
ORIGINAL RESEARCH
A Novel Three-Dimensional Imaging System Based on
Polysaccharide Staining for Accurate Histopathological
Diagnosis of Inflammatory Bowel Diseases

Satoshi Nojima,1,2 Shoichi Ishida,3 Kei Terayama,3,4 Katsuhiko Matsumoto,5 Takahiro Matsui,1

Shinichiro Tahara,1 Kenji Ohshima,1 Hiroki Kiyokawa,1 Kansuke Kido,1 Koto Ukon,1

Shota Y. Yoshida,1,5 Tomoki T. Mitani,5 Yuichiro Doki,6 Tsunekazu Mizushima,6,7,8

Yasushi Okuno,4,9 Etsuo A. Susaki,5,10 Hiroki R. Ueda,5,11 and Eiichi Morii1

1Department of Pathology, Osaka University Graduate School of Medicine, Osaka, Japan; 2Department of Immunopathology,
WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan; 3Graduate School of Medical Life Science,
Yokohama City University, Kanagawa, Japan; 4Department of Biomedical Data Intelligence, Graduate School of Medicine,
Kyoto University, Kyoto, Japan; 5Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, Osaka,
Japan; 6Department of Gastroenterological Surgery, Osaka University Graduate School of Medicine, Osaka, Japan;
7Department of Therapeutics for Inflammatory Bowel Diseases, Osaka University Graduate School of Medicine, Osaka, Japan;
8Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives
(OTRI), Osaka University, Osaka, Japan; 9RIKEN Center for Computational Science, Hyogo, Japan; 10Department of
Biochemistry and Systems Biomedicine, Juntendo University Graduate School of Medicine, Tokyo, Japan; and 11Department
of Systems Pharmacology, University of Tokyo Graduate School of Medicine, Tokyo, Japan
SUMMARY

A novel three-dimensional imaging system based on poly-
saccharide staining enables detailed 3D histopathological
analysis and enhances the clinicopathological diagnostic
accuracies of inflammatory bowel diseases.

BACKGROUND & AIMS: Tissue-clearing and three-dimensional
(3D) imaging techniques aid clinical histopathological evalua-
tion; however, further methodological developments are
required before use in clinical practice.

METHODS: We sought to develop a novel fluorescence staining
method based on the classical periodic acid-Schiff stain. We
further attempted to develop a 3D imaging system based on
this staining method and evaluated whether the system can be
used for quantitative 3D pathological evaluation and deep
learning–based automatic diagnosis of inflammatory bowel
diseases.

RESULTS: We successfully developed a novel periodic
acid–FAM hydrazide (PAFhy) staining method for 3D imaging
when combined with a tissue-clearing technique (PAFhy-3D).
This strategy enabled clear and detailed imaging of the 3D ar-
chitectures of crypts in human colorectal mucosa. PAFhy-3D
imaging also revealed abnormal architectural changes in
crypts in ulcerative colitis tissues and identified the distribu-
tions of neutrophils in cryptitis and crypt abscesses. PAFhy-3D
revealed novel pathological findings including spiral staircase-
like crypts specific to inflammatory bowel diseases. Quantita-
tive analysis of crypts based on 3D morphologic changes
enabled differential diagnosis of ulcerative colitis, Crohn’s dis-
ease, and non-inflammatory bowel disease; such discrimination
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could not be achieved by pathologists. Furthermore, a deep
learning–based system using PAFhy-3D images was used to
distinguish these diseases The accuracies were excellent
(macro-average area under the curve ¼ 0.94; F1 scores ¼ 0.875
for ulcerative colitis, 0.717 for Crohn’s disease, and 0.819 for
non-inflammatory bowel disease).

CONCLUSIONS: PAFhy staining and PAFhy-3D imaging are
promising approaches for next-generation experimental
and clinical histopathology. (Cell Mol Gastroenterol Hepatol
2022;14:905–924; https://doi.org/10.1016/j.jcmgh.2022.07.001)

Keywords: Histopathology; 3D Imaging; Tissue Clearing; Deep
Learning; Inflammatory Bowel Diseases.

