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A B S T R A C T   

Diffusion-based biophysical models have been used in several recent works to study the microenvironment of 
brain tumours. While the pathophysiological interpretation of the parameters of these models remains unclear, 
their use as signal representations may yield useful biomarkers for monitoring the treatment and the progression 
of this complex and heterogeneous disease. Up to now, however, no study was devoted to assessing the math
ematical stability of these approaches in cancerous brain regions. To this end, we analyzed in 11 brain tumour 
patients the fitting results of two microstructure models (Neurite Orientation Dispersion and Density Imaging and 
the Spherical Mean Technique) and of a signal representation (Diffusion Kurtosis Imaging) to compare the 
reliability of their parameter estimates in the healthy brain and in the tumoral lesion. The framework of our 
between-tissue analysis included the computation of 1) the residual sum of squares as a goodness-of-fit measure 
2) the standard deviation of the models’ derived metrics and 3) models’ sensitivity functions to analyze the 
suitability of the employed protocol for parameter estimation in the different microenvironments. Our results 
revealed no issues concerning the fitting of the models in the tumoral lesion, with similar goodness of fit and 
parameter precisions occurring in normal appearing and pathological tissues. Lastly, with the aim of highlight 
possible biomarkers, in our analysis we briefly discuss the correlation between the metrics of the three tech
niques, identifying groups of indices which are significantly collinear in all tissues and thus provide no additional 
information when jointly used in data-driven analyses.   

1. Introduction 

Since its introduction as a tool of outstanding sensitivity to detect 
early cerebral ischemic changes in acute stroke patients (van Everdingen 
et al., 1998), diffusion magnetic resonance imaging (dMRI) has proven 
its invaluable usefulness in probing tissues’ microstructure. Notoriously, 
the involvement of invasive techniques such as biopsy and subsequent 
pathological studies are required to retrieve detailed information con
cerning the anatomy of the brain. With the advent of dMRI, some of 

these important features became non-invasively accessible. In this field, 
Diffusion Tensor Imaging (Basser et al., 1994) (DTI) stands out as the 
most prominent and widely known approach to measure the anisotropic 
nature of water motion inside biological tissues, both in vivo and ex vivo. 

Although sensitive to microstructural variations, DTI metrics suffer 
from poor specificity, as they may be affected by both neurite density 
and geometrical alterations (Tournier et al., 2011). To overcome this 
issue, the joint use of high angular resolution diffusion and the multi- 
compartment modelling of the dMRI signal gave birth to techniques 
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labelled as ‘microstructure imaging’ (Alexander et al., 2019), whose aim 
is that of virtual histology. These models hypothesize that the voxel-wise 
diffusion signal arises from the composition of several microenviron
ment of the brain (e.g., cerebrospinal fluid, intra/extra axonal spaces) 
and try to recover their relative contributions to it in a data-driven 
fashion. 

Although it is possible to fit microstructure models to detect struc
tural changes caused by different pathologies, whenever the normal 
appearing tissues are disrupted, the generalized use of these techni
ques requires some additional cares. Such is the case of brain tumours. 

In this context, several hypotheses of white matter microstructure 
models, concerning cell shapes and water diffusivities, no longer hold. 
This divergence between the biophysical model and the underlying 
microarchitectural truth causes the impossibility to have a clear physi
ological interpretation of the diffusion signal (Wen et al., 2015). 

Despite the presence of these issues, current state-of-the-art litera
ture is no stranger to the employment of these techniques in gliomas, 
with a major focus on the use of the Neurite Orientation Dispersion and 
Density Imaging (Zhang et al., 2012) (NODDI) model. Listing some ex
amples, Masjoodi et al. (Masjoodi et al., 2018) found good separation 
between oedema, tumour, and normal-appearing tissues; Maximov et al. 
(Maximov et al., 2017) and Li et al. (Li et al., 2019) showed significant 
differentiation between different glioma grades, while Kadota et al. 
(Kadota et al., 2020) reported good discrimination between gliomas and 
solitary brain metastases. Additionally, Caverzasi et al. (Caverzasi et al., 
2016) proposed colour encoded maps of NODDI volumetric fractions 
which enable fine visual characterization of neoplastic pathologies. 

Successful applications like these open the interesting question 
whether a microstructure model (a mathematical expression which gives 
specific biophysical meaning to its parameter estimates) outside of its 
physiological assumptions may be used as a signal representation (an 
approximate mathematical description of the data, not based on any 
theory on the composition of the system it describes) (Novikov et al., 
2018). For example, the entire scientific field of radiomics (van Tim
meren et al., 2020) relies on the data-driven analysis of texture features, 
whose link to specific physio-pathological properties is questionable. 
Radiomics-based models succeed in explaining tumour phenotypes, 
giving precious information to decision-support techniques for person
ized treatment (Aerts et al., 2014). With the increasing use of machine 
learning techniques in the dMRI field (Ravi et al., 2019), parameter 
maps coming from NODDI or similar alternatives may prove as useful 
biomarkers to use in conjunction with other imaging modalities to 
support tumour classification and disease progression monitoring. The 
current state of the art literature, however, lacks a thorough examina
tion whether proper parameter estimation of these techniques is feasible 
in tumoral tissues. Indeed, without this assessment, no further consid
eration regarding the value a parameter may have in this different 
environment can be made. 

