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Abstract

Background and Purpose: To correlate changes of various CT parameters after the neoadjuvant treatment in patients with
lung adenocarcinoma with pathologic responses, focused on their relationship with different therapeutic options,
particularly of EGFR-TKI and concurrent chemoradiation therapy (CCRT) settings.

Materials and Methods: We reviewed pre-operative CT images of primary tumors and surgical specimens obtained after
neoadjuvant therapy (TKI, n = 23; CCRT, n = 28) from 51 patients with lung adenocarcinoma. Serial changes in tumor volume,
density, mass, skewness/kurtosis, and size-zone variability/intensity variability) were assessed from CT datasets. The changes
in CT parameters were correlated with histopathologic responses, and the relationship between CT variables and
histopathologic responses was compared between TKI and CCRT groups.

Results: Tumor volume, mass, kurtosis, and skewness were significant predictors of pathologic response in CCRT group in
univariate analysis. Using multivariate analysis, kurtosis was found to be independent predictor. In TKI group, intensity
variability and size-zone variability were significantly decreased in pathologic responder group. Intensity variability was
found to be an independent predictor for pathologic response on multivariate analysis.

Conclusions: Quantitative CT variables including histogram or texture analysis have potential as a predictive tool for
response evaluation, and it may better reflect treatment response than standard response criteria based on size changes.
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Introduction

Locally advanced non-small cell lung cancer (NSCLC) has a

dismal prognosis with a median overall survival (OS) of 25–35

months despite multimodal treatment including radiation therapy

(RT), chemotherapy and surgery [1,2]. Induction concurrent

chemoradiation therapy (CCRT) is known to result in short-term

gross tumor volume reduction, with aggressive locoregional

control. Previous studies demonstrated variable responses with

volume reduction averaging 38% to 73% [3], with improved

survival compared with the treatment of surgery alone [4]. This

may be explained by the potent local control effect of irradiation.

Therefore, there is a need for studies directed toward predicting

treatment benefit versus risk of treatment failure. Clinically, such

predictors would allow further individualization of treatment

during radiotherapy [5].

On the other hand, during the last decade, several molecular-

targeted agents—for example, epidermal growth factor receptor

tyrosine kinase inhibitors (EGFR-TKIs) such as erlotinib and

gefitinib—have emerged for treatment of NSCLC [6], as well as in

the neoadjuvant setting, which has also shown to be effective in a

subset of patients with NSCLC [7–10]. Furthermore, although

TKI agents are most active in patients with an EGFR mutation,

patients without documented mutation still showed survival benefit

compared with placebo [9].

With the advancement in imaging techniques and their

increasing application to oncology practice, imaging-based tumor

volume regression rate evaluated at mid-RT has been shown to

predict local control rate and disease-free survival (DFS) after RT
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or CCRT [11,12]. In addition, quantitative measurement of

tumor regression rate becomes more realistic with the use of

imaging — particularly during therapy when the morphologic

changes remain subtle and difficult to assess by clinical examina-

tion [12,13]. Evaluation of treatment response to TKI agents is

also challenging. It is well established that the conventional

RECIST underestimates response rates than the proportion of

patients who actually experience clinically effective disease control

[7,10,14–20]. Since TKI agents aim for inhibition of tumor cell

growth, but not necessarily tumor cell death, tumor response may

not emerge as early decrease in tumor size [19]. Very recently,

histogram analysis or texture analysis is receiving attention as a

method for quantifying tumor heterogeneity and evaluating

treatment response [14,21,22].

Here, the question remains which is more effective to predict

treatment response in the various imaging-based quantitative

assessment methods, and whether or not each method acts

differently depending on therapeutic regimen.

Given the need for clinical validation of any updated analysis

tool, our main objectives were to identify differences in serial

changes of various CT-based parameters in patients with lung

adenocarcinoma scheduled to undergo surgical resection after

neoadjuvant therapy, and to correlate those changes with

pathologic responses, focused on their relationship with different

neoadjuvant therapeutic options, particularly of EGFR-TKI and

concurrent chemoradiation therapy (CCRT) settings.

Materials and Methods

The institutional review board of Samsung Medical Center

(SMC IRB) approved this retrospective study with a waiver of

informed consent.