athological diagnosis contributes to the determina-
Abbreviations used in this paper: AUC, area under the curve; CD,
Crohn’s disease; 2D, two-dimensional; 3D, three-dimensional; DLS,
deep learning system; IBD, inflammatory bowel disease; NSC, non-
specific colitis; PAFhy, periodic acid and fluorescein dye FAM hydra-
zide; PAS, periodic acid-Schiff; PBS, phosphate-buffered saline; UC,
ulcerative colitis.
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Ption of final diagnosis, establishment of treatment
strategy, and evaluation of treatment effects. Pathologists
identify causes of disease based on morphologic changes
(eg, cell atypia, degree of inflammation and fibrosis, and
presence of pathogens) through the microscopic observa-
tion of patient-derived tissues. The current gold standard
for pathological diagnosis involves histologic examination
with H&E-stained tissues on glass slides by means of bright-
field optical transmission microscopy. In addition to H&E,
periodic acid-Schiff (PAS), alcian blue, and Elastica van
Gieson staining methods have important roles in patholog-
ical diagnosis; they use a dye or chemical with an affinity for
the particular tissue components. These staining methods
enable visualization of tissue components and cells. PAS
staining is used to detect substances that contain poly-
saccharides (eg, mucins, glycogen, glycoproteins, and gly-
colipids) in tissues.1 It was introduced by McManus2 in
1946 as a method to observe mucin and other structures
using the Schiff reagent after treatment with periodic acid
(HIO4). PAS staining is also useful for the detection of other
polysaccharides3–7; it enables accurate diagnosis of various
diseases including glomerulonephritis, fungal infection, and
mucin-secreting tumors.8–11 Although these methods pro-
vide information concerning morphologic changes in
diseased tissue, they have some limitations. For instance,
glass slide-based conventional methods provide only planar
images and are unable to visualize three-dimensional (3D)
anatomic structures.

Remarkable advances have been made in biological im-
aging. Among them, 3D imaging based on tissue-clearing
reagents is a promising technique. Tissue clearing renders
an organ transparent, thereby enabling the acquisition of
volumetric images via confocal fluorescence microscopy,
multiphoton fluorescence microscopy, and light-sheet fluo-
rescence microscopy. Three-dimensional imaging with tis-
sue clearing is useful for clinical histopathology12–32 and
avoids the limitations of conventional histopathology.
However, for clinical applications, further developments are
needed in terms of staining methods, optical devices, and
preparation/storage of clinical specimens.

Recent developments in artificial intelligence have been
driven by breakthroughs in artificial neural networks, often
termed deep learning.33 Although deep learning is useful for
clinicopathological diagnosis,34,35 most studies thus far have
used whole-slide images of H&E-stained glass slides. The
acquisition of digital images from glass slides using high-
resolution scanners might cause non-negligible loss of in-
formation during analog-to-digital conversion of image data.
Therefore, novel digital image-based methods for data
acquisition are needed for use in clinical pathology-focused
deep learning.

Here, we developed a novel fluorescence staining method
in combination with periodic acid and the fluorescein dye
FAM hydrazide (PAFhy) staining. PAFhy staining was used
for 3D imaging together with CUBIC tissue-clearing reagents
(PAFhy-3D). This technique enabled the visualization of crypt
architecture in inflammatory bowel disease (IBD) tissues.
Quantitative evaluation of crypt morphologic changes
enabled differential diagnosis of IBDs, which could not be
performed by pathologists. Furthermore, the PAFhy-3D im-
ages could be used for deep learning-based diagnostics.
Results
Screening of Fluorescent Probes

We first performed screening of fluorescence probes
compatible with the Schiff reagent (Figure 1). Frozen sec-
tions of human colonic mucosa, in which PAS-positive
mucus is contained in goblet cells, were used for
screening (Figure 2A). The Schiff reagent reacts with alde-
hydes; thus, we screened probes with aldehyde-reactive
hydrazide groups—FAM hydrazide, Alexa Fluor 488 hy-
drazide, BDP FL hydrazide, and fluorescein (negative con-
trol). After the application of FAM hydrazide and Alexa Fluor
488 hydrazide after HIO4 treatment (Figure 2B), mucus in
goblet cells was intensely stained (Figure 2C). No such
signal was evident if the oxidation step was omitted, sug-
gesting that FAM hydrazide and Alexa Fluor 488 hydrazide
react with aldehyde groups (Figure 2D). We named this the
PAFhy staining method.

Development of a Novel 3D Imaging System
Next, we developed a 3D imaging system based on

PAFhy staining plus tissue clearing and CUBIC 3D imag-
ing.36–38 A sheet-shaped specimen of human colonic mucosa
was cleared by CUBIC and subjected to PAFhy staining
(Figure 3A). The reconstructed 3D image generated by
confocal fluorescence microscopy enabled visualization of
the 3D structure of colonic crypts (Figure 3B). Optical slices
from the 3D reconstructed model showed that mucus in
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goblet cells and epithelial basement membrane exhibited
positive PAFhy staining results (Figure 3B). Image pro-
cessing enabled the highlighting of a single crypt in the 3D
reconstructed model (Figure 3C), which was straight; mucus
in goblet cells was arranged regularly (Supplementary
Video 1). In addition, neutrophils exhibited positive PAFhy
staining results; this was confirmed by immunohistochem-
istry using an anti-myeloperoxidase antibody (Figure 3D).
Positive PAFhy staining findings were not observed when
the oxidation step was omitted (Figure 3E), suggesting that
the principle of PAFhy staining in 3D imaging is similar
to the principle in two-dimensional (2D) imaging
(Figure 2D). The signal obtained after whole-mount staining
with Alexa Fluor 488 hydrazide was weaker than the signal
obtained after PAFhy staining, unlike 2D imaging
(Figure 3F). Therefore, we confirmed the establishment of a
3D histopathological system for the volumetric analysis of
colonic crypts, which we named PAFhy-3D.