Given these premises, in this work we deal with this question. We 
here aim to investigate whether diffusion-based microstructure models 
can be properly identified in an environment far from that of their 
conception. Without making any inference about the physiological 
meaning and specificity of these techniques in tumours, the assessment 
we propose here focused on two specific topics: 1) Are there significant 
model biases in fitting these techniques in the tumoral lesion? 2) Is the 
accuracy of the parameter estimates completely disrupted by the phys
iological implausibility of the employed diffusion model? 

We tackle these questions by fitting two microstructure models from 
the literature on a cohort of 11 brain tumour patients and comparing 
their performance both in the normal-appearing brain and in the tu
moral lesion. We are not interested here in comparing performance be
tween models, but between tissues using the same technique. In particular, 
because of the growing number of studies using NODDI and the possi
bility of estimating the compartmental diffusivities (which are not 
estimated in NODDI) with the direction-averaged approach proposed by 
the Spherical Mean Technique (Kaden et al., 2016; Kaden et al., 2016) 

(SMT), we focus on these two mathematical structures. Additionally, we 
include in our analysis the Diffusion Kurtosis Imaging (DKI) signal 
representation (Steven et al., 2014). Due to not making any hypothesis 
on the underlying microstructure geometry, DKI does not suffer from 
any model-microstructure mismatch and may be used as reference for 
intra-model comparison of quality of fit measures in different tissues 
(Novikov et al., 2018). 

We here performed an analysis of model fitting results using the 
following statistical tools:  

• The Model’s Residual Sum of Squares (RSS): The RSS was 
computed to evaluate the average goodness of fit for all tissues.  

• The Uncertainty of parameter estimates: standard deviations of 
parameter estimates were computed as their Cramer-Rao Lower 
bound (CRLB) and statistical bootstrapping of the model.  

• The generalized sensitivity functions (GSFs): in this work, GSFs 
were introduced to investigate the sensitivity of parameter estimates 
to the employed diffusion protocols. In other words, can a single 
diffusion protocol yield reliable parameter estimates in both normal 
appearing and pathological tissues? We look for an answer to this 
question using this tool. 

The rest of the manuscript is organized as follows: in the “Methods” 
section, the investigated models/signal representations are briefly 
introduced, along with the dMRI acquisition details and the framework 
we use to evaluate model performance; in the “Results” section we 
report the outcomes separately for each analysis and, lastly, the “Dis
cussion and Conclusion” section provides contextualization of our 
findings. Here, we highlight the contribution of this work to the litera
ture and discuss its limitations. 

2. Methods 

The first part of this section gives a brief overview of the models used 
in this work. As a second point, we explain the metrics we use to eval
uate their performance. 

A. Models and Signal Representations 
The two techniques we fitted to oncological data were the original 

NODDI implementation and the bi-compartment SMT. These models, 
while providing different physiological information, share modest pro
tocol requirements in terms of gradient performance. Indeed, one hun
dred diffusion directions distributed following the static repulsion of 
charges, taken across two b-shells, are not only sufficient, but also re
ported as optimal (Zhang et al., 2012). Whole brain quantification is 
relatively fast, taking 4 h for NODDI (an acceleration down to 5/10 min 
is possible by employing the AMICO framework (Daducci et al., 2015) 
and 5 min for the SMT on standard machines. Moreover, by employing 
solely tensor-like components for the construction of their compart
ments, they allow the use of the b-value quantity to define the overall 
diffusion weighting, thus bypassing the need for the separate introduc
tion of its ‘microparameters’ such as gradient strength and diffusion 
time. These qualities mark the reason why they are preferentially 
selected by clinical studies investigating brain microstructure. The DKI 
technique can be fitted on a similar protocol to the one described above, 
as the higher b-shell (provided it has b > 1500 s/mm2) disentangles the 
non-Gaussian effects of water diffusion in the brain. 

1) NODDI 
Arguably the most widely known diffusion-based microstructure 

model, NODDI, adopts a three-compartment formulation aimed to 
describe the overall signal as a composition of diffusive behaviours in 
three different environments. As such, the general equation of the model 
has the following form: 

A = (1 − Viso)(VicAic +(1 − Vic)Aec )+VisoAiso (1) 

where Viso is the isotropic volume fraction and Vic is the intracellular 
volume fraction. Representing the three model compartments, Aic, Aiso 
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and Aec respectively model the intracellular space by using Watson 
distributed sticks, the extracellular space with an anisotropic tensor and 
the free water content with a perfectly isotropic tensor. For a detailed 
explanation of each compartment, the reader is referred to the original 
article (Zhang et al., 2012). Accounting for NODDI in its entirety, the 
complete set of model parameters to be estimated are:  

1. Vic [unitless], the intracellular volume fraction.  
2. κ [unitless], concentration parameter of Watson distribution.  
3. Viso [unitless], the isotropic volume fraction.  
4. θ [rad], first Euler angle to describe the mean orientation of Watson 

distribution in spherical coordinates.  
5. φ [rad], second Euler angle to describe the mean orientation of 

Watson distribution in spherical coordinates. 

