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When walking speed is increased, the frequency ratio between the arm and leg swing
switches spontaneously from 2:1 to 1:1. We examined whether these switches are
accompanied by changes in functional connectivity between multiple muscles. Subjects
walked on a treadmill with their arms swinging along their body while kinematics and
surface electromyography (EMG) of 26 bilateral muscles across the body were recorded.
Walking speed was varied from very slow to normal. We decomposed EMG envelopes
and intermuscular coherence spectra using non-negative matrix factorization (NMF),
and the resulting modes were combined into multiplex networks and analyzed for their
community structure. We found five relevant muscle synergies that significantly differed
in activation patterns between 1:1 and 2:1 arm-leg coordination and the transition
period between them. The corresponding multiplex network contained a single module
indicating pronounced muscle co-activation patterns across the whole body during a
gait cycle. NMF of the coherence spectra distinguished three EMG frequency bands:
4–8, 8–22, and 22–60 Hz. The community structure of the multiplex network revealed
four modules, which clustered functional and anatomical linked muscles across modes
of coordination. Intermuscular coherence at 4–22 Hz between upper and lower body
and within the legs was particularly pronounced for 1:1 arm-leg coordination and was
diminished when switching between modes of coordination. These findings suggest
that the stability of arm-leg coordination is associated with modulations in long-distant
neuromuscular connectivity.

Keywords: interlimb coordination, muscle synergies, muscle networks, locomotion, electromyography

INTRODUCTION

Human locomotion requires a well-organized activation of multiple muscles to coordinate
movements of upper and lower limbs. The degree of interlimb coordination can be characterized
by the strength of frequency and phase locking between limbs. To understand the emergence of
coordination patterns and, by this, the way muscle activity is orchestrated, one typically challenges
the stability of phase locking by altering a control parameter. For example, if speed is increased
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from loaf (very slow) to normal walking, one can observe a switch
in frequency locking from a 2:1 to a 1:1 ratio between the arm and
leg swing (Craik et al., 1976; Schöner et al., 1990; Van Emmerik
and Wagenaar, 1992, 1996): At very low speeds, the arm swing
is phase locked to the step cycle, while at fast speeds it locks to
the stride cycle. This switch is accompanied by a change in the
phase relationship between the arms from in-phase to antiphase
phase locking (Wagenaar and van Emmerik, 2000), and in the
immediate vicinity of the transition the variability of frequency
(phase) locking drastically increases1. The methodological benefit
of investigating such changes in coordination is that they
arguably share characteristics of classic phase transitions, in the
sense of non-equilibrium thermostatistics (Kelso, 1995; Beek
et al., 2002) al., 2002; Kelso, 1995). In the vicinity of a phase
transition, one may expect the dynamics’ dimensionality to be
drastically reduced and muscle activity patterns to stay on low-
dimensional manifolds.

Interestingly, the switch in coordination during walking
depends on whether the walking speed is increased or decreased
(Schöner et al., 1990; Van Emmerik and Wagenaar, 1996).
This suggests that the underlying mechanisms are not purely
mechanical or energetic, as has been conjectured in other
cases of altered interlimb coordination (Hoyt and Taylor,
1981; Owaki and Ishiguro, 2017). Our working hypothesis is
that the central nervous system substantially contributes to
the stability of coordination patterns. As such, we sought to
identify (low-dimensional) neural contributions to transitions in
upper and lower limb coordination. Well-designed mechanical
manipulations may already hint at the relevance and location
of such neural contributions. For instance, Bondi et al. (2017)
reported how changes of swing of one arm can affect both the
swing of the other arm as well as lower limb coordination during
walking. The same effects have also been shown in neonates
(La Scaleia et al., 2018), children with hemiplegic cerebral palsy
(Meyns et al., 2012), and are known for long for stroke survivors
where they can be strongly elevated (Stephenson et al., 2009). By
the same token, the arm swing can have little to no influence on
leg movement after spinal cord injury (Tester et al., 2012). These
findings suggest that a partial interruption of the spinal cord may
suffice to limit the interaction between spinal motor neurons such
that switches in interlimb coordination no longer emerge.

Targeting neural dynamics more directly during motor
coordination is not new (Matsuyama et al., 2004). Several
groups studied modulations of muscle activity of upper and
lower extremities during locomotor tasks via electromyography
(EMG) – a proxy of neural activity in the spinal cord (Ferris
et al., 2006; Boonstra et al., 2016; Zehr et al., 2016). Muscle
activity of different muscles is found to couple at several
time or frequency scales. Coherence at low frequencies (0–
5 Hz) seems associated with common modulation of motor
unit mean firing rate and muscle force generation and, hence,
likely reflects co-modulation of muscle activities (De Luca and
Erim, 1994; Mochizuki et al., 2006; Boonstra et al., 2008)

1In particular the increase in phase variability in the immediate vicinity of
the behavioral switch in interlimb coordination resembles so-called critical
fluctuations which implies the presence of a likewise critical slowing down, i.e.,
drastic increase of response time after (mechanical) perturbation.

