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Artificial intelligence (AI) aided cardiac arrhythmia (CA) classification has been an

emerging research topic. Existing AI-based classification methods commonly

analyze electrocardiogram (ECG) signals in lower dimensions, using one-

dimensional (1D) temporal signals or two-dimensional (2D) images, which,

however, may have limited capability in characterizing lead-wise

spatiotemporal correlations, which are critical to the classification accuracy.

In addition, existing methods mostly assume that the ECG data are linear

temporal signals. This assumption may not accurately represent the

nonlinear, nonstationary nature of the cardiac electrophysiological process.

In this work, we have developed a three-dimensional (3D) recurrence plot (RP)-

based deep learning algorithm to explore the nonlinear recurrent features of

ECG and Vectorcardiography (VCG) signals, aiming to improve the arrhythmia

classification performance. The 3D ECG/VCG images are generated from

standard 12 lead ECG and 3 lead VCG signals for neural network training,

validation, and testing. The superiority and effectiveness of the proposed

method are validated by various experiments. Based on the PTB-XL dataset,

the proposed method achieved an average F1 score of 0.9254 for the 3D ECG-

based case and 0.9350 for the 3D VCG-based case. In contrast, recently

published 1D and 2D ECG-based CA classification methods yielded lower

average F1 scores of 0.843 and 0.9015, respectively. Thus, the improved

performance and visual interpretability make the proposed 3D RP-based

method appealing for practical CA classification.
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Introduction

Cardiovascular Diseases (CVD) are a leading cause of death

globally (Sahin and Ilgun, 2020; Amini et al., 2021). Cardiac

arrhythmia is a common CVD associated with disorganized

electrical activities of the heart. Several main types of arrhythmias

include Atrial Fibrillation (AF), First-degree Atrioventricular Block

(I-AVB), Bundle Branch Block (BBB), and so on. Some arrhythmias

can significantly impact the patient’s health, such as AF, which can

pose a significant risk for stroke (Ye et al., 2012; Siontis et al., 2021),

while others are common and relatively harmless. It is essential to

classify the risk types as early as possible to manage and treat

arrhythmia-associated heart diseases. Manual interpretation of the

electrocardiogram (ECG) is an effective and non-invasive way for

arrhythmia classification and diagnosis. Traditional ECG-based

arrhythmia diagnostics require considerable expertise; recently,

computer-aided ECG diagnosis for arrhythmia based on machine

learning and deep learning has become an active research area

(Siontis et al., 2021).

In traditional machine learning methods, a set of timing and

morphology features of ECG signals were extracted and

discriminated by learning-based classifiers (De Chazal et al.,

2004; De Chazal and Reilly, 2006; Ince et al., 2009; Ye et al.,

2012). (Asl et al., 2008) extracted the R-R interval features from the

raw ECG signals and then employed a support vector machine

classifier to discriminate six types of arrhythmias. (Llamedo and

Martinez, 2011). used features extracted from the R-R series and

computed from different scales of the wavelet transform for

arrhythmia classification by a linear classifier. In general, these

methods heavily rely on in-depth domain knowledge.

Furthermore, the extracted hand-crafted features from the ECG

signals can vary among patients, making it challenging tomaintain

both the accuracy and generalization of arrhythmia classification.

Deep learning networks have been widely utilized to perform

automated feature extraction based on raw or low-level processed

ECG data and achieve end-to-end arrhythmia classification

(Siontis et al., 2021). Existing studies have demonstrated the

effectiveness of ECG feature detection in predicting arrhythmia.

Most of them focus on features of ECG signals, including one-

dimensional (1D) time-domain features (e.g., directly taking ECG

series as input signals), frequency and time-frequency domain

features (e.g., Fourier transform, wavelets transform), and ECG

morphology-based image features (e.g., using 2D grayscale

images). For the 1D time-domain features, Hannun et al.

developed a deep neural network to classify 12 types of

arrhythmias based on single-lead ECG time signals. The

prediction performance exceeds that of the average cardiologist

(Hannun et al., 2019). Some other studies combined a recurrent

neural network, such as the long-short termmemory (LSTM), with

a convolution neural network (CNN) to capture the historical

information of the ECG (He et al., 2019; Chen et al., 2020; Yao

et al., 2020; Rahul and Sharma, 2022b). For the frequency and

time-frequency domain features of ECG, researchers attempted to

convert the 1D ECG signals into 2D images to predict different

types of CA. Huang et al. transferred the 1D ECG time signals to

2D time-frequency spectrograms, then transformed the

arrhythmia identify task into an image classification task based

on a 2D CNN(Huang et al., 2019). Jagdeep Rahul et al.

