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others may encounter similar issues since the origin of 
beta-glucan contamination includes commonly used filters 
and solutions applied in the manufacture of biotherapeutic 
agents. It is likely that regulators will increasingly enquire 
about beta-glucan levels in pharmaceutical products, espe-
cially those with an immunomodulatory mechanism of 
action. Here, we review the literature on beta-glucans in 
pharmaceutical products and propose an acceptable level 
for therapeutic agents for parenteral use.

Keywords Beta-glucan · Lentinan · Biotherapeutics · 
Antibodies · Cancer · Immunostimulation

Abbreviations
CI  Confidence intervals
CR3  Complement receptor-3
CRUK  Cancer Research UK
IFN  Interferon
IκB  Inhibitor of κB kinase
IL  Interleukin
MIF  Migration inhibitory factor
NIHR  National Institute for Health Research
NSCLC  Non-small cell lung dancer
PGE2  Prostaglandin-E2
RR  Relative risk
TIMP  Tissue inhibitor of metalloproteinase
TME  Tumour microenvironment

Introduction

Beta-glucans are polysaccharides of d-glucose monomers 
linked by (1–3) beta-glycosidic bonds (see Fig. 1 for an 
example). They are structurally diverse, and differences in 
the length and branching of side chains result in differences 

Abstract Beta-glucans are large polysaccharides produced 
by a range of prokaryotic and eukaryotic organisms. They 
have potential immunostimulatory properties and have 
been used with therapeutic intent as anti-microbial and 
anti-tumour agents. A range of other potentially beneficial 
effects have been described, and oral forms of beta-glucans 
are widely available over-the-counter and online. Parenteral 
formulations are popular in parts of Asia and are the subject 
of ongoing trials, worldwide. Beta-glucans are also poten-
tial contaminants of pharmaceutical products, and high lev-
els have been described in some blood products. However, 
little is known about the clinical effects of such contamina-
tion, considerable uncertainty exists over the level at which 
immunostimulation may occur, and there are no guidelines 
available on acceptable levels. We encountered beta-glucan 
contamination of one of our products, and we suspect that 
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in solubility and biological activity (reviewed [1]). Beta-
glucans are found in the cell walls of a wide range of 
prokaryotic and eukaryotic organisms, including yeast, 
fungi, seaweeds and cereals. They are a potential contami-
nant in pharmaceutical products, originating from cellu-
lose-based filters and other raw materials used in pharma-
ceutical processing. Beta-glucans are similar to endotoxins 
in that they are large polysaccharides that can elicit an 
inflammatory response. Currently, endotoxins are strictly 
regulated in terms of maximum permitted levels in pharma-
ceutical products (ICH Q6A and Q6B Specifications, 1999 
[2, 3]). Specifications are also in place for residual proteins 
and polypeptides in biological products (ICH Q6B Specifi-
cations, 1999 [3]), but there is no such guidance available 
for beta-glucans [4].

Recently we encountered contamination of a biothera-
peutic agent by beta-glucans. The product, MOv18 IgE (an 
IgE directed towards the tumour-associated antigen, folate 
receptor-alpha), was manufactured at the Cancer Research 
UK, Biotherapeutics Unit for a phase I clinical trial 
(CRUKD/14/001; EudraCT number 2014-000070-19) in 
patients with advanced malignancies, in the United King-
dom (UK). This is the first trial in which a monoclonal IgE 
is administered to patients with therapeutic intent.

Extensive non-clinical testing indicates that anaphylac-
tic reactions should not occur with MOv18 IgE [5], and all 
patients in the trial are scheduled to undergo intradermal 
testing prior to every infusion to avoid administration of 
MOv18 IgE to any patient at risk of an anaphylactic reac-
tion due to MOv18 IgE itself or to any other constituent. 
However, infusion-related reactions due to non-specific 
cytokine release could occur with MOv18 IgE, as com-
monly seen with therapeutic IgG antibodies and other bio-
logical agents. At the time of occurrence, such reactions 
could be confused with anaphylaxis. However, evaluation 
of serum tryptase levels should enable infusion-related 

reactions due to non-specific cytokine release to be distin-
guished retrospectively from anaphylaxis due to mast cell 
or basophil degranulation triggered by MOv18 IgE. Since 
infusion-type reactions have been reported with rapid intra-
venous (i.v.) administration of beta-glucans [6, 7], it was 
considered particularly important to ensure that levels of 
beta-glucans in the MOv18 IgE preparation were suffi-
ciently low for there to be no adverse reactions attributable 
to co-administration of beta-glucans in the clinical trial. 
Beta-glucans have also been reported to have immunostim-
ulatory properties when administered orally or parenterally, 
and we also wished to avoid any immunostimulatory effect 
from co-administered beta-glucans which could cause con-
fusion with the anticipated immunologically mediated anti-
tumour activity of MOv18 IgE [8–12].