and the modulation of EMG envelopes (Hansen et al., 2001).
Common modulations of EMG envelopes of groups of muscles
are considered as muscle synergies (Tresch et al., 2006) that reveal
how movements are manifested through synchronized muscle
co-activation (Ivanenko et al., 2004, 2005; Cheung et al., 2005;
Cappellini and Ivanenko, 2006; Dominici et al., 2011). In a recent
review, Bruton and O’Dwyer (2018) outlined numerous studies
suggesting that muscle synergies are vital motor control modules.
Obviously, muscle synergies change with altered coordination,
but what are the origins of these changes? An answer to this
may lie in the higher frequencies of the EMG signal, as they may
provide the spectral “fingerprints” of distinct neural pathways
involved in the control of muscles (Farmer, 1998; Boonstra
et al., 2009a, 2016; Danna-Dos-Santos et al., 2014). For example,
intermuscular coherence at higher frequency components may
reflect supra-spinal drives (Grosse et al., 2002) that modulate
the activation of multiple muscles by means of a common input
(Danna-Dos-Santos et al., 2014).

Here, we studied the dynamics of muscle activation during
changes in interlimb coordination using the experimental
design of Wagenaar and van Emmerik (2000). Rather than
focusing on isolated muscles, we employed synergy analysis
and constructed functional muscle networks (Boonstra et al.,
2015). We determined the minimal (i.e., low-dimensional) set
of muscle synergies and combined them into a network with
multiple synergy-specific layers. In a similar spirit, we used
intermuscular coherences to construct networks with multiple
frequency-specific layers (Kerkman et al., 2018). Both types of
networks were constructed under the proviso that they could
be based on a low-dimensional representation2, i.e., a small
number of relevant muscle synergies vis-à-vis a small number of
frequency components with pronounced coherence determined
through conventional mode decomposition of multivariate
time series. Network analysis offers new possibilities to assess
synchronization between motor units across a large number
of muscles. It hence allows for an encompassing study of
functional changes in muscle activity during a transition in
physiological coupling (Bashan et al., 2012; Bartsch and Ivanov,
2014). In particular, modulations of the network can highlight
modifications in the neuromuscular system related to changes in
functional behavior during walking.

For the individual synergies, we expected the switch in
interlimb coordination to be accompanied by rapid changes in
temporal activation patterns, in line with Yokoyama et al. (2016).
For the corresponding low-frequency muscle networks, we
expected a strong resemblance of anatomical and biomechanical
constraints (Kutch and Valero-Cuevas, 2012; Bruton and
O’Dwyer, 2018) and switches in coordination to result in
concomitant changes in network topology. Given that the higher
EMG frequency components are thought to represent supra-
spinal input to multiple muscles (Kerkman et al., 2018), we
expected these frequency components to discern neural pathways
involved in the stability of arm-leg coordination patterns and the
switches between them.

2As said, we investigated the dynamics in the vicinity of a phase transition.
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MATERIALS AND METHODS

Subjects
Sixteen healthy subjects (five males and eleven females, mean
age of 25.3 ± 2.4 years) without any neurological or motor
disorder were included in this study. The study was approved
by the Ethics Committee Human Movement Sciences of the
Vrije Universiteit Amsterdam (VCWE-2017-132). All subjects
were informed about the procedure of the study and provided,
in accordance with the Declaration of Helsinki, written informed
consent prior to participation.

Procedure
Subjects were instructed to walk on a treadmill (Motek Medical
B.V., Amsterdam, Netherlands) with their arms swinging
along their body while full-body kinematics, ground reaction
forces and muscle activities were recorded. Subjects walked at
controlled speeds between 1.0 and 4.0 km/h with increments
of 0.5 km/h. The ordering of speeds was randomized between
subjects and trials. Subjects walked for at least fifteen strides
at each speed; see movie ExperimentalParadigm.mp4 in the
Supplementary Material.

Data Acquisition
Ground reactions forces (Motek Medical B.V., Amsterdam,
Netherlands) and full-body 3D-kinematics (Optotrak, Northern
Digital, Waterloo, ON, Canada), using five cluster markers (heel,
lower and upper leg, and upper and lower arm) and three cameras
(left and right backside and one at the front), were measured
to define the fifth metatarsophalangeal joint, heel, ankle, knee,
hip trochanter, shoulder, elbow and wrist. Kinetic and kinematic
data were sampled at 70 Hz. Surface EMG of 26 bilateral muscles
(Table 1) distributed across the body was recorded (two Mini
Wave Wireless 16-channel EMG system, Cometa s.r.l, Italy) and
sampled at 2 kHz after online band-pass filtering between 10
and 500 Hz. Electrodes were placed according to the SENIAM
recommendations (Hermens et al., 1999). Kinematic, ground
reaction force and EMG data were synchronized online.

TABLE 1 | Muscles included in the recordings.