Technically, κ is the model parameter, the original authors propose 
to visualize and evaluate the so-called Orientation Dispersion Index, 
which ranges between 0 and 1 and, (unlike κ), maps higher axonal 
dispersion into higher values. The fitting routine for NODDI determines 
the maximum likelihood of parameter estimates with the assumption of 
additive Rician noise in two steps. Firstly, a brute force search is per
formed over a coarse and regular grid of possible parameter combina
tions to provide a preliminary, rough estimate. As nonlinear estimators 
can be highly sensitive to the initial choice of the parameters, this pre
liminary step offers reasonable initialization conditions. Consequently, 
results from the previous phase are carried over to be used as a starting 
point for the non-linear optimization procedure involving the Gauss- 
Newton technique. In both steps, the cost function to minimize is the 
same, and it is the following (Alexander, 2008): 

Lric =
∑M

n=1

(
log(Sn(b,G) ) − 2log(σ)+ logI0

(

Dn

)
− An

)
(2) 

where Dn and An are respectively defined as 

Dn =
Sn(b,G)Ŝn(b,G)

σ2 (3)  

An =
Sn(b,G)

2
+ Ŝn (b,G)

2

2σ2 (4) 

With σ being the standard deviation of the Gaussian distribution 
underlying the Rician distribution, Sn the n-th measurement, Ŝn the n-th 
model prediction, b the b-value, G the diffusion gradient direction, M the 
total number of acquired q-space points and I0 the Bessel function of the 
first kind. During the optimization, the volumetric fractions are con
strained to belong to the [01] interval, while the free water diffusion 
coefficient and the intrinsic free diffusivity are respectively fixed to 
diso = 3∙10− 3 mm2/s and d|| = 1.7∙10− 3 mm2/s. 

2) SMT 
The Spherical Mean Technique model exploit the powder averaging 

(Callaghan et al., 1979; Kroenke et al., 2004) of the angularly varying 
diffusion MR signal to obtain a measurement which is independent from 
the orientation distribution function (ODF) of fibers. As such, SMT does 
not explicitly model the diffusion signal but rather its b-value dependent 
mean. Following this rationale, Kaden and colleagues (Kaden et al., 
2016) proposed a bi-compartment model, separating intracellular and 
extracellular environments, which yields the following equations when 
projected onto its spherical mean: 

eb = vinteint
b +(1 − vint)eext

b (5) 

where vint is the intracellular volume fraction and the two compart
ments have the following formulations: 

eint
b =

̅̅̅
π

√
erf
( ̅̅̅̅̅̅̅

bλ||
√ )

2
̅̅̅̅̅̅̅
bλ||

√ (6)  

eiext
b = exp( − bλext)

̅̅̅
π

√
erf
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

b
[
λ|| − λext

]√ )

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

b
[
λ|| − λext

]√ (7) 

where erf is the error function, λ|| is the intrinsic diffusivity and λext 

follows the tortuosity model λext = (1 − vint)λ|| (Stanisz et al., 1997). As a 
difference from NODDI, no compartment is devoted to account for ce
rebrospinal fluid presence, and diffusivity values are central in the 
estimation process instead of being fixed quantities. In this case, the 
complete set of parameters to be estimated is: 

1. vint, the intracellular volume fraction. 
2. λ|| , intrinsic diffusivity inside the axons. 
Another remarkable difference from the NODDI is the choice of the 

estimator: the SMT bi-compartment model employs a constrained un
weighted nonlinear least square approach with the following cost 
function: 

C =
∑N

i=1
(ebi − êbi (νint, λ‖) )2 (8) 

where N is the number of spherical mean images, ebi is the spherical 
mean of the diffusion signal taken at the i-th shell and êbi the prediction 
of the SMT bi-compartment model. (8) is subject to the constraintsvint ∈

[01] and 0< λ|| < λfree takes place to ensure both diffusivities lie in a 
physically meaningful range. Constituting the upper bound, λfree is the 
bulk diffusivity and it is around 3.05 μm2/ms at 37 ◦C. 

3) DKI 
The DKI is an extension of the DTI model which adds a quadratic 

term in the b-value series expansion of the dMRI signal to quantify the 
degree of non-Gaussian diffusion occuring inside the different tissues. 
Like DTI, DKI does not make any physiological assumptions about 
possible diffusion behaviours inside/outside cellular object and is 
therefore referred to a signal representation. The formula for the DKI is 
given by the second-order approximation of the Taylor expansion of the 
noiseless diffusion-weighted signal around b = 0: 

ln[S(b, g)] = ln[S(0)] − b
∑3

i,j=1
gigjDij +

b2

6

(
∑3

i=1

Dii

3

)2
∑3

i,j,k,l=1
gigjgkglWijkl (9) 

where S is the diffusion signal,gi are the diffusion gradient directions, 
Dij are the components of the diffusion tensor and Wijkl are the compo
nents of the diffusion kurtosis tensor. As the fitting of the DKI model can 
be formulated as a linear regression problem, we used the readily 
available MATLAB toolbox implementing the weighted linear least- 
square estimator (Veraart et al., 2013) described by the equation 

p= (XT WX)
− 1XWy (10) 

Where p is vector containing the parameters of the model, X is the 
design matrix of the regression problem, y is the vector of the observed 
diffusion signal, and W is the diagonal weight matrix containing the 
square of the observed signal. 