transformed the 1D ECG into 2D time-frequency

representation as the input, then fed it into the Bi-directional

LSTM model for AF prediction (Rahul and Sharma, 2022a). (Li

et al., 2019) developed an approach based on three types of

wavelets transform and the 2D CNN to detect Ventricular

ectopic beat in the image domain. For the ECG morphology-

based image features, 1D ECG signals were converted into 2D

grayscale images and then fed into 2D CNN to classify different

arrhythmia types (Izci et al., 2019). Most of these classification

methods have been designed for detecting linear, time-frequency

features of ECG signals. However, the human heart is a complex,

dynamic system (Zbilut et al., 2002), generating ECG signals

naturally nonstationary and nonlinear (Acharya et al., 2011).

Therefore, the methods mentioned above might be incapable of

fully characterizing the dynamical nature of the ECG signals.

To study nonlinear dynamic spatial features of the cardiac

system for arrhythmia classification, the recurrence plot (RP)

technique has been used to discover the recurrence pattern

buried in the time series of ECG signals and then successfully

applied to the detection of ventricular fibrillation, as well as the

prediction of premature atrial complex, premature ventricular

complex, and AF (Mathunjwa et al., 2021). In our recent work

(Zhang et al., 2021), we successfully utilized the 2D RPs to

distinguish various arrhythmias, leading to better solutions

than linear approaches.

This work aims to develop further the RP technique into a 3D

framework for improved arrhythmia classification. In our recent

study (Zhang et al., 2021), the 2DRP images offer a unique feature

detection mechanism for arrhythmia classification compared with

conventional approaches. However, those 2DRP maps are directly

fed into the neural network in a decoupled manner, without

sorting and directly analyzing shared features and nonlinear

alterations between these 2D images in the training process.

The new 3DRP maps-based deep learning training process

allows the neural network to extract the correlation between the

ECG leads, thus explicitly offeringmore comprehensive recurrence

features in the phase space that help identify the uniqueness of

each type. In implementing 3D RP-based arrhythmia

classification, we compared two 3D transforms, namely the

ECG-based and VCG-based methods.

The contributions of this work include: 1) this is the first study

using the RP technique for mapping 12 lead ECG signals to 3DRP

texture images and performing deep learning-based arrhythmia

classification; 2) the 3 lead VCG was introduced into the RP

method to efficiently extract the nonlinear features of the ECG

signals for optimized arrhythmia prediction; 3) the proposed 3D

Inception Resnet model was used to extract the spatial pattern

features and textural alternations from the 3D RP images.
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The rest of the paper is organized as follows: the approach

and the network architecture are described in Methodology

Section, the experiments are detailed in Experiment Section,

the discussion on results is provided in Discussion Section,

and conclusions are drawn in Conclusion Section.

Methodology

In this section, the arrhythmia classification task is treated as

a 3D ECG image classification problem using the proposed 3D

RP technique and the 3D Inception Resnet model.

Recurrence plot

Recurrence is one of the fundamental properties of a dynamic

system, such as the electrical signals generated by the human

heart, and is difficult to detect in serial time-domain signals

(Marwan et al., 2007; Debayle et al., 2018). The Recurrence Plot

(RP) approach was proposed to explore the phase space

trajectory in a higher-dimensional space and to show the

recurrent behaviors of the time series (Eckmann et al., 1987;

Eckmann et al., 1995).

An RP can be formulated as follows:

Ri,j � θ(ε − ����xi − xj
����), i, j � 1, ....,N (1)

where N is the number of time series xi, ε is a predefined distance,
‖ · ‖ is an L2 norm, and θ(.) is the Heaviside function.

θ(.) is defined as:

θ(Z) � { 0, if z< 0
1, otherwise

(2)

Eq. 1 is considered binary because of the predefined distance.

For this study, an un-threshold approach (Faria et al., 2016) was

applied to obtain more information contained in the RP images.