Muscle Abbreviation

1. Tibialis anterior TA

2. Gastrocnemius medialis GM

3. Tensor fascia latae TFL

4. Rectus femoris RF

5. Vastus medialis VM

6. Adductor longus AL

7. Biceps femoris BF

8. Gluteus maximus GMA

9. Erector spinae ES

10. Latissimus dorsi LD

11. Trapezius TZ

12. Deltoid D

13. Triceps brachii TRB

Data Analysis
Kinematics
Gait cycles were defined based on the right heel strikes obtained
from the force plate data. The heel strike was defined as the
moment when the vertical ground reaction force exceeded 8% of
the average ground reaction force during the trial. This kinetic
criterion was verified by comparison with foot strike measured
from the kinematic data (Borghese et al., 1996; Roerdink et al.,
2008). We determined the mode of interlimb coordination via
the maximum spectral overlap after rescaling the frequency
axis (Daffertshofer et al., 2000) and the circular variance of
the generalized relative phase of the kinematics of the arms
and legs for every walking speed and subject (cf. Table 2). We
focussed on the frequency locking between arms and legs at
2:1 (∼ very low speed) and 1:1 (∼ normal), and the transition
(T) between these modes of coordination. The 2:1 and the 1:1
condition were dominated by spectral overlap at a 2:1 or 1:1
frequency ratio, respectively, and almost constant corresponding
generalized relative phases. The transition was characterized by
spectral overlap at both frequency ratios of 2:1 and 1:1, and a
changing generalized relative phase (Figure 1).

EMG Pre-processing
Independent component analysis was used to reduce heart beat
contamination in the EMG signals (Willigenburg et al., 2012).
Subsequently, EMG signals were high-pass filtered (2nd order,
bi-directional Butterworth, cut-off at 30 Hz) and rectified using
the modulus of the analytic signal. Here we would like to
note that rectification can re-introduce low-frequency amplitude
modulations (Myers et al., 2003; Boonstra and Breakspear, 2012).

Muscle Synergies
Electromyography envelopes were determined by low-pass
filtering the rectified EMGs (2nd order, bi-directional
Butterworth filter, cut-off at 10 Hz). Subsequently, these
envelopes were time normalized such that every stride had an
equal number of samples (N = 200 samples). For every subject we
further normalized the amplitudes to the average activity during
the fastest walking speed (4.0 km/h)3. Next, EMG data for every
subject were averaged over all strides per mode of coordination
yielding EMGs× subjects× conditions time series containing one
average stride each. Finally, time series were concatenated along
subjects and conditions yielding 26 (number of muscles) discrete
time series containing subjects × conditions (SC) strides each4.
We denote the data by Xij where i indexes the time point and j the
muscle, that is, i = 1, . . ., SC · N spans the SC time-normalized
strides with N samples each and j = 1, . . .,26 are all muscles. These
data entered our synergy analysis, namely non-negative matrix
factorization (NMF). NMF is a linear mode decomposition
X 7→W(m) A(m) that includes the constraint that both extracted
wave forms A(m) and weights W(m) are positive semi-definite,
and that W(m) and A(m) have rank m; we used a multiplicative

3Here, we would like to note that we verified that the amplitude normalization had
little to no effect on the temporal and spatial representation of the muscle synergies.
4Estimating muscle synergies per condition had only minor effects on both
weightings and wave forms; details can be found in the Supplementary Material.
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TABLE 2 | Overview of modes of coordination per subject per walking speed.

PPPPPPSpeed
Subject

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1.0 km/h 2:1 T T 2:1 2:1 2:1 T 2:1 2:1 T T N/A 2:1 T 2:1 T

1.5 km/h 2:1 T 1:1 T T 1:1 1:1 T 1:1 1:1 2:1 T T 1:1 2:1 T

2.0 km/h 2:1 1:1 1:1 T 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 T 1:1 T 1:1

2.5 km/h T 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

3.0 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

3.5 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

4.0 km/h 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1 1:1

2:1 represents a double arm swing of both arms during one gait cycle, 1:1 represents a 1:1 coordination pattern with one arm swing of both arms during one gait cycle,
and T represents the transition between the 2:1 and 1:1 mode of coordination in which both patterns were observed.

FIGURE 1 | Example of the determination of the modes of coordination based on kinematics of subject 1. (A) The average arm (blue) and ipsilateral leg (red)
movement in the anterior-posterior (AP) direction as a function of the gait cycle in the 2:1 (1.0 km/h), transition (T, 2.5 km/h) and 1:1 (4.0 km/h) mode of coordination.
(B) The spectral power. (C) The spectral overlap between the power spectra of the arm and leg is maximal for a 2:1 or 1:1 coupling between the arm and leg
movement in the 2:1 and 1:1 mode of coordination, respectively. The transition contained peaks at both 2:1 and 1:1 coupling. (D) The relative phase between arm
and leg. A generalized relative phase of zero slope implies that arm and leg move at a fixed frequency ratio (2:1, black and 1:1, gray).

update algorithm to solve the corresponding minimization of the
Frobenius norm ||X–W(m)A(m)

||
2
F (Lee and Seung, 1999).