Recently, a research group reported a new staining
method based on the binding of rhodamine-123 to aldehyde
groups produced by the oxidation of periodic acid; they
performed clear 3D imaging of infected Medicago truncatula
roots.39 However, the fluorescence signal was significantly
weaker than the signal of PAFhy staining used for 3D im-
aging of CUBIC-cleared human colonic mucosae (Figure 4A).
Although other 3D Schiff reagent imaging methods in animal
organs have been reported,40,41 the resulting image qualities
were inferior to the quality of PAFhy staining images
(Figure 4B).
Histopathological Examination of Crypts
in Ulcerative Colitis

Ulcerative colitis (UC) is a type of IBD for which histo-
pathological characteristics include inflammatory and
architectural changes involving crypts (eg, cryptitis, crypt
abscess, and crypt distortion). We performed PAFhy-3D on
tissue specimens from a UC case and then generated stan-
dard H&E- and PAS-stained glass slides from adjacent tis-
sues. The 3D reconstructed images clearly showed cryptitis
(Figure 5A), in which neutrophils infiltrated the centers of
crypts; sites of severe inflammation showed depletion of
colonic goblet cells and mucins (ie, goblet cell depletion
identified in classical histopathology). Pseudocolor labeling
of neutrophils based on PAFhy-positive findings and cell
size enabled evaluation of the 3D neutrophil distribution.
There were multiple clusters of neutrophils; moreover,
neutrophils tended to infiltrate at the bottoms of crypts
rather than near the surfaces (Supplementary Video 2).
Although lamina propria in the corresponding H&E- and
PAS-stained glass slides exhibited moderate to severe
neutrophil infiltration, no typical cryptitis was identified
(Figure 5A).

In another specimen, the crypt lumina were filled with
neutrophils (and thus were defined as the crypt abscesses of
classical histopathology), and parts of the epithelium were
disrupted (Figure 5B). Pseudocolor labeling showed that
neutrophils invaded diagonally upward within crypts;
neutrophil accumulation was greatest at the bottoms of
crypts, followed by migration upward in the crypt lumen
(Supplementary Video 3). The corresponding H&E- and
PAS-stained glass slides showed severe inflammation
involving crypts; however, no typical crypt abscesses were
found, possibly because of severe destructive changes
within the crypts. Other crypts also showed marked
neutrophil accumulation, predominantly at the bottom;
borders with surrounding stroma were unclear (Figure 5C).
These findings indicate that PAFhy-3D imaging enables the
visualization of a whole crypt in UC, which cannot be per-
formed via conventional 2D histopathology.
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Diagnostic System for Inflammatory Bowel
Diseases Based on 3D Crypt Architecture

Next, we verified the utility of PAFhy-3D for clinico-
pathological examination in IBD. IBDs show characteristic
pathological features such as cryptitis, crypt abscess in UC,
and epithelioid granuloma in Crohn’s disease (CD).42,43

However, their pathological features are often unclear in
random sections, leading to a diagnosis of non-specific co-
litis (NSC), particularly in mucosae with mild inflamma-
tion.44 In addition, although crypt distortion is an important
characteristic of UC, it is difficult to accurately evaluate the
degree of crypt distortion from 2D images on glass slides
generated in random positions and directions.

Therefore, we hypothesized that quantitative evaluation
of 3D architectural changes in crypts by PAFhy-3D might
enable accurate histopathological diagnosis of IBDs. To
evaluate this hypothesis, we performed volumetric imaging
analysis by PAFhy-3D and 2D classical pathology examina-
tion of UC, CD, and non-IBD (ie, mucosae sampled from non-
tumor areas of colorectal cancer specimens) tissues. Small
pieces of mucosa were randomly sampled from UC, CD, or
non-IBD surgical specimens and then cut in half. One half
was subjected to volumetric imaging by PAFhy-3D; the
other half was subjected to paraffin embedding, sectioning,
and H&E and PAS staining (Figure 6A). Seven expert pa-
thologists blinded to the clinical data examined the glass
slides and classified the mucosal tissues as UC, CD, IBD, or
NSC. Overall, 58.62% of UC, 63.16% of CD, and 100% of
non-IBD mucosa tissues were classified as NSC (Figure 6B).
The pathologists classified 31.03% of UC and 26.32% of CD
specimens as indeterminate. No specimen was correctly
classified as UC, and only 10.53% were correctly classified
as CD, reflecting the difficulty in diagnosing IBDs. The de-
gree of inflammation was not significantly different among
the specimens (Figure 6C).