D. Assessment Metrics 
1) Residual analysis 
One of the most practical ways to assess whether a model can 

accurately represent the diffusion signal is to look at the behaviour of its 
residuals, which are defined as: 

r(bi,Gi) = S(bi,Gi) − Ŝ(bi,Gi) (11) 

where S is the measured signal, Ŝ is the model prediction, bi is the b- 
value and Gi is the diffusion gradient direction. To explain their use
fulness, let the diffusion signal be represented as: 

S(bi,Gi) = Strue(bi,Gi)+ n(bi,Gi) (12) 

where Strue is the physiological source of the signal and n is the ad
ditive noise. Under the hypothesis that the used microstructure model is 
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a good approximation of the noiseless source (i.e., Ŝ ≅ Strue), the model 
residuals are an estimation of a random realization of n: 

r(bi,Gi) = n(bi,Gi) (13) 

From (11), essentially, we assess whether model residuals are cen
tred around zero and whether their variances are comparable to that of 
the additive noise. Such a qualitative analysis, valid in the case of 
Gaussian noise, is extended to the Rician case, as for SNR > 2 the two 
probability distributions have similar properties (Gudbjartsson and Patz, 
1995). When looking at magnetic resonance (MR) images composed by 
several hundred thousand voxels, the inspection of all generated re
siduals can be substituted to the computation of the Residual Sum of 
Squares (RSS), to recover a voxel-wise scalar measure of model fit 
quality. The RSS is mathematically defined as: 

RSS =
∑N

i=1
r(bi,Gi) (14) 

where N is the number of the acquired q-space points. Under the 
hypothesis noise is invariant to the gradient direction and b-value 
changes, one can also derive a voxel-wise estimation of the standard 
deviation σ of the measurement. For each voxel, this was done by 
approximating σ as the standard deviation computed across the multiple 
b0 measurements (Tournier et al., 2011). Subsequently, we computed 
the expected RSS (i.e, the RSS a model should approximately have if it is 
in accordance with the underlying noise hypotheses) as: 

E[RSS] = σ2N (15) 

2) Uncertainty of estimated microstructure parameters 
To assess whether the estimation process of the given model yields 

robust and reproducible results in vivo, it is necessary to understand 
how the intrinsic variance of the measurement error affects the final 
parameter estimate. One way to tackle these problems relies on the use 
of statistical bootstrapping (Kappy, 2013) to extract variability from the 
dataset. Statistical bootstrapping in the modelling context can be sum
marized by the following steps:  

1. Fit the MR signal with the employed diffusion model and compute 
the model prediction and residuals.  

2. Obtain a unique permutation of the extracted residuals and add it the 
model prediction  

3. Fit the newly synthetized diffusion signal with the model again, 
obtaining a new vector of parameter estimates  

4. Given all the iterations, compute the standard deviation of parameter 
estimates. 

This technique requires extensive computational power, as multiple 
model fitting steps are required to achieve statistical significance. 

A second, less time-demanding, strategy can be pursued by exploit
ing a theoretical result from the mathematical statistics frame known as 
the Cramer-Rao Lower Bound (CRLB). Briefly, let the Fisher information 
matrix be: 

Ji,j = E
[

∂2L
∂wi∂wj

]

(16) 

where L is the log likelihood of the measurement with the appro
priate noise model and wi,j are the model parameters. If the partial de
rivatives ∂L/∂wi exist, the used estimator is unbiased and matrix J is 
invertible, then 

Σp≽J− 1 (17) 

where Σp is the covariance matrix of the parameter estimates. 
Equation (17) effectively means, for the single model parameters that: 

σ2 ≥ (J− 1)i,j (18) 

The Fisher information matrix J has a closed form solution when the 
additive noise model is Gaussian. However, when this assumption be
comes Rician, which is valid in general for MR magnitude images 
(Gudbjartsson and Patz, 1995), the formulation becomes less trivial and, 
borrowing the results from (Alexander, 2008), the information matrix 
becomes: 

Ji,j =
∑K

k=1

1
σ4

∂Ŝ
∂wi

∂Ŝ
∂wj

(
Zk − Ŝk

2)
(19) 

where K is the number of measurements and Zk has the following 
form: 

Zk =

∫∞

0

Ŝk
2
I2

1

(
ŜkS
σ2

)

I2
0

(
ŜkS
σ2

)

Pric(S)dS (20) 

where I0,1,...,n are the modified Bessel functions of the first kind and 
Pric denotes the Rician distribution. As presented in the original article 
(Alexander, 2008), the integral in (20) requires numerical approxima
tion and computing its exact values for Zk is computationally intensive. 
Thus, we precompute a grid of possible fixed values and we rely on 
linear interpolation to recover pointwise estimates. 

The evaluation of CRLB derived variance metrics and the model re
siduals are common practice in modelling in medicine and as such they 
mark the basis of the analysis in this article. 