To fix the number of relevant synergies, i.e., the rank m of
W(m), we determined the quality of data reconstruction as

λ(m)
=

(
1−
||X–W(m)A(m)

||
2
F

||X||2F

)
× 100% (1)

and required λ(m)
≥ λcutoff = 80% (Zandvoort et al., 2019)

and, additionally, λ(m)
−λ(m−1)

≥ 1λcutoff = 1.5%. This notion
let us also define the contribution of every synergy to the
representation of W(m)A(m) by realizing that W(m) = [w1,. . .,wm]
and A(m) = [a1,. . .,am]. That is, the contribution of an individual
synergy s could be given as

λs =

(
1−
||X–wsas||

2
F

||X||2F

)
× 100% (2)
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Note that by combining the signals as described above, we
obtained different wave forms between and common muscle
weights across conditions and subjects, i.e., fixed muscle groups
over conditions with varying activation patterns. For the sake
of legibility, in the following we denote these outcomes as
X 7→W(syn) A(syn).

Intermuscular Coherence
The rectified EMGs were down-sampled to 256 Hz to
reduce computational load. Data of the same condition were
mean-centered and concatenated. Intermuscular coherence was
determined between all 26 × 25/2 =325 muscle pairs per
subject and condition. The power spectral densities Px and
Py of signal pairs (x,y) and the complex-valued cross-power
spectral density Pxy were estimated using Welch’s periodogram
method (Hamming taper of 200 ms length and about 50%
overlap). With this we computed the squared coherence C2

xy =(
PxyP∗xy

)/ (
PxxPyy

)
; here (.)∗denotes the conjugate complex.

We corrected the coherence estimates for the bias due
to differences in data length. We employed a bootstrapping
approach (100 surrogates) of the complex-valued cross-spectral
density through phase randomization (Hurtado et al., 2004;
Kantz and Schreiber, 2004). In brief, phase randomization
destroys coherence implying that the resulting bootstrap
distribution is zero-centered. However, due to finite-size
estimation the distribution may have a finite, frequency-
dependent variance even for infinitely many surrogates. This
variance yields a null distribution indicating the absence
of coherence, which served as normalization factor for the
coherence estimates. Since the latter is the modulus of the
normalized cross-spectral density, the resulting distribution of
squared coherences is a Chi-squared distribution with two
degrees of freedom for which we considered squared coherences
below α = 0.05 not distinguishable from chance. Accordingly,
these values were set to zero.

In line with the synergy analysis, we concatenated the data,
i.e., now the corrected coherence spectra across the frequencies
(f, 4–60 Hz), over subjects and conditions (SC) and 325 muscle
pairs. This yielded a f × (SC × 325) matrix, and we applied
NMF to obtain C 7→W(coh)A(coh). This NMF yielded m modes,
W(coh) = [w1,. . .,wm] with wj = 1,...,m, containing SC × 325
coherence weights each, and A(coh) = [a1,. . .am], with aj = 1,...,m
defining the m modes for all subjects, conditions and muscle
pairs. To anticipate, these modes separated distinct frequency
ranges. From hereon we therefore refer to these modes as
frequency components. The number of these components was
fixed using Eq. (1) with adjusted cut-off values: λcutoff = 55% and
1λcutoff = 4%.

Muscle Networks
We constructed muscle synergy and coherence networks with
muscles as nodes and their functional connectivity as edges
between them. The synergy-NMF yielded wj = 1,...,m that
contained 26 muscle activity weights each for every synergy. We
used the outer product Wj ·Wj to define the connectivity matrix
C(syn)

j of synergies j = 1,. . .,m to create a one mode projection of

a bipartite network (Murphy et al., 2018) with m layers (Horvát
and Zweig, 2012). In this synergy network, every element of the
connectivity matrices represented the weighted appearance of
two muscles in the same synergy. To include the contribution of
the synergies by means of the amplitude of the wave forms, the
connectivity matrices were weighted for the sum of the integrals
of the wave forms of the three modes of coordination.

The intermuscular coherence weights of the m frequency
modes (NMF modes) served to define the edges of
the coherence network. We thus obtained m × SC
different 26 × 26 connectivity matrices C(coh)

j that we
averaged over subjects and combined into an m × 3-
conditions multiplex network. The community structures
across layers of both the synergy and coherence
networks were determined by the Louvain algorithm
(Jeub et al., 2019).

To compare topological characteristics of the coherence
networks between modes of coordination, we determined the
global connectivity, clustering of muscles and strength of
connections in the network by means of global efficiency,
transitivity, and average strength across nodes (Bullmore and
Sporns, 2009; Rubinov and Sporns, 2010) for all layers.
Before doing so, the corrected coherence networks were
thresholded to construct a minimally-connected network across
the layers of the network, i.e., every node (muscle) was
connected to at least one other node in one of the layers
and the number of edges within the layers was constant
across the layers.

Additionally, we time normalized the EMG data and estimated
coherence again, but now with a Hamming taper of 5 s over the
0.6–4 Hz frequency range to directly compare synergy and (very)
low-frequency coherence networks. Details of this analysis can be
found as Supplementary Material.

Statistics
Statistical differences between conditions were assessed over
subjects who exhibited both conditions (either 2:1 and transition,
2:1 and 1:1, or transition and 1:1).