Specifically, The R-matrix can be defined as:

Ri,j�
����xi − xj

����, i, j � 1, ....,N (3)

Vectorcardiography

To reduce the data size for neural network training, we

consider converting the standard 12-lead ECG signals into

VCG signals for deep learning-based arrhythmia classification.

VCGwas introduced by (Frank, 1956). Since the human body is a

3D structure, the basic idea of VCG is to construct three

orthogonal leads containing all the electric information of the

human heart. The three leads are represented by the right-left

axis (Vx), head-to-feet axis (Vy), and front-back

(anteroposterior) axis (Vz). Based on the standard 12-lead

system, the following expressions are used to calculate Frank’s

leads Vx, Vy, and Vz (Daniel et al., 2007).

Vx � −( − 0.172V1 − 0.074V2 + 0.122V3 + 0.231V4 + 0.239V5

+ 0.194V6 + 0.156DΙ − 0.010DΙΙ)
(4)

Vy � (0.057V1 − 0.019V2 − 0.106V3 − 0.022V4 + 0.041V5

+ 0.048V6 − 227DΙ + 0.887DΙΙ)
(5)

Vz � −( − 0.229V1 − 0.310V2 − 0.246V3 − 0.063V4

+ 0.055V5 + 0.108V6 + 0.022DΙ + 0.102DΙΙ) (6)

where DΙ and DΙΙ are the leads I and II, and V1-V6 are the chest

leads (V1, V2, V3, V4, V5, V6) of 12-lead ECG. Even though the

converted VCG is not widely used as the ECG, it records essential

features of cardiac electrical excitation changes over time. It has

been shown that over 90% of ECG energy can be reserved by the

3-lead VCG (Hasan et al., 2012). As illustrated in Figure 1, VCG

signals reflect the heart’s electrical activities in both spatial and

temporal domains through three orthogonal planes of the body

(Yang et al., 2012). The dynamic differences between the VCG

signals can thus be used for arrhythmia classification.

3DRP Inception Resnet architecture

The proposed 3DRP Inception Resnet network was designed

based on the Inception-ResNet-v2 (Szegedy et al., 2017). In this

study, we expanded the network from 2D to 3D and improved

the Inception Resnet models, as shown in Figure 2. It contains the

3D Stem, the 3D Inception Resnet models, and the 3D prediction

part. In the first part, the 3D Stem model contains deep

convolutional layers with 1 × 1 × 1, 3 × 3 × 3, 1 × 1 × 7, 1 ×

7 × 1 convolutions, and two max-pooling layers, which are used

to pre-process the original data before entering the 3D Inception

Resnet blocks. The following part has the 3D Inception Resnet

models, including 3D Inception Resnet A and 3D Reduction A

with 1 × 1 × 1, 3 × 3 × 3 convolution layers; 3D Inception ResNet

B and 3D Reduction B with 1 × 1 × 1, 3 × 3 × 3 convolutions, and

1 × 1 × 7, 1 × 7 × 1 asymmetric filter; 3D Inception ResNet C with

1 × 1 × 1 convolutions, 1 × 1 × 3 and 1 × 3 × 1 asymmetric filter.

The network enhances the diversity of the filter patterns by

asymmetric convolution splitting. The last part is the prediction

layer, including 3D Global Average pooling and SoftMax layers.

Experiment

Experimental setup

ECG database
The dataset Physikalisch-Technische Bundesanstalt (PTB-XL)

(Wagner et al., 2020) from the PhysioNet/Computing in Cardiology

Challenge 2020 (Alday et al., 2021) was used in this study. It was
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illustrated in Table 1, which is composed of four typical CA types

labelled as Sinus rhythm (NSR), Atrial fibrillation (AF), 1st degree

AV block (I-AVB), and Left bundle branch block (LBBB). Each data

contains 12-lead ECG recordings with a sampling frequency of

500 Hz and a mean duration of 10 s. NSR is a normal heart rhythm;

AF is related to irregular heart rate, which can lead to an increase in

the risk of strokes; I-AVB is a condition of abnormally slow

conduction through the atrioventricular node; LBBB is a

condition of delay or blockage of electrical impulses along the

left side pathway of the heart ventricles bottom.