3) Sensitivity analysis of the model equation 
Sensitivity equations are often used in simulation studies of physio

logical systems to understand how a variation of model parameters 
affect model outputs (Frank and Eslami, 1980). They are generally used 
for optimal experiment design purposes, but we here used them to the 
test whether the employed protocol was suitable for parameter estima
tion in all different tissues. 

More specifically, we adopted the GSFs formulation proposed by 
Tomaseth and Cobelli (Thomaseth and Cobelli, 1999). Briefly, GSFs 
recover, in a context where time is the independent variable, which 
temporal sub-intervals are informative for a particular model parameter. 
This is done by evaluating the Fisher Information conveyed on a model 
parameter by a hypothetical observation and normalizing it by the total 
information provided by the entire set of the evaluated observations. 
Thus, for each model we compute the Generalized Sensitivity matrix as: 

GS(bJ) =
∑J

j=1

[
∑M

m=1
Iθ(bm)

]− 1

Iθ
(
bj
)

(21) 

where GS is the Generalized Sensitivity matrix computed on a subset 
of the b-values bJ,M is the length of the b-value vector b = [b1,b2,⋯,bM], 
and Iθ(β) is the Fisher Information matrix computed from observations 
coming from a diffusion shell at b-value equal to β, according to (16). 
GSFs for all separated parameters are then extracted as: 

gsf θ(bJ) = diag(GS(bJ) ) (22) 

Operatively, we evaluate GSFs for both NODDI and the SMT bi- 
compartment model on increasingly higher diffusion shells in the 
range b ∈ [0 4000] s/mm2 with 30 uniformly distributed gradient di
rections. Model parameter values for the generation of GSFs of a specific 
tissue were chosen as their median across that tissue for a representative 
subject of the dataset. 

E. In vivo acquisition 
Eleven patients suffering from de novo brain tumours have been 

scanned at the University Hospital of Padova. All procedures were in 
accordance with the ethical standards of the institutional research 
committee and with the 1964 Helsinki declaration plus later amend
ments. All participants provided informed, written consent in accor
dance with the local University Hospital Institutional Review Board. The 
demographical information of the patients’ cohort is reported in Sup
plementary Table 1. 
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DWIs have been acquired on a Siemens Biograph mMR-PET/MR 
scanner at 3 T equipped with the PET compatible 16-channels Siemens 
head and neck coil (TR/TE 5355/104 ms; 2.0x2.0x2.0 mm3). Each 
volume was composed of 68 slices, acquired in interleaved mode with a 
multiband accelerator factor of 2 (CMRR, R014) and no in-plane ac
celeration. The multi-shell diffusion protocol was composed by a total of 
100 diffusion weighted images, subdivided in the following way:  

• 10 b0 images, with zero diffusion weighting  
• 30 diffusion weighted images at b-value = 710 s/mm2 (Shell 1)  
• 60 diffusion weighted images at b-value = 2855 s/mm2 (Shell 2) 

In varying the b-value, diffusion time and impulse duration have 
been kept fixed to values Δ = 50.05ms and δ = 27.77ms, while gradient 
strength G was altered. This diffusion HARDI protocol is the optimized 
two shell NODDI protocol as described in (Zhang et al., 2012). Each 
diffusion volume has been acquired in both Anterior-Posterior (AP) and 
Posterior-Anterior (PA) phase encoding direction for pre-processing 
needs, as explained in a subsequent section. 

In the same MR session, a reference 3D T2-weighted Fluid Attenu
ated Inversion Recovery (FLAIR) image (TR/TE 5000/395 ms; 
1.0x1.0x1.0 mm3; FOV 250 mm), two T1w structural images (TR/TE 
2400/3.2 ms, 1.0x1.0x1.0 mm3), FOV 256 mm, 160 slices) acquired 
both before and after contrast agent injection, and a T2w structural 
image (TR/TE 3200/536 ms, 1.0x1.0x1.0 mm3), FOV 256 mm, 160 
slices) were acquired. 

F. Preprocessing of images 
The acquired diffusion weighted volumes were visually inspected to 

identify and remove those images affected by interslice instabilities 
(Bastiani et al., 2019) which were deemed excessively corrupted for 
subsequent pre-processing techniques to correct. The rest of the pre- 
processing was executed in its entirety within the MRtrix Software 
(MRtrix3, xxxx) and features an initial denoising step based on random 
matrix theory (Veraart et al., 2016), and a subsequent call to the tools 
topup (Andersson et al., 2003) and eddy (Andersson and Sotiropoulos, 
2016) from the FMRIB Software library (FSL) for B0 inhomogeneity, eddy 
current and motion joint correction. Tumour masks to separate the 
tumour core and the oedema from healthy tissue were manually drawn 
by an expert radiologist on the acquired T1w, T2w and FLAIR images 
and were subsequently coregistered to the mean b0 volume with the 
Advanced Normalization Tools (ANTs) (Avants et al., 2011) toolbox. The 
T1w images were segmented into cortical and subcortical grey matter, 
white matter, and CSF with the Statistical Parametrical Mapping (SPM12) 
toolbox (Ashburner, 2014). Segmentation results were coregistered to 
the mean b0 volume using ANTs by applying an affine transformation 
previously estimated on the T1w image. 