Changes in the synergy wave forms were compared in two
ways. First, we compared the amplitude during the gait cycle
between modes of coordination. Subsequently, the amplitudes
were normalized to the maximum of the wave form and
we compared the amplitude-normalized wave forms between
modes of coordination. We determined the samples of the time
series which were significantly different in either amplitude or
wave form between the conditions using statistical parametric
mapping including paired t-tests (Pataky et al., 2015; see also
www.spm1d.org). Significance was identified based on an alpha
threshold value corrected for multiple comparisons in three
conditions and five synergies, i.e., α = 0.05/(3.5) = 1/300.

Differences between the network metrics of the layers of the
coherence networks, i.e., modes of coordination and frequency
components, were compared with a univariate ANOVA with
subject as random factor (α = 0.05). Post-hoc tests were
performed to examine differences between conditions per
frequency component (α = 0.005).
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RESULTS

Behavior
The kinematic assessment of the modes of coordination revealed
that only seven subjects showed both modes of coordination and
the transition between the two. The 2:1, transition, and the 1:1
mode of coordination appeared in nine, fourteen, and sixteen
subjects, respectively (Table 2).

Figure 1 represents a typical example (subject 1) of the
movement of the right arm and ipsilateral leg in the sagittal plane,
the corresponding spectral power and overlap, and the relative
phase for the 2:1, transition and 1:1 condition.

Muscle Activity
Differences between modes of coordination were clearly visible
in both the amplitudes and wave forms of the EMG envelopes
(Supplementary Figure S1). EMG amplitudes particularly
differed around the heel strike event in the ipsilateral leg
and contralateral back and arm muscles in the 1:1 mode of
coordination. The peak activity in the arm muscles around the
contralateral heel strike shifted to earlier in the gait cycle when the
coordination pattern switched toward a 1:1 mode of coordination
between arms and legs.

Muscle Synergies
Five muscle synergies accumulated 80% to the Frobenius norm
of the original concatenated EMG envelopes and a sixth synergy
added very little, which let us fix m(syn) = rank[W(syn)] = 5
(Figure 2). We found λ

(syn)
1,...,5 = [17, 13, 16, 19, 15]% on

average across conditions.
Synergies were ordered based on the relative timing of the

main peak in the activation patterns (Figure 3A). S1 and S4 were
active during the heel strike and weight acceptance response of
the right and left leg, while S3 and S5 were active mainly in the
calf muscle during the stance phase of the right and left leg,
respectively. The muscle weights of S1 and S4 showed activity
in both the leg and the contralateral trunk and arm muscles;
bilateral calf and contralateral shank muscles were dominant in
S3 and S5. S2 was active during the stance and swing phases with
primarily activity of muscles around the pelvis (Figure 3B). The
contribution λ

(syn)
2 of S2 increased from 2:1 to 1:1, while λ

(syn)
3

and λ
(syn)
5 decreased.

Significant differences were found between the synergies’ wave
forms between the 2:1 and the 1:1 and between the transition
and the 1:1 mode of coordination (Figure 4). The amplitude of
S1 increased in 1:1 compared to 2:1 and the transition around
the right heel strike and the activity decreased quicker with an
increase in walking speed. Similar results were found for S4 at
the corresponding left heel strike. Changes in the amplitude were
also visible in S2 between 2:1 and 1:1 and between the transition
and 1:1 during the stance and swing phases of both legs. The
activation pattern of S3 revealed some minor differences between
the transition and 1:1 in the amplitude halfway the stance phase
of the right leg and after the left heel strike, while no significant
changes were found for S5.

Intermuscular Coherence
The coherence spectra were decomposed in three modes, i.e.,
m(coh) = rank[W(coh)] = 3. These modes reflected distinct
frequency bands, 4–8, 8–22, and 22–60 Hz, in line with
our previous findings (Boonstra et al., 2015; Kerkman et al.,
2018). The frequency components contained in total 57%
of the Frobenius norm of the coherence spectra; λ

(coh)
1,...,3 =

[19, 19, 19]% .
We extracted two frequency components (λcutoff = 19%) from

the low-frequency coherence (0.6–4 Hz) showing peaks at 1.5 or
2.5, and 3.5 Hz; λ(coh)

1,2 = [9, 10]% .

Muscle Networks
Both the muscle synergies and coherence spectra were
represented as multiplex networks to facilitate quantitative
comparison. For the muscle synergies, each synergy was
represented as a layer of the multiplex network (Figure 3C).
We subsequently estimated the community structure across all
five layers (Figure 5A). As the connectivity in the layers of the
synergy network did not overlap substantially, the community
structure across layers yielded a single module and the synergy
network contained several contralateral connections between
arms and legs. These long-distance edges were distinctive for
the layers of the synergies active around heel strike (S1 and
S4). S3 and S5 also showed symmetries between left and right,
but represented a more comprehensive network in which the
whole human body was involved. S2 mainly showed connectivity
around the pelvis and between the pelvis and the shoulder
muscles (trapezius, Figure 3C).