Patients
From September 2005 through December 2011, 398 patients

with stage IIIA NSCLC underwent curative surgical resection of

lung cancer at our institution, after neoadjuvant treatment

(chemotherapy, radiation therapy, or both). Among these patients,

patients with pathologically proven adenocarcinoma were only

included, while other histologic subtypes (such as squamous cell

carcinoma, large cell carcinoma, small cell lung cancer, neuroen-

docrine cancer, etc.) were excluded. We subdivided the patients

into three groups, depending on different neoadjuvant treatment

options: chemotherapy with TKI agents, chemotherapy with

conventional agents, and CCRT. Since our interest lay in

comparing the imaging parameter changes for treatment response

prediction between novel TKI and CCRT as a neoadjuvant

option, patients who underwent neoadjuvant chemotherapy with

conventional agents were excluded. As a result, two groups of

patients were enrolled in our study: patients who underwent

neoadjuvant chemotherapy with TKI agents, and those who

underwent CCRT. Patients for neoadjuvant TKI agent were

assembled from a selected population fulfilling $ two of the

following features: female, adenocarcinoma, nonsmoker, and

Asian. Regimen of TKI group comprised 1 tablet of 150 mg of

erlotinib daily for 3 weeks. Neoadjuvant CCRT included

chemotherapy and concurrent thoracic radiotherapy (TRT). The

chemotherapy regimen was weekly paclitaxel (50 mg/m2 per week

IV) plus cisplatin (25 mg/m2 per week IV) or weekly paclitaxel

(50 mg/m2 per week IV) plus carboplatin (AUC 1.5/week IV) for

5 weeks. The concurrent TRT dose was 45 Gy over 5 weeks (1.8

Gy/fraction per day, 5 fractions/week). Surgical resection was

planned around 6 weeks after the completion of neoadjuvant

therapy for CCRT group, and was scheduled in the fourth week

after start of treatment for TKI group. Surgical resection involved

a radical resection of the tumor, preferably by lobectomy, and

regional lymph node dissection.

Ultimately, 51 patients (25 men and 26 women) satisfied our

inclusion criteria. Twenty-three patients received neoadjuvant

chemotherapy with TKI, while 28 patients underwent concurrent

chemoradiation therapy.

Imaging protocol
In all patients, baseline contrast-enhanced CT before treatment

commencement, and follow up contrast-enhanced CT after 4–6

weeks of neoadjuvant treatment were performed.

Image data analysis
A thoracic radiologist (Y.C., with 4 years of experience in

thoracic CT interpretation) who was unaware of other patient data

evaluated the acquired images semiquantitatively. Only the

primary tumors were analyzed. Tumors were segmented by

drawing a region of interest (ROI) covering as large an area as

possible of the whole tumor. Next, voxel-based CT numbers were

collected from lesion segmentations. Since the lesions were

segmented to cover the entire tumor, larger lesions had more

number of segments than smaller lesions.

For tumor density and volume, the computer automatically

calculated the density (g/cm3) from mean attenuation of total

voxels and volume (cm3) by multiplying the number of voxels by

the unit volume of a voxel [23]. Tumor mass (in grams) was

calculated by multiplying tumor volume (in cubic centimeters) by

mean tumor density [24]. Next, a spreadsheet of all of the values

was created, which was used to compute histogram distribution

parameters of kurtosis and skewness [25]. The skewness and

kurtosis were computed from the segmented tumor region. On

histograms, skewness represented the distribution pattern of CT

attenuation values; negative and positive skewness indicated that

the data were more spread to the left and right of the mean,

respectively. Kurtosis represented the position of peak height that

indicates CT attenuation value of the maximum number of voxels,

with leptokurtic indicated by a sharper peak and platykurtic

indicated by a flatter peak (Figure 1).

Texture analysis was performed by a radiology physicist (J.H.K.)

with four years of experience in radiology physics. Voxel values

within the segmented tumors were resampled to yield 16 of

discrete values in order to reduce the noise in image and to

normalize the intensity across subjects by clustering voxels with

similar intensities [26]. From the discrete tumor images (16 gray

levels), the gray level size zone matrix was computed. The value of

the matrix’s (m, n) is defined by the number of homogenous

regions given the homogeneous tumor size (n) to their intensity

(m). For example, ‘Matrix’s (3, 5) is 6.’ means that there are 6

homogenous regions, in which the grey level of each cluster is 3,

and the size of each cluster is 5 voxels. This gray level size zone

matrix was used to compute the variability in the size and the

intensity of homogeneous tumor regions [26,27].