G. Model Fitting software and Statistical Analysis 
We fitted NODDI, SMT and DKI to the acquired oncological dataset 

using off-the-shelf toolboxes which are publicly available (http://mig. 

cs.ucl.ac.uk/index.php?n=Tutorial.NODDImatlab for NODDI, 
https://github.com/ekaden/smt for SMT and https://cai2r. 
net/resources/software/diffusion-kurtosis-imaging-matlab-toolbox for 
DKI) and integrated some in-house MATLAB scripts to compute the RSS, 
the voxel-wise approximation of parameter standard deviation (σ) 
through the Cramer-Rao inequality (for SMT and NODDI) and statistical 
bootstrapping (for DKI), and the GSFs for all techniques. Subsequently, 
by computing the GSFs, we evaluated the general sensitivity of model 
parameters to investigate whether the different microstructural envi
ronments (i.e., WM, GM, tumour core and oedema) affect the optimality 
of the employed diffusion protocol. Lastly, we briefly discuss the 
orthogonality of information these diffusion parameters may convey in 
differentiating physiological differences among the different tissues. 
Pearson’s correlation between voxel-wise parameter values was 
computed for every subject, and its across-subject median was subse
quently extracted. From median tissue-specific matrices, we eventually 
computed the parameter Redundancy Matrix (RM) by thresholding the 
four matrices at ρ = 0.5 and computing their intersection. The RM 
matrix delineates those strong correlations between parameters which 
are common to all tissues. 

3. Results 

1) Signal considerations, model fitting and parameter precisions 
Fig. 1 shows an example of the voxel-wise model fit for NODDI/SMT/ 

DKI and highlights how the three techniques quantify microstructure 
information in very different ways. While NODDI and DKI are fitted on 
the directionally variable diffusion signal, the SMT is a model for its 
spherical mean, thus reducing the number of independent points to the 
number of the acquired b-values. This has repercussions in terms of the 
feasibility of residual analyses of the model in case of two-shells HARDI 
acquisitions such as the one featured here. As the model has only two 
degrees of freedom, the fit results in a perfect interpolation of the 
available data, rendering the computation of residuals trivial and non
informative in terms of goodness-of-fit. In the other two cases, model 
residuals have definite meaning, and their derived metrics can be reli
ably quantified. In the representative example in the figure, the average 
of NODDI and DKI residuals are respectively μNODDI = 0.0748[A.U.] and 
μDKI = 0.127[A.U.], denoting the absence of model biases in terms of 
fitting. Standard deviations for this example fit are σNODDI = 16.61[A.U.]

and σDKI = 5.61[A.U.], with σNODDI higher σDKI, but both comparable 
with the estimation of the noise standard deviation through the b0 im
ages σnoise = 6.26[A.U.]. 

Fig. 2 shows both the maps of microstructure parameters of the three 
diffusion techniques and those of their relative standard deviation for an 
axial slice of a representative patient. Although the modelling choices 
for the various compartments may be physiologically questionable in 
tumours, the employed parameter estimators are able to react to the 
different features of the diffusion signal and output spatially coherent 

Table 1 
Mean residual sum of squares for each subject and tissue in the dataset. The set of columns to the right represents the expectations of the RSS, given the standard 
deviation of the noise affecting the diffusion signal. Results are reported in logarithmic scale (log10). Cells marked with “x” denote subjects for which no oedematous 
tissue was found in the lesion segmentation procedure.   

DKI log(RSS) NODDI log(RSS) Expected log(RSS) 
Subj WM GM Tum Oed WM GM Tum Oed WM GM Tum Oed 

#01  3.678  3.792  3.718 3.869  4.129  4.037  3.858 4.139  4.063  4.328  4.272 4.411 
#02  3.651  3.768  3.764 3.789  4.106  4.079  4.065 4.160  3.886  4.157  4.394 4.098 
#03  3.615  3.061  3.769 3.688  4.061  3.987  4.356 4.168  3.887  4.096  4.139 4.044 
#04  3.544  3.734  3.496 x  4.035  4.013  3.722 x  3.844  4.204  4.144 x 
#05  3.713  3.875  3.775 3.842  4.185  4.104  4.046 4.222  4.043  4.412  4.347 4.515 
#06  3.701  3.895  3.634 3.548  4.146  4.097  4.026 3.997  4.027  4.373  3.959 4.092 
#07  3.577  3.405  3.632 x  4.096  3.914  4.063 x  3.830  3.985  3.901 x 
#08  3.618  3.666  3.646 3.752  4.062  3.974  4.089 4.067  3.978  4.102  4.126 4.389 
#09  3.571  3.754  3.649 3.818  4.021  4.010  4.115 4.182  3.914  4.304  4.028 4.523 
#10  3.679  2.686  3.762 3.721  4.166  4.062  3.981 4.143  4.052  4.375  4.191 4.199 
#11  3.538  3.172  3.752 3.625  4.119  4.020  4.132 4.198  3.753  3.940  4.328 4.057  
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metrics, both in terms of their value and uncertainty. NODDI and SMT 
parameter maps appear to have a good degree of spatial continuity in the 
pathological area, revealing unique contrasts which are not seen in 
structural images and in the DKI model. The standard deviation images 
also show a varying degree of spatial smoothness both in normal 
appearing tissues and in the tumoral lesion. Although standard de
viations are very close in numerical values, some slight trends can be 
observed, where the tumoral lesion appear to have higher precision with 
respect to normal appearing tissues for all parameters except for NOD
DI’s ODI. 