In contrast, the community structure of the multiplex
coherence network divided the body in modules of both legs
separate, the trunk with the left arm and the right arm
(Figure 5B). The average modularity per frequency component
was 0.14, 0.30, and 0.32, respectively. By constructing minimally-
connected multiplex networks, we removed on average 293
significant edges (threshold was 0.0970) with weights of
0.0015 ± 0.0011 (mean ± standard deviation), 0.0018 ± 0.0011
and 0.0055 ± 0.0039 for 2:1, transition and 1:1, respectively. The
preserved edges had weights of 0.0114± 0.0077, 0.0114± 0.0067,
and 0.0184 ± 0.0069. In contrast to the synergy network, the
community structure of the coherence network was not affected
by this thresholding (see Supplementary Material).

The community structure of the coherence network over
0.6–4 Hz was very similar to the community structure of the
coherence network over the frequency range of 4–60 Hz: the
Rand and adjusted Rand indices were 0.85 and 0.63, p < 0.001,
respectively. Yet, individual layers of the coherence network
revealed similarities with the layers of the synergy network; cf.
Supplementary Material for more details.

Changes in Coherence Networks
The topology of the coherence network was reorganized when the
coordination pattern changed to the 1:1 mode of coordination
(Figure 6). The network metrics, i.e., global efficiency, transitivity
and average strength, were significantly different between
conditions [F(2,21) = 56.0, F(2,21) = 12.1, and F(2,21) = 38.7,
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FIGURE 2 | Reconstruction quality of the muscle synergies. (A) Additional value of an extra synergy (1λ) to the total contribution of the synergies to the Frobenius
norm, (B) the contribution of every synergy (S1 to S5) to the Frobenius norm (λ). The order of synergies S1 to S5 is showed in Figure 3. Green, cyan and blue bar
plots represent the 2:1, transition (T) and 1:1 mode of coordination, respectively.

FIGURE 3 | Muscle synergies across modes of coordination. (A) The synergies’ temporal activation patterns as a function of the gait cycle derived from average
muscle activity patterns for the different modes of coordination. Green, cyan and blue represent the 2:1, transition (T) and 1:1 mode of coordination. Error patches
represent the standard error of the mean across subjects. (B) Synergies’ weightings across conditions and subjects in color scale. (C) Muscle synergy network
plotted separately for each synergy on the body mesh (Makarov et al., 2015). A minimally-connected network was created for visualization. Node size represents the
degree of the muscle and edge thickness represents weighted appearance of both muscles in the synergy.

respectively, p < 0.001]. The 1:1 mode in the 4–8 Hz frequency
component contained several long-distance connections between
the leg and the contralateral arm with high connection strengths

corresponding to a high global efficiency (Figure 6C). In contrast,
both the 2:1 and the transition showed mainly connections
within and between upper body and arms. At 8–22 Hz, 1:1
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FIGURE 4 | Significant differences between synergies’ wave forms between modes of coordination. Green, cyan and blue represent 2:1, transition (T) and 1:1,
respectively. Patches represent significant differences in time between the amplitude (gray) and the temporal patterns (red) of the synergies’ wave forms. α = 1/300.

coordination again deviated from 2:1 and the transition, and
was associated with a relatively high global efficiency, transitivity
and strength. Some long-distance connections were found in
1:1 between the legs and the lower back, and high within-
module connectivity appeared within the legs. For the 22–60 Hz

FIGURE 5 | The community structure of the multiplex (A) muscle synergy (B)
and coherence networks based on the synergy and coherence spectra
muscle weightings. Community structure is visualized by color-coded nodes
and the average degree across layers of every muscle is displayed as node
size on the body mesh (Makarov et al., 2015). The edge width is based on the
average connectivity across layers between the muscles in either the
minimally-connected synergy or coherence network.

frequency component, the connectivity was high within the trunk
in 2:1 and the transition, while this connectivity was lower in
1:1. In the latter condition, the connectivity was higher between
arm muscles. The highest frequency component was without
connections between the upper and lower body in all conditions.

DISCUSSION

The aim of this study was to identify neural correlates of
spontaneous switches in interlimb coordination during walking,
i.e., transitions in frequency locking ratios between the arms
and legs when walking speed changes. We applied more
conventional synergy analysis and extended this to multiplex
networks in line with the more recently introduced coherence-
based muscle networks (Kerkman et al., 2018). As expected, we
found changes between task conditions in the activation patterns
of specific muscle synergies and in the network metrics of specific
frequency layers of the coherence networks. In particular, we
found increased activation of the synergies active around right
and left heel strike (S1 and S4, respectively) during 1:1 phase
locking compared to the other two coordination modes. Likewise,
synergy S2 involved the muscles around the pelvis and also
showed increased activation during 1:1 locking; note that this
synergy appeared left/right symmetric. In contrast, synergies
S3 and S5, involved in the initiation of the swing of the left
and right leg, respectively, remained largely unchanged across
modes of coordination. Similar to the muscle synergies, 1:1
coordination revealed increased connectivity between upper and
lower limbs in two (lower) frequency components (4–8 and
8–22 Hz) compared to the other two modes of coordination.
The increase in long-distance connectivity was associated with
a corresponding increase in global efficiency, transitivity and
average strength. We found four modules grouping either left
and right leg muscles or left and right arm muscles, though, the