Pathologic evaluation of treatment response
Pathologic response was used as the reference standard of

therapeutic response. An experienced lung pathologist (J.H. with

20 years of experience in lung pathology) retrospectively

interpreted entire tissue sections sliced at 5- to 10-mm intervals

and measured the proportion (%) of viable tumor cells in the

primary tumor of the resected surgical specimens [28]. Tumor

regression was scored as ’pathologic response’ if more than 50%

necrosis was present with morphologic signs of therapy-induced

regression or ‘no response’ when either 0%–50% necrosis or
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necrosis that could not be attributed to the therapy effect was seen

[6]. If more than 90% necrosis was present in the resected

specimen, tumor regression was defined as ‘near- complete

pathologic response’ [6].

In addition, comprehensive histologic subtyping was made for

the primary tumor in a semi-quantitative manner. Tumors were

stratified into the following three grades based on histologically

predominant subtypes as: low grade; intermediate grade; and high

grade [29,30].

EGFR/KRAS mutational status had been determined by a

pathologist (Y.L.C.) by using polymerase chain reaction (PCR) and

a direct DNA sequencing method, as previously described [31].

Statistical analysis
Statistical differences between TKI group and CCRT group

were analyzed by using either the Mann Whitney test or the Fisher

exact test. To identify variables that could be used in differenti-

ating pathologic responders from nonresponders, logistic regres-

sion analysis was conducted. Characteristics with a p value of less

than 0.50 at univariate analysis were used as the input variables for

multiple logistic regression analysis. In multiple logistic regression

analysis, a backward stepwise selection mode was used, with

iterative entry of variables on the basis of test results (p , 0.05).

The removal of variables was based on likelihood ratio statistics

with a probability of 0.10. ROC analysis was also performed to

evaluate the differentiating performance of multiple logistic

regression models in discriminating pathologic responders from

nonresponders. All analysis was performed using SPSS for

Windows, version 12.0 (SPSS, Inc., Chicago, IL).

Results

Baseline characteristics
The TKI group consisted of 23 patients, and the CCRT group

included 28 patients. There was a discrepancy in gender

distribution and smoking habit, with female predominance(17

out of 23) in the TKI group and male predominance(19 out of 28)

in the CCRT group (p = 0.004). This was because never smoker

females were selected and included in the neoadjuvant TKI

treatment planning. Otherwise, all baseline CT and PET features

did not show significant difference between the two groups (Table

1). Also, all pathologic and genetic features did not differ

significantly in each group.

CT parameters and pathologic response
Percent changes of CT parameters in pathologic responders and

pathologic nonresponders were tabulated and compared in both

CCRT group and TKI group (Table 2, Figure 2). In case of

CCRT group, percent decreases of tumor volume and mass were

significantly greater in pathologic responders, as compared with

pathologic nonresponders (ps = 0.028 and 0.018, respectively).

As for histogram analysis, in pathologic responders, the lesion

showed negative changes in skewness and kurtosis, indicating

platykurtosis and negative skewness (Figure 3). Percent changes of

kurtosis and skewness were significantly different between patho-

logic responders and nonresponders in CCRT group (ps = 0.001

and 0.005, respectively), while those were not in TKI group.

On the other hand, in TKI group, intense variability and size-

zone variability was significantly decreased in pathologic respond-

ers group (ps = 0.005 and 0.003, respectively), as compared with

nonresponders (Figure 3). These significant differences were not

found in CCRT group. Decrease in intense variability and size-

zone variability reflects homogeneous change of vascularity

[14,26].

Logistic Regression Analysis and ROC Analysis
In TKI group, intense variability and size-zone variability were

used as input variables for multivariate logistic regression analysis.

Multivariate analysis disclosed that intense variability was the sole

significant predictor of pathologic response (p = 0.028; 95%

confidence interval: 1.009, 1.184; adjusted odds ratio, 1.093)

(Table 3). ROC analysis showed that the area under the ROC

curve (AUC) for intense variability was 0.931 and that the optimal

cut-off value of percent change of intense variability for predicting

pathologic response was less than –6.9 (sensitivity, 92.3%;

specificity, 80%).