PAFhy-3D imaging enabled clear visualization of dis-
torted crypts in UC and CD specimens, which were not
necessarily obvious in the corresponding H&E- or PAS-
stained glass slides (Figure 6D). For quantitative analysis,
we evaluated volume, ellipticity, and tortuosity (Figure 6E)
on the basis of the 3D data. Among all specimens, the crypt
volumes were significantly larger in UC than in CD and non-
IBD specimens (Figure 6F). The crypt ellipticity value was
significantly smaller in UC and CD than in non-IBD speci-
mens. Crypt tortuosity was greatest in UC, followed by CD
and non-IBD specimens. When the specimens classified as
NSC (Figure 6B) were used, significant differences were
observed in volume and ellipticity (Figure 6G). Crypt tor-
tuosity in UC was significantly greater than in CD and non-
IBD specimens; however, it did not significantly differ
between CD and non-IBD specimens. Thus, the quantitative
3D values were significantly different among UC, CD, and
non-IBD specimens, but they could not be distinguished by
the pathologists. Therefore, quantitative evaluation based
on PAFhy-3D enables accurate clinicopathological diagnosis.

We explored whether the 3 quantitative parameters
were correlated with the numbers of infiltrating total in-
flammatory cells, neutrophils, lymphocytes, or plasma cells.
The crypt volumes in the UC specimens were positively
correlated with the numbers of total inflammatory cells and
lymphocytes (Figure 7). A weak inverse correlation between
the crypt volume and number of total inflammatory cells or
lymphocytes in CD patients was found, although the differ-
ences did not attain statistical significance (Figure 7A).
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Ellipticity seemed to be associated with the number of
lymphocytes in CD samples, but statistical significance was
not achieved (Figure 7B). Tortuosity exhibited a weak
negative correlation with the total number of inflammatory
cells in CD samples but a weak positive correlation with the
number of plasma cells in NSC samples (Figure 7C). Again,
the differences did not attain statistical significance.
Three-Dimensional Histopathological
Examination of Distorted Crypts in Inflammatory
Bowel Diseases

A 3D image of UC with the most severe crypt distortion
was examined (Figure 8A). In this specimen, up to 4 crypts
were involved in the same lesion; all crypts were twisted
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counterclockwise (Supplementary Video 4). In other speci-
mens, a portion of the mucosa also contained 2 or more
crypts twisting in the same direction. We defined this
finding as spiral staircase-like crypts (Figure 8B). Spiral
staircase-like crypts were found in UC and CD but not in
non-IBD specimens (Figure 8C). The rates of spiral
staircase-like crypts were 46.43% in UC and 22.22% in
CD (Figure 8D). This finding might explain crypt twisting,
in which 2 or more adjacent crypts are regionally
distorted by a torsional force generated by focal inflamma-
tion and/or fibrosis, with the resulting increase in pressure
(Figure 8E).
Application of PAFhy-3D to a Deep Learning-
Based Diagnostic System