Data splitting and augmentation
The data from the PTB-XL database were pre-processed and

augmented. The raw ECG data were downsampled to 200 Hz. In the

first phase, the data with multi-labels were removed initially because

we mainly focused on single-labelled arrhythmia classification in this

study. After then, the number is 16801 for NSR, 1396 for AF, 370 for

LBBB, and 689 for I-AVB. The number of four types of arrhythmias

is unbalanced, which brings challenges to the arrhythmia

classification. In the second phase, we randomly picked up

1200 data on Sinus rhythm and 1200 data on AF. Four in five of

each type of data were used as the training and validation dataset, and

one in five was used as the test dataset. Thus, the training set is

independent of the testing set, usually called inter-patient

classification (Huang et al., 2014). In the third phase, to balance

the data in different types, the data was split into a set of 5 s

(1000 samples) recordings. Regarding the NSR and AF, we picked

up the data from 1st to 1000th; for the LBBB, the data was split into

1st to 1000th, 500th to 1500th, and 1001th to 2000th three segments;

for the I-AVB, the data were split into 1st to 1000th and 1001th to

2000th two segments. Thus, 1200 segments of NSR, 1200 of AF,

1100 of LBBB, and 1378 of I-AVB were obtained for experiments.

The details of the training, validation and test datasets are provided in

Table 1.

Classification computing environment
The experiments were performed on the University of

Queensland’s computer cluster with 4 × Nvidia Volta

V100 SXM2 connected GPUs per node. Each node contains

5,120 CUDA cores, 640 TensorFlow hardware cores, and 32 GB

of HBM2 class memory. This model was implemented using the

TensorFlow 3.6 and Karas DL framework.

FIGURE 1
Frank’s three leads signal Vx, Vy, and Vz of four types of VCG waveforms (top) and corresponding 3D dynamic feature plots (bottom).
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Performance of experiments
To assess the effectiveness of the proposed method, several

parameters, including Precision, Recall, and F1-score, are defined

as follows, respectively.

Precision � TP
TP + FP

(7)

Recall � TP
TP + FN

(8)

F1 � 2(Precision × Recall)
Precision + Recall

(9)

where TP is the number of true positives data; FP is the number

of false positives data; FN is the number of false-negative data.

Here, Precision is the fraction of all predicted data that are real

labeled data, whereas Recall is the fraction of all real labeled data

that are successfully detected. The average F1-score among

classes is computed to evaluate the final performance of the

model. Arrhythmia classification experiments based on ECG and

VCG 3DRP methods.

Arrhythmia classification experiments
based on ECG and VCG 3DRP methods

Experimental design
This study aims to investigate the ability of 3DRP to identify

pattern differences between various arrhythmia groups. As

shown in Figure 3, firstly, the raw ECG data were pre-

processed via two steps. In step one, the multi-label data were

filtered and divided into four in five for training and validation

and one in five for testing. In step two, the data were resampled to

200 Hz and then was augmented by splitting into 5-s recordings

to balance the four types of arrhythmias (see section A: Data

splitting and augmentation). Then, to explore nonlinear and

channel correlation features from the 3D RP images for the

arrhythmia classification, ECG-based and VCG-based 3DRP

experiments were designed.

Regarding the ECG-based experiments, the 12-lead ECG

signals were transformed into 2DRP images and stacked

together to form 3D images, as illustrated in Figure 4. The

method of converting 1D ECG signals into the corresponding

2DRP images is reported in our previous work (Zhang et al.,

2021). Then we applied with (min-max and z-score

normalization) and without normalization to pre-process the

2D RPs, respectively, which are defined as follows.

RPmin−max � RP −min
max − min

(10)

RPz−score � RP − �μ

σ
(11)

where RP is the original data, and min and max are the minima

and maximum values of the data. �μ and σ refer to its mean value

FIGURE 2
The architecture of 3DRP Inception ResNet (Stem, Inception
ResNet models A-C, Reduction models A and B, and Prediction
layers).
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TABLE 1 Data profile for the ECG dataset.

CA types Number of
data

Single-label data Experiment segments 80% 20%

Training Validation Test

NSR 18092 16801 1200 768 192 240

AF 1514 1396 1200 768 192 240

LBBB 536 370 1110 710 178 222

I-AVB 797 689 1378 883 221 274

FIGURE 3
The flow chart of CA classification experiments.