The source of contamination of MOv18 IgE was exten-
sively investigated and turned out to be commonly used 
cellulose filters and sucrose-containing solutions. Measures 
were taken to reduce the levels of contamination through 
additional downstream processing and extra washing steps. 
This led to an almost 10-fold reduction in beta-glucan 
levels, which now lie within the range found in commer-
cially available antibodies used in oncology [13]. Subse-
quent batches of MOv18 IgE contained around 3 ng/mg of 
beta-glucans. Based on levels of beta-glucans detected in 
the bulk drug substance from development, scale up and 
clinical batches of MOv18 IgE, and a review of the litera-
ture on the possible clinical implications of beta-glucans 
administration, we submitted an amendment to the Inves-
tigational Medicinal Product Dossier for our product to 
include a specification of 10 ng/mg for beta-glucan con-
tamination. With this level of contamination, we estimated 
that up to 500 ng of beta-glucans could potentially be deliv-
ered on a single occasion to an individual patient in the 
trial. A 500 ng dose could result in plasma levels of around 
100 pg/mL assuming distribution only to the circulating 
volume and no clearance. This specification was accepted 
by the UK Medicines and Healthcare Products Regulatory 
Agency. From our review of the literature, this appears 
to be the first time a specification limit for beta-glucans, 
approved by a regulatory authority, has been reported.

With cellulose-based filters and sucrose-based formu-
lation buffers commonly used in the manufacture of bio-
therapeutic products, we suspect that other scientists and 
clinicians working on the research and development of bio-
therapeutics for use in patients with cancer and other dis-
eases will encounter beta-glucan contamination. Further-
more, regulatory authorities are now more likely to enquire 
about beta-glucans in biotherapeutic products. This issue 
may be particularly important in oncology with the advent 
of new therapeutics, including monoclonal antibodies and 
other biological agents, which have a variety of complex 
immunomodulatory mechanisms of action.

Fig. 1  Beta-glucans are polysaccharides composed of d-glucose 
monomers linked by (1–3) beta-glycosidic bonds. A simple linear 
1,3 glycosidic chain with a single 1,6 glycosidic branch is illustrated 
here, but there are many variations (figure derived from Chan et al. 
[23], originally published in BioMed Central)
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The measures taken to identify the source of contamina-
tion and to reduce the levels of beta-glucans contamination 
in our product are described in detail in a separate publica-
tion [13]. Here, we provide an overview of the safety and 
tolerability of beta-glucans as contaminants of other thera-
peutic agents, and as a therapeutic agent in its own right, 
based on a review of the literature. After a brief review of 
insoluble/particulate beta-glucans (generally orally admin-
istered), this overview concentrates on soluble forms since 
these are most relevant to contamination of biotherapeutic 
agents, such as monoclonal antibodies and their derivatives, 
which are given parenterally.

Insoluble (particulate) beta‑glucans

Oral forms of beta-glucans are widely available over-the-
counter as oat bran and bran-based products such as break-
fast cereals, cereal bars and drinks. These are promoted 
mainly for their clinically proven cholesterol-lowering 
properties ([14] and reviewed in [15]), which are comple-
mented by favourable effects on glucose metabolism [16] 
and possibly other cardiovascular risk factors (reviewed 
in [17]). There is also evidence that orally administered 
beta-glucans have beneficial anti-inflammatory and pro-
apoptotic effects in inflammatory bowel disease and colitis-
associated colon cancer [18].

Beta-glucan supplements are also readily available 
online as tablets, capsules and other oral formulations (see 
for example, Amazon [19] or the Web MD website [20]). 
These forms of beta-glucans are more frequently derived 
from sources other than oat bran (such as yeast or fungi) 
and tend to be promoted as immune stimulants, protecting 
against microbial infections and cancer.

Topical beta-glucans are also used in cosmetics and as 
“cosmeceuticals”, for improving skin health and appear-
ance, based on non-clinical studies demonstrating benefi-
cial effects of beta-glucans on wound healing, inflamma-
tion, ageing (antioxidant and anti-wrinkle activity) and 
moisturisation (reviewed in [21]).