We next applied PAFhy-3D to a diagnostic system based
on a convolutional neural network architecture, Effi-
cientNet-B445 (Figure 9A). Sagittal or horizontal optical slice
images were exported from the 3D images and subjected to
stratified-group 10-fold cross-validation. Strikingly, the
deep learning system (DLS) enabled differential diagnosis of
these diseases using images obtained by PAFhy-3D. Using
sagittal plane images, the DLS achieved a macro-averaged
area under the curve (AUC) of 0.94 (AUC of 0.95 for UC,
0.92 for CD, and 0.95 for non-IBD). In contrast, using hori-
zontal plane images, the DLS achieved AUCs of 0.88, 0.90,
0.91, and 0.82, respectively (Figure 9B). On the basis of
sagittal plane images, the DLS achieved an accuracy of
87.59% and F1 score of 0.875 for classification of UC, ac-
curacy of 85.79% and F1 score of 0.717 for classification of
CD, and accuracy of 90.86% and F1 score of 0.819 for
classification of non-IBD (Figure 9C, Table 1). Analysis of
these predictions using Grad-CAM46 indicated that the DLS
focused on the intra-crypt region and borderline areas be-
tween crypts and stroma, as well as extra-crypt stroma,
particularly for UC and CD (Figure 10).
Figure 6. (See previous page). A diagnostic system for inflam
tecture. (A) Quantitative evaluation of 3D crypt architecture. C
formaldehyde-fixed surgical specimens of UC, Crohn’s disea
specimens) tissues and subjected to PAFhy-3D imaging or hist
pathologists classified the H&E- or PAS-stained mucosae as U
imens of UC (including the specimen in Figure 5), 19 specime
10.34% of UC specimens were classified as IBD; 10.53% of CD
of CD, and 100% of non-IBD specimens were classified as N
agreement in terms of classification. Furthermore, 31.03% of UC
indeterminate (Indet). For these specimens, fewer than 5 patholo
inflammation in colorectal mucosa specimens. Inflammatory cel
lamina propria using H&E-stained specimens. NS, not significa
UC, CD, and non-IBD specimens. H&E- or PAS-stained images
bar, 100 mm (3D reconstructed models) or 200 mm (H&E- and PA
ellipticity (prolate) and tortuosity. (F) Statistical analysis of volum
specimens. Five random crypts were selected from 28 UC, 18
calculated using the UC (n ¼ 140), CD (n ¼ 90), and non-IBD (n
was excluded from the PAFhy-3D analysis because their c
(G) Statistical analysis of volume, ellipticity (prolate), and tortuos
(F), 5 random crypts were selected from 17 UC, 12 CD, and 22
using the UC (n ¼ 85), CD (n ¼ 60), or non-IBD (n ¼ 110) crypt
U test. **P < 0.01; *P < 0.05; NS, not significant.
PAFhy-3D Imaging of Other Diseases
Finally, we applied PAFhy-3D imaging to diseases other

than IBDs. PAFhy-3D imaging of a colonic polyp of tubular
adenoma by light-sheet fluorescence microscopy showed
protuberances on the polyp surface (Figure 11A).
Fluorescence-conjugated lectin was used to label vascular
structures, which were imaged by PAFhy-3D (Figure 11B).
In addition, Aspergillus hyphae in a pulmonary aspergillosis
specimen, which exhibit positive PAS staining results, were
visualized by PAFhy-3D (Figure 11C, Supplementary
Video 5). A 3D reconstructed model generated by confocal
fluorescence microscopy showed hyphae branching
structures.

Discussion
In this study, we developed PAFhy staining and the 3D

imaging technique PAFhy-3D. PAFhy staining is based on an
oxidative process where polysaccharides react with periodic
acid to produce an aldehyde, which is bound by FAM hy-
drazide (Figure 2D). The PAFhy-3D imaging method enabled
visualization of structures with a high carbohydrate pro-
portion, including mucus in goblet cells, basal membrane,
and neutrophils in colonic crypts. Thus, PAFhy staining has
utility for 3D pathology similar to PAS staining.

We examined the 3D structure of crypts in colonic
mucosae by means of PAFhy-3D. PAFhy signals in the basal
membrane and mucus in goblet cells enabled the examina-
tion of 3D crypt architecture (Figure 3). Using this method,
we identified 3 important components in tissue. First, we
found multiple sites in which a large number of neutrophils
infiltrated cryptitis lesions in UC (Figure 5A). Second, we
observed micro-abscesses in UC predominantly at the crypt
bottom (ie, the crypt abscesses of classical histopathology);
these were spatially continuous with neutrophils that infil-
trated diagonally inward and upward (Figure 5B). Third, we
identified multiple distorted crypts in the same UC lesion, all
matory bowel diseases (IBDs) based on 3D crypt archi-
olorectal mucosa specimens were randomly sampled from
se (CD), or non-IBD (non-tumor area in colorectal cancer
ologic evaluation by H&E and PAS staining. (B) Seven expert
C, CD, IBD, or non-specific colitis (NSC). Twenty-nine spec-
ns of CD, and 23 specimens of non-IBD were used. Overall,
specimens were classified as CD; and 58.62% of UC, 63.16%
SC. For these specimens, 5 or more pathologists were in
specimens and 26.32% of CD specimens were classified as

gists were in agreement. (C) Histologic evaluation of degree of
ls per high-power field were counted in 3 random areas of the
nt. (D) Representative 3D reconstructed PAFhy-3D images of
of the corresponding glass slides are also presented. Scale

S-stained images). (E) Illustrations and formulas of definition of
e, ellipticity (prolate), and tortuosity in UC, CD, and non-IBD

CD, and 22 non-IBD specimens; the quantitative values were
¼ 110) crypts. One each of UC, CD, and non-IBD specimens
rypts were almost completely disrupted by inflammation.
ity of specimens classified as NSC (light gray in [B]). Similar to
non-IBD specimens; the quantitative values were calculated
s. Statistical analyses were performed by the Mann–Whitney
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of which were twisted counterclockwise (Figure 8A). In
addition, we found spiral staircase-like crypts in IBD
mucosae; these were more frequent in UC than in CD
(Figure 8C and D). An area containing adjacent multiple
crypts might be distorted by the torsional force that arises
from the pressure difference induced by inflammation and/
or fibrosis (Figure 8E). Such structural changes may accu-
mulate because of repeated instances of inflammation dur-
ing the active and resolving phases of UC.42 PAFhy-3D
imaging enables the visualization of morphology and his-
topathology. Further studies based on PAFhy-3D will
elucidate pathological mechanisms and identify novel
disease-specific pathological findings.