FIGURE 4
The 3DRP image reconstructed based on ECG.
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and standard deviation. After normalization, these 12 leads

images were placed with the lead-index order of limb leads

(lead I, II, III, aVR, aVL, aVF) followed by the chest leads

(V1, V2, V3, V4, V5, V6) to form as a 3DRP image. In our

previous work (Zhang et al., 2021), we used those 2D RP plots

(see Figure 4) to train the network and detect 2D RP features for

classification. The relationship between the leads is implicitly

investigated by the network, which is essential to explore but less

obvious to learn from the 2D textures. In contrast, by setting the

3D RP images as input signals, one can more explicitly discover

the inherent signal correlations between the leads in addition to

the 2D features within each lead, thus providing higher

dimensional, visually interpretable information for prediction.

As depicted in Figure 5, significantly different RP patterns can be

observed in those 3DRP images obtained from 12-lead ECG data

of different arrhythmia types. The texture variations occur within

the RP plots and between the leads, which the 3D neural network

can easily learn and discriminate the arrhythmia types.

Regarding the VCG-based experiments, we investigated VCG-

based arrhythmia classification. As shown in Figure 6, we first

FIGURE 5
The 3DRP images of NSR/AF/LBBB/I-AVB based on ECG.

FIGURE 6
The 3DRP image reconstructed based on VCG.

Frontiers in Physiology frontiersin.org07

Zhang et al. 10.3389/fphys.2022.956320

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2022.956320


transformed the pre-processed 1D 12-lead ECG signals to 3-lead

VCG signals (Vx, Vy, Vz). Then VCG signals were converted into

2D RP images with no-normalization, min-max normalization, and

z-scores normalization, respectively. These 2D RP maps were used

to build 3DRP images, which were considered as the input data of

the 3D neural network for training. As shown in Figure 7, it can be

demonstrated apparent pattern differences between the VCG-based

3DRP images. The 3D networks learned feature maps embedded

within these RP plots and between the leads, which contain

arrhythmia type-dependent signatures, thus facilitating disease

classification. The five-fold cross-validation was introduced in the

training and validation processing, with the default parameters of

Adam optimizer, a learning rate of 0.001, and a batch size of 64.

Experimental results
The classification results of ECG-based and VCG-based

3DRP experiments are presented in Table 2. In this table, the

method with z-score normalization achieved an Avg F1 score of

0.9254 for the ECG-based experiment and 0.9350 for the VCG-

based experiment, outperforming other schemes. As shown in

Table 3, the ECG-based experiment with z-score normalization

obtained 0.9246 of the average Precision and 0.9269 of the

FIGURE 7
The 3DRP images of NSR/AF/LBBB/I-AVB based on VCG.

TABLE 2 Classification performance based on ECG and VCG 3DRP methods with No/Min-max/Z-score normalization datasets.

Experiments RP normalization Avg F1-score Classification of types of F1 score

NSR AF LBBB I-AVB

ECG-based No 0.9228 0.8847 0.9565 0.9775 0.8723

Min-max 0.9247 0.8986 0.9407 0.9795 0.8799

Z-score 0.9254 0.8954 0.9472 0.9843 0.8748

VCG-based No 0.9301 0.9049 0.9610 0.9736 0.8810

Min-max 0.9262 0.8946 0.9560 0.9692 0.8849

Z-score 0.9350 0.9030 0.9668 0.9712 0.8991

TABLE 3 Classification Precision/Recall/F1-score of experiments.

Experiments CA types Precision Recall F1 score

ECG-based NSR 0.8992 0.8917 0.8954

AF 0.9246 0.9708 0.9472

LBBB 0.9778 0.9910 0.9843

I-AVB 0.8966 0.8540 0.8748

Avg 0.9246 0.9269 0.9254

VCG-based NSR 0.9145 0.8917 0.9030

AF 0.9628 0.9708 0.9668

LBBB 0.9563 0.9865 0.9712

I-AVB 0.9041 0.8942 0.8991

Avg 0.9344 0.9358 0.9350
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average Recall. Besides, the highest F1-score was obtained for

LBBB (0.9843), followed by AF (0.9472). In the VCG-based

experiment with z-score normalization, the proposed method

achieved the avg F1 score of 0.9350, the average Precision of

0.9344, and the average Recall of 0.9358. Besides, the highest

F1 score was obtained for LBBB (0.9712), followed by AF

(0.9668). Figure 8 is the arrhythmia classification confusion

matrix of these two methods with z-score normalization. It

outlines the data number of predicted and true labels. Note

that there is a relatively small error between AF and LBBB,

implying that the proposed method better predicts AF and LBBB.