Immunological effects of beta‑glucans

Effects on host immune defence

The immunomodulatory properties of beta-glucans have 
been the subject of considerable scientific study in the 
Western world for several decades. Non-clinical studies 
indicate that beta-glucans activate innate immunity as well 
as adaptive immunity, modulating both humoral and cell-
mediated immune responses. Beta-glucans act on several 
immune receptors including Dectin-1 (considered the main 

receptor for beta-glucans [22]), complement receptor-3 
(CR3) and toll-like receptors 2 and 6 (TLR-2/6) (reviewed 
in [23–26]). Beta-glucans have been found to increase the 
anti-microbial activity of mononuclear cells and neutro-
phils, to enhance the functional activity of macrophages, to 
stimulate the proliferation of monocytes and macrophages 
and to stimulate the production of proinflammatory mol-
ecules such as complement components, interleukin (IL)-
1α/β, TNF-α, IL-2, interferon (IFN)-γ, eicosanoids, IL-4 
and IL-10. Consistent with these findings, beta-glucans 
have also been shown to protect against or ameliorate the 
effects of bacterial and other infections in animal models 
(reviewed in [23–26]). The broad-ranging immunologi-
cal effects of beta-glucans and the epidemiological asso-
ciations between environmental beta-glucans exposure and 
respiratory allergies have also led to interest in their use in 
the prevention or treatment of allergic diseases. The abil-
ity of beta-glucans to rebalance a dysregulated Th1/Th2 
equilibrium is thought to be beneficial in these conditions 
(reviewed in [27]).

It is thought that the immunological effects of orally 
administered beta-glucans are essentially the same as those 
of parenterally administered beta-glucans. Orally admin-
istered beta-glucans are absorbed through the gastrointes-
tinal tract and taken up by tissue-resident macrophages. 
Here, they are fragmented, transported to the bone marrow 
and reticuloendothelial system and eventually released and 
taken up by other immune cells, leading to various immu-
nological effects (reviewed in [23]). On the basis of these 
features, particulate beta-glucans have been evaluated as 
potential vaccines for invasive fungal diseases (reviewed 
in [28]) and beta-glucans particles have been proposed as a 
delivery system for oral vaccines, acting as both carrier and 
adjuvant [29].

Potential anti‑cancer effects

It has been suggested that beta-glucans, administered alone, 
in combination with monoclonal antibodies, or as adjuvants 
alongside vaccines or other types of immunotherapy, could 
help reduce cancer growth. Beta-glucans may act either 
within tumour microenvironments (TMEs) or systemi-
cally, by activating or recruiting immune effector cells into 
tumours or by augmenting adaptive immune responses trig-
gered by concurrent immunotherapy.

Beta-glucan administration has been reported to influ-
ence polarisation of tumour-associated macrophages 
away from an immunosuppressive and towards an acti-
vatory and tumouricidal phenotype (M1). This polarisa-
tion is thought to be mediated by engaging the cell sur-
face C-type lectin receptor Dectin-1 and triggering the 
spleen tyrosine kinase (Syk)-Card9-Erk pathway via the 
ITAM domain [30]. This may result in production of 
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inflammatory cytokines by macrophages and antigen-
presenting cells, and tumour growth restriction through 
enhanced phagocytosis, antigen presentation and induc-
tion of Th1 and CTL responses. In one study, beta-glu-
can administration to mammary tumour-bearing mice 
triggered IL-12 production by macrophages which led to 
a switch from IL-4- to IFN-γ-producing Th1 cells [31]. 
Another study reported reversal of MDSC immunosup-
pressive phenotypes in response to particulate beta-glucan 
treatment. The beta-glucan promoted mature CD11c+ 
F4/80+ Ly6Clow MDSCs via a Dectin-1/NF-κB-dependent 
pathway, and this was associated with enhanced infiltra-
tion of dendritic cells, macrophages and CTLs in tumours 
[32].

Well-known immunosuppressive forces in TMEs can 
profoundly impair the maturation and antigen-present-
ing functions of DCs. TME-associated inflammation 
promotes IL-10- and TGFβ- secreting DC phenotypes, 
which supports accumulation of regulatory T cells. These 
effects have been shown to be reversed upon administra-
tion of beta-glucans and are accompanied by a reduction 
in regulatory T cells and enhanced tumour infiltration by 
mature DCs, macrophages and granulocytes in mouse 
models of cancer [33, 34]. Early data suggest potential 
enhancement of PD-L1 expression on mouse peritoneal 
macrophages by microparticulate beta-glucan, which 
could have a negative impact on T cell survival and acti-
vation [35]. However, potential effects in relation to can-
cer-associated immune surveillance, immunomodulation 
or treatment with anti-PD-1 checkpoint inhibitors are yet 
to be explored.

The potential administration of beta-glucans in combi-
nation with antibodies, vaccines and other immunothera-
peutic or chemotherapeutic agents has been investigated 
in pre-clinical studies. Monoclonal antibodies, especially 
those which function via complement activation, have 
shown improved efficacy in animal models of cancer when 
co-administered with beta-glucans. These effects, most 
likely due to the ability of beta-glucans to bind comple-
ment receptor-3 (CR3) and to promote antibody-mediated 
complement activation against cancer cells, were also 
associated with recruitment of tumouricidal granulocytes 
to tumour sites [36, 37]. Consistent with these findings, 
encouraging efficacy was reported in a non-randomised 
phase II clinical study, in which the anti-EGFR comple-
ment-activating antibody cetuximab was administered in 
combination with a soluble β-1,3/1,6-glucan to patients 
with KRAS-mutant/EGFR signalling-resistant colorectal 
carcinomas [38]. Results of phase I/II trials of beta-glucans 
in combination with other immunotherapeutic agents also 
indicate good tolerability with promising signs of anti-
tumour activity in patients with chronic lymphocytic leu-
kaemia and neuroblastoma [39, 40].