Important findings in classical histopathology analysis of
UC include crypt distortion, cryptitis, and/or crypt ab-
scesses.42 However, accurate evaluation of crypt distortion
is difficult using 2D images that are generated in random
positions and directions. Indeed, in this study, pathologists
did not correctly classify most UC and CD specimens
(Figure 6B). Therefore, we hypothesized that quantitative
evaluation of crypt distortion by 3D imaging might enhance
the histopathological diagnosis of IBDs. As expected, crypt
volume, ellipticity, and tortuosity significantly differed
among UC, CD, and non-IBD specimens (Figure 6F and G).
Such differences were also evident in specimens that pa-
thologists classified as NSC. Therefore, PAFhy-3D quantita-
tive evaluation enables differential diagnosis of IBDs.
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Mucosa specimens that contain crypts of increased volume
and decreased ellipticity should be classified as UC; speci-
mens with crypts of normal volume and decreased ellipticity
should be classified as CD. In addition, 3-stage quantitative
evaluation based on crypt tortuosity could contribute to the
diagnosis of IBDs. Comparison of these 3 quantitative pa-
rameters with the numbers of infiltrating total inflammatory
cells, neutrophils, lymphocytes, and plasma cells revealed
positive correlations between the crypt volume and number
of total inflammatory cells or lymphocytes in the UC speci-
mens but negative and weak correlations in the CD speci-
mens (Figure 7A). Thus, UC and CD tissues may differ in
terms of the direction of crypt volume changes in response
to chronic inflammation.

Furthermore, the image data obtained by PAFhy-3D
were used for DLS (Figure 9). The DLS achieved excellent
performance (macro-averaged AUC ¼ 0.94; F1 score ¼
0.875, 0.717, and 0.819 for UC, CD, and non-IBD, respec-
tively) for differential diagnosis of IBDs; this identification
could not be performed by pathologists. Notably, DLS per-
formance was greater when sagittal rather than horizontal
plane images were used for training and testing (Figure 9B).
This supports the hypothesis that DLS diagnosis is based on
3D crypt architecture, particularly distortion, because such
3D morphologic changes are more evident in sagittal view.
Indeed, among the areas on which the DLS focused,
approximately 60% in UC and CD images and approximately
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Figure 7. Correlation between
crypt volume, ellipticity, or
tortuosity and the number of
infiltrating inflammatory cells.
The numbers of infiltrating total
inflammatory cells, neutrophils,
lymphocytes, and plasma cells
per high-power field were
counted in 3 random areas of
the lamina propria on the H&E-
stained glass slides used in
Figure 6C. The mean numbers
of each type of inflammatory
cell were calculated for all
specimens. The average crypt
volume (A), ellipticity (B), or
tortuosity (C) of each specimen
were calculated using the data
from Figure 6F. Correlations
between the averaged 3 quan-
titative values and the number
of each type of infiltrating in-
flammatory cell were evaluated;
Spearman rank correlation co-
efficients were calculated using
EZR software.
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Figure 7. Continued.
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Figure 8. PAFhy-3D histopathological examination of distorted crypts in IBDs. (A) Representative 3D reconstructed image
with the most severe crypt distortion. Four crypts with counterclockwise distortion are independently highlighted. Scale bar,
100 mm. (B) Definition of spiral staircase-like crypts (SSCs). SSCs consist of 2 or more crypts with the same twisting direction.
(C) Representative 3D reconstructed images of UC (n ¼ 28) or CD (n ¼ 18) with SSCs. SSCs were not observed in non-IBD
specimens (n ¼ 22). Scale bar, 100 mm. (D) Rates of specimens with SSCs; 46.43% of UC specimens and 22.22% of CD
specimens had SSCs. (E) Mechanism of SSC formation. Two or more adjacent crypts might be regionally distorted by a
torsional force generated by focal inflammation and/or fibrosis, with the resulting increase in pressure.
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90% in non-IBD images were intra-crypt or borderline areas
between crypts and stroma (Figure 10). However, approxi-
mately 40% of the areas in UC and CD and approximately
10% of the areas in non-IBD images were extra-crypt
stroma, suggesting that the findings on which the DLS
focused are not necessarily limited to morphologic changes
in crypts.