These representative single-slice observations are generalized in 
Fig. 3, which shows the boxplot of the voxel-wise parameter estimates 
and their standard deviations for all subjects in the dataset. While the 
single parameters show heterogeneous patterns between healthy and 
tumoral tissues and appear to have different discrimination power, their 
standard deviation does not dramatically differ between the lesion and 
the normal appearing brain. As shown in the previous figures, slight 
differences between tissues are still present, with a tendency of σ to be 
lower for oedema and tumours for most parameters. Overall, the general 
trend suggests that estimation precision is stable both in healthy and 
pathological tissues. As this behaviour is common both to DKI and to the 
two microstructural models, it suggests the model-microstructure- 
mismatch does not significantly impair parameter estimation precision 
when fitting NODDI and SMT inside tumoral tissues. 

Table 1 shows both the tissue specific mean RSS across all subjects 
for NODDI and DKI, and its expected value given the appropriate noise 
model. As it was observed in the case of parameter precisions, it appears 
that the residuals from both techniques are not particularly affected by 
the pathological environment in the tumour and in the oedema. The 
fitting performance seems unaltered in the general picture, with both 
techniques being fairly in agreement with the expected RSS given the 
estimation of the noise. It is worth mentioning that, as the used esti
mators are different, it is difficult and beyond the scope of this work to 

draw any conclusions about an inter-model comparison of goodness-of- 
fit. Moreover, as the residuals of SMT model are uninformative due to 
the aforementioned reasons, its RSS was not computed. 

2) Generalized sensitivity of the models 
Fig. 4 shows the GSF plots for the model parameters of NODDI, DKI 

and SMT, generated as explained in the methods section. 
Concerning the behaviour of single diffusion parameters, we can 

identify three different trends: A first set of parameters (fiso, d|| and the 
diffusion tensor components) gain their informational content in the b- 
values approaching b = 1000 s/mm2; a second set of parameters (fic, 
fintra and the diffusional kurtosis tensor components) benefit from b- 
values starting from b = 2500 s/mm2 and a single parameter (Watson’s 
distribution concentration parameter k) steadily gains information 
across the entire studied b-value range, with no clear optimal interval. 

The general behaviour of the curves for every parameter does not 
significantly vary across the different tissues, identifying 0–1 rises which 
are relatively similar between normal WM, GM, oedema, and the 
tumour. Similarly, to what happens for the DKI, the lack of difference in 
general sensitivity for the two microstructural models suggest a single 
acquisition protocol features similar estimation precision for all tissues. 
We believe this finding confirms that fitting these techniques inside the 
tumoral lesion do not require a modification of the diffusion protocol in 
use, which was designed specifically for healthy subjects. 

As a last remark, significant over/undershoot from the 0–1 range for 
the GSFs reveals substantial correlations during the estimation process 
of same-model parameters, which in this case tends to be tissue 
dependent, as it will be discussed in the following section. 

3) Investigating parameter correlations 
Lastly, Fig. 5 (a-d) shows the median correlation matrix across all 

subjects of the voxel wise parameters from all models, computed for the 
four studied tissues. These matrices present significantly different 
structures, supporting the hypothesis that relationships between diffu
sion parameters change inside pathological voxels. However, we find 

Fig. 1. On the top row, visualization of the diffusion signal along with NODDI model prediction and its residuals. On the mid row, the DKI model prediction of the 
diffusion signal and its residuals. On the bottom row, the spherical mean of the signal and the SMT bi-compartment model prediction. 
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some strong correlations, both positive and negative, which tend to be 
present in all the tissues. Fig. 5.e. shows the redundancy matrix (RM). 
The occurrences in the RM reveal those couples of metrics which feature 
high correlation (non-orthogonality of information) and are additionally 
common to all tissue-specific matrices (poor tissue discrimination 
power). In particular, the AD, MD, and RD diffusivity metrics from DKI, 
ODI from NODDI and d|| from the SMT appear to be strongly related, 
suggesting the entire inclusion of this subset of diffusion metrics in any 
data-driven procedure to be redundant. Similar considerations can be 
made about the MK-RK pair, for which the combined use is discouraged. 
All relationships highlighted by the RM were statistically significant in 
all subjects, with pvalues inferior to p = 10e-28. 