Dose–response considerations

Generally, non-clinical and clinical studies of the immu-
nological effects of beta-glucans have not been designed 
to establish a dose–response relationship between beta-
glucans and the effect of interest at low doses/concentra-
tions, or to define the lowest dose/concentration at which 
immunological effects occur. However, based on a range 
of nonclinical studies, it seems unlikely that clinically sig-
nificant immunological effects would occur with serum 
levels of 100 pg/mL or lower. One in vitro study showed 
that exposure to 100 pg/mL of beta-glucans for 48 h stimu-
lated the production of IL-17 by dendritic cells in mixed 
lymphocyte reaction assays, but stimulation was most 
marked at 1 ng/mL (10 times higher than 100 pg/mL) and 
there was no effect on IFN-γ or IL-5 production at concen-
trations up to 100 µg/mL [41]. In a separate study, some 
induction of IL-1β and IL-12 by macrophages was detected 
at beta-glucans concentrations as low as 10 ng/mL (100 
times higher than 100 pg/mL) [42]. However, production 
of these cytokines was much greater at higher concentra-
tions, and for macrophages to produce TNF-α or IFN-γ, a 
beta-glucans concentration of at least 0.1 µg/mL (100 ng/
mL) was required. In another study, an enhanced oxidative 
burst response and microbial killing by peripheral blood 
mononuclear cells were detected at beta-glucans levels of 
100 ng/mL (0.1 μg/mL) or greater, but stimulation of the 
NF-κB-like DNA-binding protein by beta-glucans only 
occurred at concentrations of 370 ng/mL (0.37 μg/mL) and 
above [43].

A range of immunological effects have been demon-
strated with beta-glucans concentrations between 0.2 and 
10 µg/mL, including dendritic cell activation and matura-
tion [44–46], neutrophil chemotaxis [47], histamine release 
from basophils [48] and tumour cell killing by polymor-
phonuclear leucocytes [49]. For example, in one study, as 
little as 3 µg/mL of beta-glucans induced the production of 
intracellular and membrane-associated IL-1, but induction 
of secreted IL-1 required 25 µg/mL, with 50 µg/mL yield-
ing maximal responses. Production of prostaglandin-E2 
(PGE2) by glucan-activated human monocytes occurred 
at concentrations of as low as 12.5 µg/mL but plateaued at 
25 µg/mL [45]. Examples of in vitro studies in which the 
immunological effects of beta-glucans have been evalu-
ated at low concentrations are summarised in Table 1. Of 
note, many of the studies which looked for a dose–response 
effect also looked at duration of exposure. To see immu-
nological effects at lower concentrations, relatively pro-
longed exposure to beta-glucans (12–72 h) may have been 
required.

Of note, in vitro studies in which the direct anti-tumour 
effects of beta-glucans have been evaluated suggest that 
higher concentrations of beta-glucans are required than 
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those needed for immune modulation. For example, in an 
in vitro cytotoxicity analysis, beta-glucans concentrations 
up to 100 μg/mL did not directly affect the growth of colon 
26-M3.1 cells [42]. In other studies, the proliferation of 
B16-F10 melanoma cells was reduced by 51 % after 48 h 
exposure to 750 μg/mL of beta-glucans [52]; proliferation 
of the gastric cancer cell line SGC-7901 was reduced in a 
dose-dependent manner at concentrations between 125 and 
1000 μg/mL, with around 50 % inhibition with 400 μg/
mL [53]; and proliferation of MCF-7 breast cancer cells 
was reduced in a dose-dependent manner at concentrations 
between 12.5 and 400 μg/mL, with 50 % inhibition at 400 
μg/mL [54].

Non‑clinical safety data for parenteral 
beta‑glucans

Most publications in the English/Western literature which 
describe administration of beta-glucans with therapeu-
tic intent for malignant or other diseases (notably human 
immunodeficiency virus [HIV] infections) involve oral 
administration of beta-glucans. However, in the 1980s 
and more recently, soluble forms of beta-glucans were 
developed for parenteral administration (see for example, 
[55–57]). These formulations underwent pre-clinical test-
ing, and data have been published in the English literature 
(see for example [55, 58–60]). In non-clinical safety stud-
ies, mice, rats, guinea pigs and rabbits received a single i.v. 
injection of soluble beta-glucans in doses ranging from 40 
to 1000 mg/kg [55]. Soluble beta-glucans administration 
did not induce mortality, change in appearance or behav-
ioural changes in mice or rats. In subsequent studies, mice 
and guinea pigs were injected intraperitoneally (i.p.) with 
beta-glucans (250 mg/kg) for seven consecutive days. The 
mice gained weight at the same rate as the saline-treated 
controls. However, guinea pigs receiving i.p. injections 
of soluble beta-glucans showed a significant (p < 0.05) 
10–13 % decrease in weight gain over the 7-day period. 
No other toxicological, behavioural or appearance changes 
were noted.