In CCRT group, tumor volume, mass, kurtosis, and skewness

were used as input variables for multivariate logistic regression

analysis. Multivariate analysis displayed that kurtosis was the sole

significant predictor of pathologic response (p = 0.009; 95%

confidence interval: 1.026, 1.195; adjusted odds ratio, 1.107)

(Table 3). ROC analysis showed that the AUC for kurtosis was

0.943 and that the optimal cut-off value of percent change of

kurtosis for predicting pathologic response was less than –23

(sensitivity, 87.5%; specificity, 84.3%).

Discussion

Our study showed various imaging-based quantitative assess-

ment methods worked differently with different therapeutic

Figure 1. Histogram distributions of CT attenuation value. (a) Skewness. A negative skewness indicates an elongated tail on the left side of
the mean, with most values lying to the right of the mean. A positive skewness indicates an elongated tail on the right side of the mean, with most
values lying to the left of the mean. (b) Kurtosis. Leptokurtosis indicates a sharper peak, and platykurtosis indicates a flatter peak.
doi:10.1371/journal.pone.0088598.g001
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regimens, particularly of EGFR-TKI setting and CCRT setting.

We found tumor volume, mass, kurtosis, and skewness were all

significant predictors of pathologic response in CCRT group in

univariate analysis. Using multivariate analysis, kurtosis was found

to be independent predictor. On the other hand, in TKI group,

heterogeneity from texture analysis was an independent predictor

for pathologic response. Our results suggest the possible value of

adapting various combination of imaging parameters for response

evaluation beyond size-based measurement according to the

different treatment modality used. Since there is raising request

for personalized and optimized therapy, an advanced diagnostic

tool to predict treatment response more accurately is required.

Prognostic factors are an essential requirement in the manage-

ment of NSCLC and this is reflected in recent changes in the

TNM staging [32], where each sub-group is indicative of outcome.

However, despite such refinements, there remains uncertainty and

more predictive data are required. This is particularly true in

Stage 3A disease where outcome remains variable [33]. Moreover,

the selection and benefit of surgical patients for neo-adjuvant/

adjuvant treatment is also unclear [34,35]. It is important that the

possible survival benefits of chemoradiation should be balanced by

the adverse effects of toxicity to the patient [36]. Through the early

identification of patients who will not get a clinical benefit from

treatment, patients could be saved from drug toxicity and they

could be switched to an alternative treatment earlier. Moreover,

there are potential cost savings if drugs are used in only those

patients who will benefit from them [14]. Recent additional option

of targeted agents makes the situation more complicated. Imaging-

defined response assessment (RECIST) is a cornerstone of modern

oncologic practice; however, it is limited in a number of targeted

therapies, including treatment with TKIs. In a recent study

evaluating tumor response to neoadjuvant erlotinib in 60 patients

with NSCLC, radiologic response by RECIST was observed in

only 5% of the patients, while pathologic response was shown in

23% of the patients [10]. Furthermore, as our figure 2A, the

ground-glass opacity component of the tumor may remain at the

exact area of pretreatment solid component of the tumor, where

volume reduction of the lesion is not significant [19], Therefore,

even near complete pathologic response was not predicted by CT-

driven RECIST, suggesting that RECIST was suboptimal for

short-term radiologic response evaluation. This is because

apoptosis, transition of necrosis to fibrosis, or lymphocytic and

granulomatous reactions may not result in early decrease in tumor

size [10]. These results support the need for development of an

optimal imaging parameter for early response evaluation and

accurate prediction. In that regard, quantitative CT analysis may

be emerging as a potential tool for doing this task.

In the CCRT group, volume decrease was significantly greater

in the pathologic responder group, with mean volume reduction of

56.4%. Early volume decrease is achieved by potent locoregional

control with cytotoxic effect of irradiation. Volume reduction rate

in our study correlates with the results of previous studies [3].

Moreover, skewness and kurtosis could predict pathologic

response in the CCRT group. Two values all decreased greater

in the pathologic responders, as compared in the nonresponders.

Decreased skewness or positive skewness reflects decreased

enhancement, which may result from decreased neovasculariza-

tion.