4. Discussion 

In this article, we explore the use of advanced diffusion models in 
tumours from the standpoint of goodness of fit and precision of their 
estimates. We refrained from giving explicit biophysical meaning to 
their parameters due to the microstructure-model mismatch such choice 
features, and concentrated on investigating their stability in the patho
logical tissues as signal representations. In doing so, we separately 
assessed their mathematical reliability in the tumoral lesion and in the 
normal appearing tissues. We questioned whether we would consistently 
find worse model residuals and less precise parameter estimates, as we 
thought the discrepancy between the tumour architecture and the bio
physical model formulation would result in the inability to properly 
identify the model. We noticed, however, how the parameter estimation 
procedure is minimally impacted by the tissue-model mismatch, 

resulting for some cases in light trends of higher precision inside the 
tumoral tissues with respect to the normal-appearing brain. This is most 
surprising when it comes to the intra-axonal compartments of both 
NODDI and SMT, where we feel the structural mismatch is most present. 
Highly anisotropic, ‘stick-like’, neuronal structures are mostly absent in 
tumours, yet the corresponding parameters are identified precisely and 
with a certain degree of spatial coherence. To our knowledge, the use of 
the stick diffusion model is known in tumour diffusion modelling. In 
fact, the Vascular, Extracellular, and Restricted Diffusion for Cytometry 
in Tumours (VERDICT-MRI) model for colorectal and prostate cancer 
(Panagiotaki et al., 2015; Panagiotaki et al., 2014) employs isotropically 
dispersed sticks to describe pseudo-diffusion inside blood vessels. 
Nevertheless, this information comes from diffusion volumes at very low 
b-values (<300 s/mm2) (similarly to Intravoxel Incoherent Motion 
(IVIM) MRI (Le Bihan et al., 1986), which are not acquired in typical 
HARDI datasets such as ours. 

It should be noted that, while the methodology used in this work is 
sound for comparing fitting results of the same model in healthy and 
pathological conditions, it is not appropriate for the comparison of 
different models. Indeed, DKI features consistently lower residuals than 
NODDI across tissues. However, as different estimators are used for the 
two techniques, lower RSS does not necessarily indicate that DKI per
forms better in the tumoral tissue. Moreover, the standard deviation of 
the measurement noise was estimated from the multiple b0 images ac
quired, thus disregarding possible contributions from varying b-value 
and gradient direction. Thus, we cannot establish if DKI is under
estimating or NODDI is overestimating the noise level. 

It is interesting to notice how the SMT estimation leads to dramati

Fig. 2. An example axial slice from a representative patient showing its T1w and FLAIR structural images as well as both NODDI/SMT/DKI metrics (first row of each 
box, grey scale) along with their standard deviation map (second row, jet scale). 
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Fig. 3. Boxplots for tissue-specific mean and standard deviations (log10 scale) of NODDI, SMT and DKI metrics coming from normal-appearing white matter in blue, 
grey matter in green, tumoral tissues in red and from the oedema region in black. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Generalized sensitivity equations for the NODDI, SMT and DKI generated with parameter values corresponding to voxels from white matter, grey matter and 
the tumoral tissues (tumour core and oedema). The DKI section contains the mean GSF for the parameters of the kurtosis-corrected diffusion tensor (DT components) 
and the mean GSFs across the parameters of the kurtosis tensor (DKT components). The interval for which we have the 0–1 transition marks b-value range which is 
most informative for each of the model parameters. 

U. Villani et al.                                                                                                                                                                                                                                  



NeuroImage: Clinical 34 (2022) 102968

9

cally higher relative precision for the intracellular volume fraction with 
respect to NODDI (up to 3–4 orders of magnitude smaller values of σ). 
This observation however does not come completely unexpected, as the 
spherical mean signal is produced with a significant direction averaging 
procedure which comes with the benefit of suppressing the additive 
Gaussian-like noise. 

Overall, we found significant evidence that the model- 
microstructure mismatch does not substantially affect the fitting per
formance of NODDI and the SMT in the tumoral lesion, as similar trends 
in the studied metrics are witnessed for the DKI signal representation. 
The information and novel contrast these parameter maps produce ap
pears to be stable and may potentially be exploited by data driven ap
proaches to analyse different microstructural environments. In this 
work, we give useful indications about which of the studied metrics 
provide information about tissues (pathological and healthy) which is 
non-collinear and investigate ways to discriminate those which are non- 
informative, in relation to their collective use. 

While model identification appears to be optimal, we still advise to 
use additional caution to give a pathophysiological interpretation to 
single parameters when applying ‘biophysical’ models in tumours. 
Indeed, the comprehension of their mathematical structure, assump
tions, and limitations, is vital to make any biological inference. If proper 
validation in this pathological environment is not provided, NODDI and 
SMT remain geometrical models of diffusion, or signal representation, 
not specifically linked to any biological features. 

Probing the microstructural environment of brain tumours through 
diffusion imaging may yield useful biomarkers to monitor progression 
and treatment response, but there is still room for various improvements 
(Nilsson et al., 2018). Apart from the use of advanced models, the use of 
peculiar acquisition schemes may enrich the diffusion signal enough to 
move past the model identification degeneracies reported in recent 
literature (Jelescu et al., 2016; Novikov et al., 2019), and more uncon
ventional datasets acquired with multiple diffusion times (Panagiotaki 
et al., 2015) or ‘B-tensor encoding’ (Szczepankiewicz et al., 2019) are 
recent signs that the research framework of dMRI pulse sequence design 
still has a lot to offer. 

While some interesting works about specifically modelling the 

diffusion in gliomas are recently starting to appear (Roberts et al., 2017; 
Zaccagna et al., 2019), this is an environment which is still largely un
explored. Until these novel methodologies gain trust and widely spread 
recognition, we hope our efforts provided support to the cautious use of 
existing advanced diffusion techniques to investigate this pathological 
environment. 
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