Comparison of ECG-based and VCG-based
3DRP methods

This section compared the ECG-based experiment with the

VCG-based experiment, focusing on network training and

classification performance. Table 4 presents details of the training

processing of each experiment. As indicated in the table, an equal

number of trainable parameters were used in both methods.

However, the training time of the 3-lead VCG-based method is

93 min, which is less than half of the 12-lead ECG method. The

following columns show the fivefold cross-validation processing in

terms of time and epochs used. Once the network is trained, it takes

only 7ms and 16 ms for each prediction using the VCG-based and

ECG-based methods, respectively. Table 3 compares the arrhythmia

classification performances of these two methods. The optimal avg

F1 score with VCG-based method is 0.9350, slightly better than the

optimal ECG-based method (0.9254). The results highlight that the

VCG-based method achieved a superior classification performance

with less training time.

Comparison with different reference
models

To study the reliability and effectiveness of the proposed

method, we compared the performance of different reference

models, including Resnet 50 (He et al., 2016), Inception-v3, and

Inception-v4 (Szegedy et al., 2017). For a fair comparison, the same

3D VCG-based RP images were taken as the input of different

models. The data were divided into training, validation, and testing

sub-datasets using the same rule. Then, the same hyperparameters,

FIGURE 8
The confusion matrix of CA classification based on 3DRP ECG-based, and VCG-based.

TABLE 4 Training information of the ECG-based and the VCG-based 3DRP methods.

Experiments Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

ECG-based 27,038,708 262 Min 149 Min 56 Epochs 34 Min 11 Epochs 28 Min 11 Epochs 26 Min 11Epochs 25 Min 11Epochs

VCG-based 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11Epochs 13 Min 11Epochs
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including learning rate and batch size, were used to train and test

the models separately. The average F1 score, Precision, and Recall

of each class were calculated for comparison.

As illustrated in Table 5, the proposed method achieved the

average F1 score of 0.9350, the average Precision of 0.9344, and the

average Recall of 0.9358, which were all higher than those of other

referencemodels.Moreover, it was shown that the proposedmethod

outperformed the Resnet50, Inception V3, and Inception V4 in the

F1 score of all classes. Interestingly, in the case of identifying the

LBBB class, almost all the models achieved significantly higher

F1 scores compared with other classes. Table 6 illustrates the

computational costs of compared models. In five-fold cross-

validation experiments, the training time of the proposed method

is 93 min, which is less than that of other models except for the

Inception V3 (71 min). And the number of trainable parameters of

the proposed method is comparable with the Resnet 50 and the

Inception V3, and less than the Inception V4 model.

Comparison of the proposed 3D method
with recently published 1D and 2D
methods

In this section, we compared the 3DRPVCG-basedmethodwith

some recent CA classification studies, including the 1D raw ECG-

basedmethod (Hannun et al., 2019) and the 2D image-basedmethod

(Zhang et al., 2021), all are based on the same dataset PTB-XL. In the

1D case, the rawECG time serieswere taken as the input to themodel

with 33 convolutional layers, and it outputs a prediction of one out of

4 possible rhythm classes every 256 input samples. In the 2D case, the

1D ECG data were converted into a set of 2DRP images fed into the

2D classification networks as the input, and the output was the

prediction rhythm.

Table 7 and Table 8 show the comparison results, including

the input, performance, and computing cost based on the five-

fold cross-validation experiments. The 3D method obtained the

highest average F1 score than the 1D and 2D approaches, with

slightly longer training time than the 2D method and more

complex networks than the 1D method. The proposed 3D

method achieved better prediction performance for AF, LBBB,

and I-AVB arrhythmia than the compared methods. At the same

time, the 1Dmethod achieved better performance for NSR, while

the performance of the F1 score for the I-AVB (0.5833) is

relatively low compared with the 2D approach (0.8503) and

3D method (0.8991), and the LBBB (0.8658) compared with the

2D approach (0.9267) and 3D method (0.9712), respectively.

Testing the generalization of the proposed
3D method

In this section, we evaluated the generalization of the

proposed approach by studying two more ECG datasets of the

PhysioNet/Computing in Cardiology Challenge 2020. The

detailed information of these two datasets is listed in Table 9.