Frontiers in Physiology | www.frontiersin.org 8 July 2020 | Volume 11 | Article 751

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-00751 July 23, 2020 Time: 17:23 # 9

Kerkman et al. Muscle Synergies and Coherence Networks

FIGURE 6 | Changes in connectivity between conditions and frequency components in the minimally-connected multiplex coherence network. (A) Frequency
components 4–8, 8–22, and 22–60 Hz, obtained with non-negative matrix factorization. (B) Coherence networks in the 2:1, transition (T) and 1:1 mode of
coordination (columns) and the frequency components (rows). Colors in the networks depict different modules and node size and edge width represent degree and
connectivity strength between muscles, respectively. (C) Global efficiency, transitivity and average strength of the coherence networks per frequency component and
condition. Error bars indicate standard errors of the mean and asterisks significant differences between conditions (α < 0.005).
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module containing the left arm also included all the recorded
trunk muscles. These findings indicate that the transition to a
1:1 coordination pattern is associated with a reorganization in the
muscle activation patterns.

Arm-leg coordination switched from 2:1 to 1:1 frequency
locking mode when walking speed was increased. During the
transition period both coordination patterns could be observed
supporting the notion of multi-stability (Van Emmerik and
Wagenaar, 1996). However, this was not observed in all subjects,
in line with earlier studies reporting that the incidence of the 2:1
coordination pattern is reduced in treadmill compared to over-
ground walking (Carpinella et al., 2010). Future studies may focus
on even lower treadmill speeds to pinpoint neurophysiological
changes possibly underlying the transition in coordination. Yet,
we identified statistically significant differences between the
coordination modes in individual muscle activation patterns. We
are confident that these findings underwrite earlier documented
importance of arm muscle activity during walking (Craik
et al., 1976; Meyns et al., 2013; Goudriaan et al., 2014).
They also revealed phase-specific modulations of arm muscle
activity associated with the kinematic switches in interlimb
coordination (see Supplementary Material). Last but not
least, the modulations of EMG activity were reflected in the
reorganization of the muscle synergies.

Speed-induced adaptations in muscle synergy strength and
timing have been reported earlier (Ivanenko et al., 2004;
Yokoyama et al., 2016), which led Den Otter et al. (2004) to
speculate that modulations of muscle synergies are a mere by-
product of a change in stance and swing time. We found that the
synergy active during the stance and swing phases (S2) became
stronger accounting for an increase in upper leg activity which
may serve to control the relative movement between the trunk
and the legs when walking faster. We found left/right-mirrored
synergies for both S1 and S4 and S3 and S5; the muscles in S3 and
S5 appeared important in preserving the upright body position,
while synergies S1 and S4 induced the forward propulsion of
the body. Synergies that were active during heel strike were also
affected in both the strength and the wave form when switching
to another mode of coordination, which was in accordance with
the changes in relative timing of the arm swing. The synergy
analysis revealed a fairly strong contribution of arm and shoulder
muscles in the heel strike synergies (S1 and S4) and the switches
between the modes of coordination were marked by a decrease
in the involvement of arm muscles when the arm swing was in-
phase with the leg swing. These phase-specific modulations could
hence be directly related to the changes in kinematic behavior.
Moreover, not all synergies were affected. Taken together, we
rather support the notion of modular motor control, in which
synergies can be modulated depending on the task while other
synergies are robust across conditions (Nazarpour et al., 2012).

We used one-mode projections, commonly employed in
bipartite networks (Murphy et al., 2018), of the muscle
synergy weights to construct multiplex networks (Horvát and
Zweig, 2012), with each layer reflecting a synergy. These
synergy networks can reveal functional connections between
multiple muscles in line with functional modules related to the
biomechanical constraints of walking (Neptune et al., 2009).

For example, next to the coordination-related coupling between
contralateral arms and legs, we also found ipsilateral connections
between arms and legs specific for the 2:1 locking mode. The
networks of synergies S3 and S5 were dominated by activities
important for push-off (GM) and foot raise (contralateral TA),
but this modulation did not depend on the mode of coordination.
When collapsing the multiplex network across layers, the synergy
network only reflected the biomechanical characteristics of
walking that kept the mechanisms underlying synergy formation
opaque (Tresch and Jarc, 2009). Yet, the muscle synergy network
approach supports the idea of functionally organized synergies
that are modulated by changes in interlimb coordination.

The topology of the muscle synergy network showed clear
similarities with the network derived from intermuscular
coherence at lower frequencies (0.6–4 Hz, see Supplementary
Material). Coherence at very low frequencies likely captures the
co-variation of EMG envelopes which underpins the synergy
analysis. Hence, both synergy and coherence networks may
yield equivalent results, though, very low-frequency coherence
might be difficult to estimate reliably due to the brevity of the
gait cycles. At higher frequencies, the agreement between both
types of networks was largely absent, as we did not observe
a modular structure in the multiplex synergy network. This
suggests that synergy and coherence analyses are complementary
and potentially capture different aspects of motor control. As
expected, the community structure of the coherence networks
was closely related to the anatomical relationships of the muscles
(Kerkman et al., 2018).