PAFhy staining and PAFhy-3D imaging enabled 3D his-
topathological analysis in greater depth and enhanced the
accuracy of clinicopathological diagnosis. Thus, these tech-
niques have potential for use in experimental and clinical
pathology.

Methods
Clinical Specimens

The tissue specimens used for screening fluorescent
probes and the specimen exhibiting pulmonary aspergillosis
were from patients who underwent pathological dissection
at Osaka University Hospital in 2017. The colorectal mucosa
specimens used for 3D imaging were from patients who
underwent surgery at Osaka University Hospital in 2020 or
2021. For quantitative analysis, 29 UC tissue specimens
were sampled from 6 surgical specimens, 19 CD tissues
were sampled from 5 surgical specimens, and 23 non-IBD
tissues were sampled from 5 surgical specimens. The tis-
sue specimens were sampled from surgical specimens in
independent and distant areas of different colors. The study
was approved by the Ethical Review Board of the Graduate
School of Medicine, Osaka University (approval nos. 14470
and 18187).

Fluorescence Staining of Tissue Sections
Human colonic mucosa tissue was washed with

phosphate-buffered saline (PBS), immersed in 30% (w/v)



Figure 9. Deep learning-based diagnostic system. (A) Overview of convolutional neural networks for development of deep
learning system (DLS) for differential diagnosis of IBDs. Sagittal or horizontal optical slice images were exported from 3D
images of UC (n ¼ 27), CD (n ¼ 17), or non-IBD (n ¼ 19) specimens obtained by PAFhy-3D and then converted to grayscale
256 � 256 pixel images. Subsequently, these images were subjected to training and testing by EfficientNet-B4. Data were
used as described in Figure 6; however, 2 UC, 2 CD, and 4 non-IBD specimens were excluded because of poor image quality.
(B) Receiver operating characteristic curves for differential diagnosis of UC, CD, or non-IBD. (C) Confusion matrices for dif-
ferential diagnosis of IBDs by DLS using sagittal or horizontal plane images.
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sucrose in PBS, and frozen in O.C.T. compound (45833;
Sakura Finetek, Torrance, CA) at �80�C overnight. Frozen
sections were cut at a thickness of 10 mm using a cryostat
(CM3050S; Leica Biosystems, Wetzlar, Germany). The frozen
sections were washed 3 times with PBS and then pretreated
with 0.5% periodic acid (HIO4) solution (86171; Muto Pure
Chemicals, Tokyo, Japan) at room temperature for 30 mi-
nutes (Figure 2B). Sections were washed 3 times with PBS
Table 1.Performance of Deep Learning System in Terms of Dif
Sagittal Plane Images Derived From Periodic Acid and

UC

Accuracy (%) 87.59

Sensitivity (%) 93.97

Specificity (%) 82.10

Precision (%) 81.88

F1 score 0.875

CD, Crohn’s disease; IBD, inflammatory bowel disease; UC, ul
and then incubated with FAM hydrazide, 5-isomer
(50 mmol/L, BP-23934; BroadPharm, San Diego, CA), Alexa
Fluor488 hydrazide (50 mmol/L, A10436; Thermo Fisher
Scientific, Waltham, MA), BDP FL hydrazide (50 mmol/L,
11470; Lumiprobe, Hunt Valley, MD), or fluorescein
(50 mmol/L, F0095; Tokyo Chemical Industry, Tokyo, Japan)
in PBS at room temperature overnight. After additional
PBS washes, the tissue sections were mounted with
ferential Diagnosis of Inflammatory Bowel Diseases Using
Fluorescein Dye FAM Hydrazide-3D Data

Sagittal plane

CD Non-IBD

85.79 90.86

69.69 74.00

91.41 97.38

73.88 91.62

0.717 0.819

cerative colitis.



Figure 10. Visualization by Grad-CAM. (A) Representative images of UC, CD, and non-IBD visualized by gradient-weighted
class activation mapping (Grad-CAM). (B) Other representative images of UC, CD, or non-IBD specimens visualized by Grad-
CAM, in which intra-crypt, borderline between crypt and stroma, and extra-crypt stromal areas are highlighted. (C) Classifi-
cation of areas on which the neural network focused. All areas highlighted by Grad-CAM in sagittal plane images derived from
3D data of 2 UC (3762 areas), 2 CD (3055 areas), or 2 non-IBD (2459 areas) specimens with especially good prediction
probabilities were counted and classified. In UC images, the areas on which the DLS focused consisted of 47.95% of intra-
crypt areas, 11.75% of borderline areas between crypts and stroma, and 40.3% of extra-crypt stromal areas. In CD images,
the areas on which the DLS focused consisted of 18.17% of intra-crypt areas, 39.38% of borderline areas, and 42.46% of
stromal areas. In non-IBD images, the areas on which the DLS focused consisted of 76.05% of intra-crypt areas, 12.04% of
borderline areas, and 11.92% of stromal areas.
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Fluoro-KEEPER antifade reagent with DAPI (12745-74;
Nacalai Tesque, Kyoto, Japan) and imaged by confocal
fluorescence microscopy.
Tissue Clearing and PAFhy Staining
CUBIC-L and CUBIC-Rþ reagents were used for tissue