The data source CPSC (Liu et al., 2018) is the public training

TABLE 5 Comparison of different reference models for CA Classification.

Models Classification of F1 score Avg F1 score Avg precision Avg recall

NSR AF LBBB I-AVB

RestNet50 (He et al., 2016) 0.8889 0.9339 0.9515 0.8791 0.9134 0.9116 0.9119

Inception V3 (Szegedy et al., 2017) 0.8683 0.9434 0.9556 0.8683 0.9089 0.9068 0.9068

Inception V4 (Szegedy et al., 2017) 0.8714 0.9263 0.9471 0.8355 0.8951 0.8920 0.8924

Proposed method 0.9030 0.9668 0.9712 0.8991 0.9350 0.9344 0.9358

TABLE 6 Comparison of the computational cost of the proposed 3D method VS. reference models.

Methods Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

RestNet50
(He et al., 2016)

26,641,796 127 Min 55 Min 42 Epochs 27 Min 21 Epochs 16 Min 12 Epochs 14 Min 11 Epochs 15 Min 11 Epochs

Inception V3
(Szegedy et al., 2017)

21,831,844 71 Min 32 Min 32 Epochs 10 Min 11 Epochs 10 Min 11 Epochs 9 Min 11 Epochs 10 Min 11 Epochs

Inception V4
(Szegedy et al., 2017)

52,049,092 148 Min 72 Min 41 Epochs 17 Min 11 Epochs 25 Min 16 Epochs 17 Min 11 Epochs 17 Min 11 Epochs

Proposed method 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11 Epochs 13 Min 11 Epochs
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dataset from the China Physiological Signal Challenge (CPSC

2018). Georgia is a 12-lead ECG Challenge Database, Emory

University, Atlanta, Georgia, United States, representing a large

(Alday et al., 2021) population from the South-eastern

United States.

In this experiment, raw ECG datasets were pre-processed and

transformed into 3 lead VCG signals with the z-score

normalization. As shown in Table 9, the proposed method

achieved an average F1 score of 0.9412 on CPSC and 0.8881 on

Georgia. The F1 score of each classification in CPSC is higher than

in Georgia. The best prediction was obtained with an AF of

0.9497 on CPSC. For these two datasets, the proposed 3DRP

method can effectively predict the AF, I-AVB, LBBB, and NSR.

These testing results indicate that the 3DRP method has a good

generalization for arrhythmia classification.

Discussion

This work proposed a 3Dmethod via extracting ECG signals’

dynamic, nonlinear recurrence features for deep learning-based

arrhythmia classification. Instead of using 1D ECG and 2D ECG-

based images, the 3D RP maps were reconstructed from 12 leads

ECG and 3 leads VCG and then fed into the 3D CNN model for

neural network training, validation, and testing. The superiority

and effectiveness of the proposed method are validated by

various experiments.

The advantage of using the 3Dmethod for
CA classification

In 1D temporal ECG signals, dynamic nonlinear features and

space-time characteristics are not directly observable. In our

previous work (Zhang et al., 2021), the 2DRP method has

demonstrated that recurrence plots help identify the nonlinear

dynamic recurrent features hidden in the 1D ECG signal for

better arrhythmia classification. We explore the feature

differences between arrhythmia types from a novel 3D

perspective, beyond the standard 1D ECG time series-based

TABLE 7 Comparison of performance of the proposed 3D method VS. 2D and 1D classification methods.

Methods Input signals Avg F1 score Classification of subjects’ F1 score

NSR AF LBBB I-AVB

1D (Hannun et al., 2019) 1D raw ECG 0.8483 0.9812 0.9627 0.8658 0.5833

2D (Zhang et al., 2021) 2D images 0.9015 0.8917 0.9365 0.9276 0.8503

Proposed method 3D images 0.9350 0.9030 0.9668 0.9712 0.8991

TABLE 8 Comparison of the computational costs of the proposed 3D method VS. 2D and 1D classification methods.