To examine chronic toxicity, soluble beta-glucans were 
administered to mice twice weekly for a period of 30 or 
60 days, at doses of 40, 200 or 1000 mg/kg [55]. No deaths 
were observed in any group. Chronic beta-glucans admin-
istration did not alter body weight, liver, lung or kidney 
weight. However, significant splenomegaly was observed in 
both the 30 and 60-day studies. Histopathological examina-
tion showed no tissue alterations at 40 or 200 mg/kg. How-
ever, at 1000 mg/kg, a mononuclear infiltrate was observed 
in the liver.

Pyrogenicity testing in New Zealand white rabbits 
revealed that parenteral beta-glucans administration (5 mg/Ta
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(0.4–0.8 g/kg) but higher doses of immunoglobulin (1–2 g/
kg, i.e. 70–140 g for a 70 kg adult) may be used in patients 
with diseases requiring immunomodulatory doses of immu-
noglobulins, such as immune thrombocytopenic purpura or 
Guillain–Barre syndrome.

In another study, high levels of beta-glucans were 
detected in the serum of patients 20 min after administra-
tion of various i.v. immunoglobulins and albumin [67]. The 
mean increases per 10 g of product ± standard deviation 
were as follows: Intractect®, 1632 ± 60 pg/mL; Privigen®, 
300 ± 91 pg/mL; Octagam®, 194 ± 27 pg/mL; Kiovig®, 
119 ± 22 pg/mL; and albumin 20 %, 156 ± 32 pg/mL. In 
a separate investigation, the authors also found what they 
described as “extraordinarily high” levels of beta-glucans 
in some patients who were recovering from Pneumo-
cystis jirovecii infections (peak levels of 25,969 pg/mL, 
interquartile range 15,070–33,540 pg/mL) [67]. Since the 
patients were recovering from their illnesses, these findings 
could not be explained by the Pneumocystis jirovecii infec-
tion. As a result of this finding, the investigators considered 
that, although useful for diagnostic purposes, serum beta-
glucans levels were not a reliable indicator of recovery in 
patients with Pneumocystis jirovecii infection.

Beta-glucans have also been described in antibody prod-
ucts in development for potential administration to humans, 
notably those produced in yeast cells or cultured with 
yeast-derived additives [68].

Soluble beta‑glucans as a therapeutic agent

Most recent publications relating to parenteral administra-
tion of soluble beta-glucans to humans have used lentinan, 
a form of beta-glucans extracted from shiitake mushrooms. 
Lentinan was approved in Japan in 1985 and in China in 
1995, and it is widely used in these countries as an adjuvant 
to chemotherapy for patients with cancer. There appear to 
be at least six different formulations (of varying quality) 
available commercially (produced by five manufacturers) 
in China alone [69].

At least two other formulations of soluble beta-glucans 
have been developed for human use: a soluble beta-glucan 
from Biotec Pharmacon ASA, referred to simply as “SBG”, 
and Imprime PGG® from Biothera Pharmaceuticals Inc. 
Trials of SBG appear to have completed recruitment but 
not been published (National Institutes of Health Clini-
cal Trials identifiers NCT00533728 and NCT00533364). 
Imprime PGG®, also known as PGG-beta-glucan or 
poly-(1-6)‑beta-glucotriosyl-(1-3)-beta-glucopyranose, is 
described as a soluble pharmaceutical grade, yeast-derived 
1,3/1,6 beta-glucan.

Despite widespread use in China and Japan, there is rel-
atively little clinical data on i.v. beta-glucans use published 

kg) did not significantly alter body temperature. The 
authors concluded that the systemic administration of solu-
ble beta-glucans, over a wide dose range, does not induce 
mortality or significant toxicity in non-clinical studies [55].

Beta‑glucan levels in healthy subjects

Beta-glucans, probably of dietary origin, are detectable in 
the serum of healthy individuals. Normal levels have been 
determined as 17 pg/mL ± 34 pg/mL (0–51 pg/mL) [61] 
and 10–40 pg/mL [4]. Raised levels are a marker of inva-
sive fungal infections, and commercially available assays 
for beta-glucans are used diagnostically, typically in immu-
nocompromised patients [62, 63]. The serum of healthy 
humans also contains varying levels of anti-beta-glucan 
antibodies [64].