Higher frequency components of intermuscular coherence
may indicate different functional pathways in the neuromuscular
system, which were affected by the coordination between limbs.
We found major changes in the 1:1 mode of coordination
compared to the 2:1 mode and the transition, indicating a
reorganization in the structure of common input during 1:1
coordination. The connectivity between 4 and 8 Hz was strongly
increased between the arm and contralateral leg muscles in the
1:1 mode, indicative for altered afferent input (Bourguignon
et al., 2019) and seemingly relevant for maintaining forward
propulsion (cf. above). Connectivity in the frequency range of 8–
22 Hz covers both alpha and low beta frequency ranges and have
frequently been observed in intermuscular (Boonstra et al., 2015;
Kerkman et al., 2018) and corticomuscular coherence (Conway
et al., 1995; Boonstra et al., 2009b; Petersen et al., 2012; de
Vries et al., 2016; Roeder et al., 2018). Although corticomuscular
connectivity was not assessed in our study, we are tempted to
interpret these frequency ranges as different neural pathways,
possibly reflecting afferent and efferent inputs to spinal motor
neurons, respectively (McAuley and Marsden, 2000; Rathelot
and Strick, 2009; Bourguignon et al., 2019). The connectivity
at 8–22 Hz was only affected when the legs and arms were in
antiphase, i.e., in the 1:1 mode of coordination, with stronger
long-distance connections between both lower back and leg
muscles. First and foremost, the overall connectivity changed
instead of a reorganization in connectivity patterns. That is, the
conjunction between the upper and lower body muscles gained
importance arguably because of an increasing demand of upper
relative to lower body movements when walking faster. Finally,
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the connectivity in the frequency component of 22–60 Hz was
less affected by changes in interlimb coordination.

The absence of neural connectivity during the 2:1 mode of
coordination is in contrast to the kinematic coupling between
the limbs. The increase in long-distance connectivity between
the upper and lower limbs when switching to 1:1 coordination
may indicate additional demands when switching to antiphase
coordination. The absence of interlimb coupling in the EMG
envelopes might indicate a largely passive contribution of the
arm swing at slow walking speeds, while at higher speeds muscle
activity is needed to actively establish interlimb coordination
and possibly reduce the cost of walking (Collins et al., 2009).
The active contribution of arm muscle activity in the 1:1
mode of coordination seemingly underlies the reorganization
of muscle synergies. In our study, this reorganization was
associated with increased functional connectivity between the
arms and legs specifically at 4–22 Hz, which again implies
increased common input to both arm and leg muscles (Boonstra
et al., 2016). Muscle networks showed an abrupt change in
network topology with increased long-distance connections
when switching to a 1:1 mode of coordination. The increase
in connectivity between arm and leg muscles is also reflected
in the layers of synergy network corresponding to synergies
S1 and S4, while muscle networks during quiet standing were
mainly dominated by local connectivity (Boonstra et al., 2015;
Kerkman et al., 2018). The switches in interlimb coordination
were hence associated with distinct changes in the functional
connectivity in the neuromuscular system reflecting common
input to multiple muscles.

Admittedly, our results do not provide undeviating evidence
for possible neural causes of synergy formation or stability
of interlimb coordination. A promising future step could
be to infer the dynamic coupling functions between muscle
activation profiles that, in principle, do contain all information
about the functional mechanisms underlying the interactions
and prescribe the physical rule specifying how an interaction
occurs (cf. Stankovski et al., 2017). We also have to admit
that we did not directly assess the contribution of the supra-
spinal inputs and it might be a “natural” step to evaluate
these inputs using measures like partial directed coherence
(e.g., Boonstra et al., 2015) or other directed information
theoretic measures (e.g., Boonstra et al., 2019). While evidence
about the functional role of intermuscular coherence is
rapidly accumulating (Farmer et al., 1993; Boonstra et al.,
2015, 2019; De Marchis et al., 2015), research on possible
cortical contributions during whole-body movements comes
with challenges (Gwin et al., 2010). Several studies already
revealed the phasic modulation of corticomuscular coherence
(Gwin et al., 2011; Gwin and Ferris, 2012; Roeder et al., 2018)
and their importance of stabilizing modes of coordination (Bruijn
et al., 2015). Interestingly, a recent experiment by Zandvoort et al.
(2019) successfully identified cortical contributions to synergy
formation by combining electroencephalography with EMG-
based synergy analysis. Future work may adopt this approach to
substantiate our suggestions about high-frequency, long-distant
neural activation in the context of interlimb coordination and
their sources in the central nervous system.

CONCLUSION

The reorganization in muscle synergies and the concomitant
alterations in coherence modulations of common neural input
to multiple muscles highlight that switches in interlimb
coordination are associated with changes in neuromuscular
control. Network analysis of connectivity between all muscle
pairs showed that the modularity of the neuromuscular
system couples anatomical and functional linked muscles. The
speed-induced transition to a 1:1 arm-leg frequency locking
is accompanied by strong intermuscular coherence between
upper and lower body muscles. This functional connectivity
is particularly pronounced at higher frequencies indicating a
significant long-distance neural interaction that accompanies the
formation of muscle synergies.
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