumor volume was higher in the any-mutation-positive cohort. However,
these results were not significant and CT/MRI measurements did not consider changes
in density as recommended in CHOI criteria [44]. Additionally, progressive disease was
an indicator for higher cfDNA concentrations and detection of characteristic secondary
resistance mutations, consistent with previous studies in GIST [37,40]. As GIST tumors are
very heterogeneous, KIT amplification might occur and most mutations are heterozygous,
we are not able to conclude on the percentage of circulating tumor DNA fragments within
the total amount of cfDNA. This might impact on the correlation of tumor load and
cf/ctDNA amount.

Apart from known pathogenic KIT-mutations, routine pipelines detected a multitude
of mutations with unknown or uncertain oncogenic potential. We evaluated a novel, open-
access research pipeline in order to compare its ability to differentiate sequencing errors
from pathogenic mutations. Notably, previously unknown variants called by the research
pipeline differed from those detected by the commercial pipeline that was used previously.
Mutations detected by both pipelines were mainly known as GIST primary and secondary
mutations. Of note, the open-access research pipeline was able to detect primary Exon
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9 duplications in two cases that were not detected by the commercial pipeline, as well
as three known secondary mutations in two patients (vs. one mutation in one patient by
pipeline 1). One study comparing sequencing results of different NGS plasma sequenc-
ing vendors (carcinoma subtypes) reported false-positive results mainly at Variant allele
fractions (VAF) below 1% and reliable results at VAF > 10%. Most false-positive and
false-negative results were technically explained by background noise and bioinformatics
filtering thresholds [45]. KIT mutations caused by non-malignant clonal hematopoiesis
were not reported [46]. We conclude that an open-access variant-calling pipeline is ef-
fectively able to identify pathogenic KIT variants in plasma. However, regular panel
sequencing as optimized for tumor biopsies is prone for amplifying KIT variants that
are presumably not activating and likely represent background noise. The knowledge
about specific resistance-mediating mutations in GIST is crucial to distinguish between real
mutations and sequencing errors.

Our data and other publications [37,47] do not support reliable replacement of solid
biopsies by ctDNA analysis, yet. As cfDNA sequencing has similar costs to tumor NGS
and costs for tumor biopsies are avoided, plasma sequencing may yield an overview of
emerging resistance and may thus be clinically useful in GIST. However, results will be
less reliable using routine panel sequencing. Multiple vendors offer hybridization capture-
based NGS analyses that lead to improved detection rates also in GIST cohorts (NGS
Guardant 360: n = 162.56% sensitivity, 100% tissue—plasma concordance in metastatic,
high disease burden, TKI-refractory patients [31]). Multiple clinical trials in GIST used this
method to detect primary and secondary mutations [31,48], so this method is suitable to
gain an overview of existing, unknown mutations. However, these methods are expensive
and not yet covered by health insurance. While ddPCR is limited to known mutations
and by the number of mutations to be detected by multiplexing, it is highly sensitive and
specific. A recent presentation has shown that ATP-binding-pocket mutations were a strong
negative predictor of avapritinib activity in KIT mutant GIST [48]. The vast majority of these
mutations, particularly in earlier treatment lines, consists of V654 and T670 substitutions. A
prospective trial would ideally evaluate the detection as well as VAF, particularly in drugs
with activity against the activation loop using ddPCR. However, the different methods of
ctDNA analysis in an academic setting need to be further evaluated in prospective clinical
trials to harmonize plasma collection, processing and analysis for cost-effective, comparable
and reliable results in GIST.

5. Conclusions

In patients with imatinib-refractory GIST, ctDNA analysis can frequently detect re-
sistance mutations, but its clinical value is not yet confirmed. Using pipelines that are
optimized for tumor tissue analyses poses the risk of false-positive findings which can be
reduced using novel variant-calling pipelines. ctDNA analyses in GIST can be performed in
an academic setting but they are labor intensive and will require reimbursement by health
insurance in the future. Increasing the accuracy of next-generation sequencing, knowledge
of sequencing errors and consecutively improved bioinformatics pipelines will hopefully
improve the cost-effective detection of ctDNA mutations in the future. Until then, ddPCR
might be ideal for the detection and monitoring of known mutations in routine scenarios,
but panel sequencing with improved specificity, such as hybrid capture approaches, will be
preferred in the research setting [7].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14225496/s1, Figure S1: ddPCR spike-in experiments
to determine sensitivity and specificity for T670I and V654A primer-probe-pairs, Table S1: Genetic
aberrations detected in healthy donor controls.
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