Beta‑glucan contamination of therapeutic 
products

False-positive results of assays for beta-glucans (i.e. true 
elevations in serum beta-glucan levels but not due to inva-
sive fungal infections) have been described for patients 
given blood, blood derivatives or broad-spectrum antibiot-
ics, in patients with severe mucositis or bacteraemia, and 
in patients undergoing major surgery or extracorporeal 
purification techniques such as haemodialysis, haemofil-
tration or haemodiafiltration (reviewed in [65]). In patients 
undergoing renal replacement therapy, the false posi-
tives are thought to be due to beta-glucans released from 
the filters and membranes used in dialysis. Serum levels 
up to 5561 pg/mL have been described following a single 
dialysis session using cellulose-containing membranes 
(reviewed in [65]).

Cellulose-containing filters used to process blood prod-
ucts are also thought to be the source of elevated beta-
glucans levels in patients receiving blood products such as 
red blood cells, platelets or plasma products. Usami et al. 
detected beta-glucans contamination (defined as >20 pg/
mL) in 75 % of albumin solutions, 40 % of blood coagula-
tion factors and 63 % of immunoglobulin solutions tested 
[66]. Levels of beta-glucans as high as 7510 pg/mL were 
detected in these products. The authors estimated that 
plasma beta-glucans levels could reach 300 pg/mL after 
i.v. administration of 10 g of Gamma-Venin® (a brand of 
immunoglobulin used in Japan and other countries), high 
enough to lead to an incorrect diagnosis of invasive fungal 
infection. The total dose of beta-glucans administered with 
a 10 g dose of Gamma-Venin® was not provided. Of note, 
10 g is within the range used for replacement of immu-
noglobulins in patients with hypogammaglobulinaemia 
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in the English literature. Key clinical studies of lentinan 
and Imprime PGG® are summarised below.

Lentinan

Most publications relating to the use of lentinan are in Japa-
nese (usually with an English abstract), and these indicate that 
lentinan can be given via the i.v. (most commonly), intraperi-
toneal, intrapleural [70–72] and intraarterial routes [73]. The 
commonest dose/schedule appears to be 2 mg i.v. weekly, but 
i.v. doses as high as 10 mg have been given (see [6] for exam-
ple). In addition, there are several ongoing Japanese phase II 
trials in patients with advanced gastric cancer (Trial identifi-
ers in the World Health Organisation meta-register of clini-
cal trials: JPRN-UMIN000010724, JPRN-UMIN000008590, 
JPRN-UMIN000007726 and JPRN-UMIN000001913). In 
these trials, where specified, lentinan is given i.v. at a dose of 
2 mg weekly in combination with chemotherapy (TS-1, with 
or without cisplatin). A randomised phase III study of TS-1 
alone versus TS-1 plus lentinan in advanced or recurrent gas-
tric cancer appears to be complete but not published in the 
English literature. In this study, lentinan was given i.v. weekly 
but the dose is not specified.

The pharmacokinetics of lentinan given i.v. over 2 h at 
doses of 1, 2 or 4 mg, have been evaluated in healthy vol-
unteers and gastric cancer patients [74]. After 1 mg of len-
tinan, plasma concentrations reached a maximum at the end 
of infusion (51–73 ng/mL) and decreased gradually thereaf-
ter. In healthy volunteers, lentinan concentrations 24 h after 
administration were (mean ± SD) 71 ± 21 ng/mL after a 
4 mg dose, and 53 ± 11 ng/mL after a 2 mg dose. In three 
patients given 1 mg, levels were around 10–20 ng/mL after 
24 h. Thereafter, levels declined slowly over approximately 
7 days until they reached the detection limit. The pharma-
cokinetics of i.v. lentinan in humans were similar to those in 
the rat. Lentinan was found to be stable in human plasma, and 
the decline in plasma levels was thought to be due to uptake 
or degradation in cells, probably Kupffer cells in the liver.

In phase I/II placebo-controlled studies, HIV-positive 
patients were given 2, 5 or 10 mg of lentinan (or placebo) i.v. 
over 10 min once a week for 8 weeks, or 1 or 5 mg of lentinan 
i.v. over 30 min twice a week for 12 weeks [6]. Side effects 
were mainly mild, especially when the infusion was car-
ried out over a 30-min period. When the infusion was over a 
30-min period, there were no severe side effects and only four 
dropouts due to toxicity or patient preference. However, when 
administration was over a 10-min period, severe side effects 
occurred (one case each of anaphylactoid reaction, back pain, 
leg pain, depression, rigor, fever, chills, granulocytopenia and 
elevated liver enzymes) and four patients discontinued therapy 
as a result. Other investigators have also linked the side effects 
of lentinan (such as “oppression in the anterior chest” and dry-
ness of the throat) to rapid infusions [7].