Methods Trainable
parameters

Training
time

Five-fold validation

fold 1 fold 2 fold 3 fold 4 fold 5

1D (Hannun et al.,
2019)

10,466,148 107 Min 36 Min 20 Epochs 16 Min 9 Epochs 16 Min 9 Epochs 21 Min 12Epochs 18 Min 10Epochs

2D (Zhang et al.,
2021)

29,141,450 79 Min 46 Min 56 Epochs 9 Min 12 Epochs 8 Min 11 Epochs 8 Min 11 Epochs 8 Min 11Epochs

Proposed method 27,038,708 93 Min 33 Min 26 Epochs 21 Min 19 Epochs 13 Min 11 Epochs 13 Min 11Epochs 13 Min 11Epochs

TABLE 9 Generalization ability of the proposed method for CA
classification on extra datasets.

Database Mean duration Number of subjects

NSR AF LBBB I-AVB

CPSC 16.2s 918 1000 567 1422

Georgia 10.0s 1000 1054 438 1284

Database Avg F1 score Classification of subjects
F1 score

NSR AF LBBB I-AVB

CPSC 0.9412 0.9474 0.9497 0.9296 0.9381

Georgia 0.8881 0.9260 0.8723 0.8590 0.8950
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approach and the 2D images-based method. In this work, we

compared the proposed 3D method with recently published

studies based on the 1D raw ECG and 2D ECG-based images

for CA classification in terms of the F1 score. The 3DRP method

outperformed both the 1D method and the 2DRP approach

considering both avg F1 score and the prediction for each type of

arrhythmia (see Table 7). The avg F1-score is 0.9350 for the

3DRPmethod, significantly better than 0.8483 for the 1Dmethod

and 0.9015 for the 2D approach. The 3DRP method better

characterizes the dynamic cardiac system in spatial/lead and

temporal domains by exploiting higher-dimensional image

information. They effectively identify the latent features of

each arrhythmia type in the training processing. This working

mechanism has effectively boosted the arrhythmia prediction

performance.

The use of VCG-based 3DRP plots for
deep learning-based CA classification

As mentioned in Vectocardiography Section, VCG possesses

several advantages over the standard ECG in representing

spatiotemporal information of cardiac electrical activities

(Meyers et al., 2020). Also, the 3 lead VCG based 3DRP

image dataset is much smaller than the 12 lead ECG-based

one. Our experiment (see Table 4) shows that the VCG-based

3DRP method achieved optimal performance with an average

F1-score of 0.9350 over that of 0.9254 in ECG-based 3D method

with less training time (93 min) than the ECG-based (262 min).

In addition, the confusion matrix in Figure 8 illustrates that the

VCG-based method can accurately classify AF and LBBB.

Further investigation is required to study arrhythmia-specific

prediction/classification.

Two extra ECG datasets of the PhysioNet/Computing in

Cardiology Challenge 2020 were adopted to study the

generalization of the proposed method. It achieved an average

F1 score of 0.8881 on Georgia, and 0.9412 on CPSC, respectively.

The results demonstrated that the 3D method has excellent

generalization ability. In addition, the comparison among

several neural networks is shown in Table 5 and Table 6; the

proposed 3D Inception ResNet model offers better solutions with

comparable computational cost over others, as measured by

major assessment indicators.

Computational cost

The 3D image-based learning scheme implemented in this

work may lead to a concern of computational cost. The 3D

model has fewer trainable parameters than 2D Inception-

ResNet V2 models, as it practically improves the model

structure and decreases the depth of layers. On the other

hand, the 3D model has more trainable parameters than the

1D network. As demonstrated in Table 8, based on 3DRP

reconstructed with 3 leads VCG, the five-fold cross-validation

training time is 93 min, which is longer than the 2DRP-based

method (79 min), but less than the 1D method (107 min).

Thus, the computational cost is comparable among these 1D,

2D, and 3Dmethods. Moreover, as shown in the result section,

3DRP-based solutions offered significantly improved average

F1 score and visual interpretability and boosted the prediction

of types of arrhythmias (see Table 7). In particular, the VCG-

based 3DRP solution provides the best performance in

balancing accuracy and efficiency, making it appealing for

clinical aid diagnosis.

Conclusion

In this work, a 3D recurrence plot-based method was

proposed for arrhythmia classification, achieving promising

prediction performance with an inter-patient scheme.

Compared with lower-dimensional classification methods, the

proposed approach allows the learning algorithm to detect richer,

nonlinear spatial-time features for better arrhythmia

discrimination. Our simulation study confirmed that the 3D

method offers superior performance to 1D/2D solutions and has

a comparable computational cost.
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