Meanwhile, CT variables reflecting tumoral heterogeneity were

significant prognostic factors for pathologic response in TKI

group. A previous study assessing tumor heterogeneity using CT

texture in NSCLC patients reported poorer survival in patients

who had heterogeneous tumors with low uniformity values [21]. In

addition, Tixier et al. analyzed textural features on FDG-PET

Table 1. Clinicopathologic and baseline radiologic
characteristics according to the neoadjuvant regimen.

TKI group CCRT group

(n = 23) (n = 28) P values

Age (y)** 55.669.1 56.5610.5 .732

Gender .004*

Male 6 (26) 19 (68)

Female 17 (74) 9 (32)

Smoking habit ,.001*

Never 22 (96) 14 (50)

Ever 1 (4) 14 (50)

Histology type

Adenocarcinoma 23 (100) 28 (100) 1.00

Stage

IIIA 23 (100) 28 (100) 1.00

Baseline CT features

Volume (cm3) 22.7623.8 31.9647.8 .405

Density 1.1360.51 1.1460.34 .458

Mass (g) 25.9628.1 36.6655.2 .403

Histogram Analysis

Kurtosis 35.5687.5 17.2611.9 .280

Skewness –1.9164.58 –2.4261.99 .600

Texture Analysis

Intensity variability 8.0063.83 6.876 4.42 .338

Size-zone variability 23.5610.8 22.7618.6 .857

Baseline PET features

SUVmax** 10.363.8 12.766.5 .180

Pathologic features

Response .924

Responder+ 10 (43) 12 (43)

Near complete responder++ 4 (17) 7 (25)

Nonresponder 13 (57) 16 (57)

Differentiation .066

Well- 1 (4) 0 (0)

Moderately- 21 (92) 21 (75)

Poorly- 1 (4) 7 (25)

EGFR mutation .721

Positive 11 (48) 5 (18)

Negative 10 (43) 6 (21)

Unknown 2 (9) 17 (61)

KRAS mutation .467

Positive 0 (0) 2 (7)

Negative 7 (30) 6 (21)

Unknown 16 (70) 20 (72)

TKI, tyrosine kinase inhibitors; CCRT, concurrent chemoradiation therapy.
Note.—Unless otherwise indicated, data in parentheses are percentages.
* P ,.05.
** Data are the range.
+Less than 50% of viable tumor cells in the resected specimen.
++Less than 10% of viable tumor cells in the resected specimen.
doi:10.1371/journal.pone.0088598.t001
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images in patients with esophageal cancer who underwent

concomitant chemoradiation therapy, and found textural features

can predict responders (complete and partial) better than can SUV

[26]. In their study regional tumor heterogeneity represented by

intensity and size-zone variability was a significant predictor of

response, rather than global measurement including SUV. Similar

results were found in our study, in which intensity variability was a

significant independent predictor for pathologic response in

patients treated with neoadjuvant TKI agents. Significantly

decreased intensity variability and size-zone variability in the

pathologic responder group reflects increased tumoral homoge-

neity, including homogeneous change of vascularity. However,

these texture parameters were not helpful in predicting response in

the CCRT group. Such reasoning may be explained in part by the

difference in pharmagophysiologic reactions according different

treatment regimens.

Figure 2. Quantitative CT parameters of pathologic responder. (a) Combined histogram distributions of the treatment before (blue) and after
(red). As for histogram distribution, the vertical axis in each histogram shows the number of pixels in the segmented tumor. The horizontal axis shows
the CT attenuation values. Attenuation value is shifted to the left from the blue to the red graph. (b) Intensity size-zone matrix of the treatment
before (blue) and after (red). The horizontal axis shows size of homogenous area. Divergent distribution on the horizontal axis indicates increased
size-zone variability. The vertical axis shows intensity. Divergent distribution on the vertical axis indicates increased intensity variability. Distributions
of the points on the matrix become more convergent and clustered both in the horizontal axis and the vertical axis from the pre-treatment matrix to
the post-treatment matrix.
doi:10.1371/journal.pone.0088598.g002

Table 2. Percent changes of CT parameters in relation to pathologic response.