An individual patient-based meta-analysis of ran-
domised trials of lentinan in gastric cancer included 650 
patients from five trials of chemotherapy (combinations 
of S-1, mitomycin C and cisplatin), with or without lenti-
nan (2 mg i.v. weekly) [75]. The concurrent use of lenti-
nan with chemotherapy was found to significantly prolong 
overall survival compared with chemotherapy alone (haz-
ard ratio 0.80; 95 % confidence intervals [CI] 0.68–0.95; 
stratified log rank p = 0.011). No major differences in hae-
matological or non-haematological adverse events were 
reported for the two treatment regimens, although leuco-
penia was reported in 5.6 % of patients receiving chemo-
therapy plus lentinan versus 1.6 % of patients receiving 
chemotherapy alone. A meta-analysis has also been pub-
lished of randomised chemotherapy trials, with or without 
lentinan, in non-small cell lung cancer (NSCLC) [76]. All 
the trials were conducted in China and published in Chi-
nese. The addition of lentinan to chemotherapy resulted in 
higher response rates (relative risk [RR] = 1.31, 95 % CI 
1.14–1.52) with less frequent Grade 3–4 gastrointestinal 
toxicity (RR = 0.54, 95 % CI 0.43–0.68) and Grade 3–4 
granulocytopenia (RR = 0.65, 95 % CI 0.51–0.70) than 
with chemotherapy alone.

A randomised phase II trial published since the gastric 
cancer meta-analysis included 78 patients with advanced 
gastric cancer who received S1-based chemotherapy as first 
line treatment, with or without lentinan (2 mg i.v. every 2 
or 3 weeks) [77]. Median overall survival was significantly 
longer in the lentinan group than in the chemotherapy alone 
group (689 days [95 % CI 431–2339 days] versus 565 days 
[95 % CI 323–662 days]; p = 0.0406). The most frequently 
observed severe (Grade 3–4) toxicity was neutropenia 
(chemo-immunotherapy 50 %, chemotherapy alone 45 %) 
but Grade 3 febrile neutropenia was only observed in one 
patient in each group. There were essentially no differences 
in the incidence or severity of adverse effects between 
patients who did and those who did not receive lentinan. 
Administration of lentinan was observed to suppress the 
granulocyte:lymphocyte ratio.

As described earlier, a 500 ng dose of beta-glucans could 
in theory be co-administered with a single dose of our prod-
uct. In comparison, the maximum dose of i.v. lentinan used 
in routine practice or clinical trials is 10 mg, representing 
a safety margin of 1:20,000. From the study published by 
Yajima et al. [74], a 1 mg dose of lentinan given over 2 h 
resulted in a maximum plasma concentration of 73 ng/mL 
in patients with gastric cancer, indicating initial rapid clear-
ance (since without any clearance the plasma concentration 
should have been around 200 ng/mL, based on a 5 L esti-
mated blood volume). Extrapolating from these data sug-
gests that a 500 ng dose of beta-glucans given over 2 h would 
only increase plasma levels to approximately 37 pg/mL, well 
within normal physiological levels of 17 pg/mL ± 34 pg/mL.
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Imprime PGG®

Imprime PGG® has been evaluated in a range of clinical tri-
als [78]. These indicate that Imprime PGG® can be given 
i.v. at doses of 4 mg/kg weekly, and as single doses up to 
6 mg/kg (for a 70 kg adult, this would equate to a 420 mg 
dose). Typical systemic clearance of beta-glucan in healthy 
subjects and cancer patients treated with Imprime PGG® 
and cetuximab (with or without chemotherapy) were 0.491, 
0.565, and 0.690 L/h, respectively [79]. The effective 
half-life of beta-glucan ranged from 19.5 to 27.3 h. In one 
study, mean area under the curve over 24 h of beta-glucan 
in Cycle 1 was similar to that in Cycle 3 (362 and 383 µg.
hr/mL, respectively) [80]. Likewise, mean peak concentra-
tions of beta-glucan in Cycles 1 and 3 were similar (44.3 
and 47.8 µg/mL, respectively). Minimal accumulation of 
beta-glucan was observed with trough concentrations on 
Day 1 Cycle 2 and Day 1 Cycle 3 of 0.0680 and 0.117 μg/
mL, respectively.

Detailed safety data are available from a randomised 
phase II study (n = 89) of paclitaxel, carboplatin and beva-
cizumab with or without Imprime PGG® (4 mg/kg weekly) 
in patients with previously untreated NSCLC [81]. Events 
potentially associated with hypersensitivity reactions 
occurred more frequently with Imprime PGG®, including 
one Grade 3 anaphylactic reaction. As a result, the authors 
recommend premedication with low dose corticosteroids 
and anti-histamines prior to Imprime PGG® administra-
tion. Of interest, overall and Grade 3–4 infections were 
less frequently reported in the Imprime PGG® group 
compared to control (47.5 % vs 63.3 % overall; 5.1 % vs 
10.0 % Grade 3–4). Immune-mediated adverse events (e.g. 
immune-mediated hepatitis or endocrinopathies) that are 
reported with T cell modulators (such as ipilimumab) were 
not observed with Imprime PGG®. Higher response rates, 
longer duration of response and improved survival were 
also reported for patients in the Imprime PGG® group, 
although the study was not powered to demonstrate statisti-
cally significant improvements in these parameters.

Similar results were reported for a randomised phase II 
(n = 90) trial of Imprime PGG® in combination with pacli-
taxel, carboplatin and cetuximab in NSCLC [82]. Overall (all 
grades) and Grade 3–4 adverse events potentially associated 
with hypersensitivity or infusion reactions were not increased 
in the Imprime PGG® treatment arm in this study, but infec-
tions were less frequently reported (an absolute difference of 
5 % between the two treatment groups). Immune-mediated 
adverse events (e.g. endocrinopathies) were not observed 
with Imprime PGG®. Higher response rates were reported in 
patients who received Imprime PGG® in addition to standard 
therapy, especially in patients with higher levels of pre-exist-
ing anti-beta-glucans antibody levels, although time-to-event 
outcomes were balanced between the two groups.

Ongoing trials of Imprime PGG® include a large 
(n = 795) randomised phase III trial in combination with 
cetuximab in patients with advanced KRAS wild-type colo-
rectal cancer (NCT01309126). This trial started in April 
2011 and is expected to complete in 2016. Other ongoing 
trials include a phase I/II trial of Imprime PGG® in com-
bination with rituximab in patients with indolent non-
Hodgkin lymphoma (NCT02086175). A phase I/II trial of 
Imprime PGG® in combination with an antibody and gem-
citabine in pancreatic cancer was terminated early due to a 
drug recall (drug not specified) (NCT02132403).

The usual dose of Imprime PGG® used in clinical trials 
is 4 mg/kg (280 mg for a 70 kg adult), 560,000 times higher 
than the maximum dose of beta-glucans (500 ng) that could 
be theoretically be administered with our product.

Discussion and conclusions

Overall, potential administration of up to 500 ng of soluble 
beta-glucans as a contaminant of a biotherapeutic product 
is not considered a safety concern in view of the very much 
larger doses of soluble beta-glucans (lentinan, Imprime 
PGG® and others) administered to humans i.v, the levels 
found in blood products and associated with dialysis, and 
reassuring preclinical studies. Both preclinical and clinical 
data indicate that beta-glucans are well tolerated, regard-
less of the route of administration. Doses as high as 4 mg/
kg (approximately 560,000 times higher than 500 ng) have 
been repeatedly administered to humans i.v., without appar-
ent ill-effects. Since biological agents such as monoclonal 
antibodies are generally administered by infusion over one 
to several hours, the chances of acute adverse effects due to 
beta-glucans contamination are further reduced; these effects 
appear to be mainly associated with rapid (10 min) infusions 
of lentinan (with doses of 1 mg or greater). Accordingly, a 
limit of 10 ng/mg (or 500 ng total dose) of beta-glucans is 
considered to pose a low risk to patients, and this specifica-
tion was acceptable to the Medicines and Healthcare Prod-
ucts Regulatory Agency for our product. From a safety per-
spective, this level is probably considerably more stringent 
than necessary since it provides a very broad safety margin.

Much less is known about the levels at which the immu-
nostimulatory effects of beta-glucans might occur. There is 
a dearth of clinical data in the English literature for doses 
lower than 2 mg/patient (the lowest dose commonly investi-
gated in clinical efficacy trials of lentinan). However, in vitro 
studies suggest that significant immunostimulatory effects are 
unlikely to occur at serum beta-glucans concentrations lower 
than 1 ng/mL (1000 pg/mL), a concentration 10 times greater 
than the highest concentration likely to be encountered in our 
trial, especially with transient exposure. Most anti-tumour 
effects of beta-glucans appear to be mediated indirectly by its 
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immunostimulatory properties. Although direct anti-prolif-
erative and pro-apoptotic effects have been described, these 
appear to require higher concentrations of beta-glucans.

In patients with cancer (the intended patient population 
for the CRUKD/14/001 trial), possible immunostimula-
tory and/or direct anti-tumour effects of beta-glucan con-
taminants would, if anything, be considered desirable 
from a patient benefit perspective. However, in this first-in 
man, first-in-class, proof-of-concept trial, it is important 
to ensure that any anti-tumour efficacy observed is due to 
therapeutic MOv18 IgE itself. Moreover, for biotherapeu-
tic agents developed for non-oncology indications, immu-
nostimulatory effects would not necessarily be desirable. 
Based on currently available data, a limit of 10 ng/mg (or 
500 ng total dose) of beta-glucans seems unlikely to pro-
voke any clinically significant immunological effects and 
this level may be acceptable for medicinal agents.
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