TKI group (n = 23) CCRT group (n = 28)

Pathologic
responder

Pathologic
nonresponder Pathologic responder

Pathologic
nonresponder

CT parameters (n = 10) (n = 13) P values (n = 12) (n = 16) P values

%Volume (cm3) –51.5628.1 –42.5621.7 .266 –56.4642.2 –14.3642.5 .028*

%Density –9.5612.5 –5.169.7 .349 –8.5611.8 –5.1612.1 .209

%Mass (g) –56.9623.7 –40.0631.9 .095 –61.8636.2 –17.9643.7 .018*

Histogram Analysis

%Kurtosis –27.7647.8 –18.4636.9 .605 –48.0623.1 1.7638.6 .001*

%Skewness –26.8639.8 –22.4629.1 .760 –34.2628.9 –1.7626.9 .005*

Texture Analysis

%Intensity variability –35.3631.3 21.6650.7 .005* 92.1633.3 60.4681.5 .689

%Size-zone variability –50.2623.7 –1.3640.9 .003* –32.9621.5 –28.0632.6 .652

TKI, tyrosine kinase inhibitors; CCRT, concurrent chemoradiation therapy.
Note.—Data are mean 6 standard deviation of the percent change n the given parameter.
* P ,.05.
doi:10.1371/journal.pone.0088598.t002
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Some authors explain potential significance of tumoral hetero-

geneity by correlation with genomic heterogeneity [36]. It has

recently been shown that a genomic heterogeneity exists within

tumors, and this observation has significant implications for

Darwinist theories of tumor resistance [37]. Whether textural

heterogeneity on imaging relates to underlying genomics would be

important to investigate. Given the challenges and expense of

measuring tumor genomic signatures, then imaging may be more

viable option. Another possible meaning is the possible relation-

ship between tumor heterogeneity and hypoxia. It has been

recently shown that tumor textural analysis was associated with

tumor hypoxia on histological examinations from NSCLC patients

who were administered intravenous pimonidazole prior to surgery

[38]. Hypoxia is a recognized marker of poor outcome, and as

such, a positive relationship between tumor hypoxia and tumor

heterogeneity would be biologically consistent. Additional poten-

tial merit of texture analysis is that texture methods can quantify

the spatial variations in parametric maps, not the absolute values

of the maps. Therefore, texture analysis can provide additional

and independent information compared to histogram-based

measures of parametric maps [39].

A potential limitation of our study is its retrospective design.

However, the majority of baseline characteristics did not differ

between the two study populations. Even though there was

considerable difference in gender distribution and smoking habit,

this occurred because never smoker females were enrolled in the

neoadjuvant TKI agent treatment arm, in the clinical setting. A

relatively small number of patients were included in our study.

Further studies with a larger sample size are necessary for

validation of our results. Since tumor regions of interest (ROI)

Figure 3. CT images of TKI group and CCRT group. (a) A 56-year-old woman with lung adenocarcinoma who underwent neoadjuvant
treatment with EGFR-TKI. Pretreatment CT scans on mediastinal and lung window images show a lobulating sold mass. CT scans obtained after
treatment show that the ground-glass opacity component of lesion is remaining on lung window image at the exact area of pretreatment solid
component, and reduction of the lesion extent is not significant, (b) A 68-year-old man with lung adenocarcinoma who underwent neoadjuvant
treatment with CCRT. Pretreatment CT scans on mediastinal and lung window images show a lobulating sold mass. CT scans obtained after treatment
show significant volume reduction of the tumor.
doi:10.1371/journal.pone.0088598.g003
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were drawn manually by a single operator, inter- and intra-

observer variation may be present. Assistance of an automated

software tool could improve this limitation, and furthermore help

decrease the time consumed in the tedious work. Despite

limitations in our study, it presented novel methodologies that

went beyond the traditional size-based analytical method, to

evaluate treatment outcomes in NSCLC patients. Our study

provides a proof-of-concept that a multiparametric image-feature-

based approach holds promise in planning individualized treat-

ment, and that prospective clinical trials may be warranted to

better understand the extent of this approach [5].

In conclusion, quantitative CT variables including histogram

analysis or texture analysis has potential as a predictive biomarker,

and it may better reflect treatment response than standard

response criteria based on size change. Also, different combina-

tions of imaging parameters may be correlated to physiologic

processes occurring after various different treatment modalities.
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