clearing (Tokyo Chemical Industry; T3740 and T3741).
Tissue clearing was performed in accordance with the
standard protocol shown in Figure 3A. For colonic polyp
specimens that were cleared and imaged with light-sheet
fluorescence microscopy, the durations of CUBIC-L treat-
ment, staining, and CUBIC-Rþ treatment were extended by
1 day. Briefly, formaldehyde-fixed tissue specimens were
washed with PBS, immersed in 50% (v/v) CUBIC-L reagent
(1:1 mixture of water: CUBIC-L) overnight, and immersed
in CUBIC-L reagent for 5 days (Figure 3A) or 6 days
(Figure 11A and B) at 37�C with gentle shaking. The
specimens were next washed with PBS, immersed in 30%
(w/v) sucrose in PBS, and frozen in O.C.T. compound
at �80�C overnight. The frozen specimens were thawed,
washed with PBS, and immersed in 0.5% periodic acid
solution (86171; Muto Pure Chemicals) at room tempera-
ture for 30 minutes. After additional PBS washes, the
specimens were stained with FAM hydrazide, 5-isomer (50
mmol/L, BP-23934; BroadPharm) in PBS with 0.5% (v/v)
Triton X-100 (12967; Nacalai Tesque) at room tempera-
ture for 2 days (Figure 3A) or 3 days (Figure 11A and B)
with gentle shaking. If nuclear counterstaining was needed,
propidium iodide (10 mg/mL, P21493; Life Technologies,
Carlsbad, CA) or RedDot-2 (1:100, 40061-T; Biotium, Fre-
mont, CA) was added to the staining solution. If vascular
structure staining was needed, DyLight 649-conjugated
Lycopersicon esculentum (Tomato) lectin (1:50, DL-1178;
Vector Laboratories, Burlingame, CA) was added to the
staining solution. After staining had been performed, the
specimens were washed with PBS, immersed in 50% (v/v)
CUBIC-Rþ reagent (1:1 mixture of water: CUBIC-Rþ)
overnight, and immersed in CUBIC-Rþ reagent for 1 day
(Figure 3A) or 2 days (Figure 11A and B) with gentle
shaking. The cleared tissue specimens were subjected to
3D imaging by confocal fluorescence (Figures 3–6, 8, 9, and
Figure 11. (See previous page). PAFhy-3D imaging for other d
obtained by light-sheet fluorescence microscopy. An optical slic
was subjected to generation of H&E- and PAS-stained glass
buffered saline washes. H&E- and PAS-stained histopathologic
Scale bar, 1 mm (3D model) or 200 mm (optical slice, H&E, PAS).
fluorescence microscopy combined with vascular structure stain
cleared with CUBIC reagents and stained with FAM hydrazid
persicon esculentum (Tomato) lectin and then imaged by light-s
imaging processing with a normalized filer.36 The images of ind
488 nm, Ch-PI at 592 nm, and Ch-Tomato lectin-Dy649 at 642 n
2048 to 133 � 133 pixel images). These images were subjected
mask image (pixels of >200 signal intensity were regarded as p
image was applied to images of Ch-PI and Ch-Tomato lectin-D
lung tissue with pulmonary aspergillosis. H&E- and PAS-stained
optical-slice images of orthographic projection derived from the
11C) or light-sheet fluorescence microscopy (Figure 11A
and B).
Whole-Mount 3D Immunohistochemistry
Whole-mount immunohistochemistry with CUBIC tissue

clearing was conducted as previously described.15 A tissue
specimen was treated with 50% (v/v) CUBIC-L reagent
overnight and CUBIC-L reagent for 5 days, washed with PBS,
immersed in 30% (w/v) sucrose in PBS, and frozen in O.C.T.
compound at �80�C overnight. The frozen specimen was
thawed, washed with PBS, and subjected to PAFhy staining.
After the specimen had been washed with PBS, it was
immersed in Blocker Casein in PBS (37528; Thermo Fisher
Scientific) at room temperature for 2 hours. The specimen
was then washed with PBS and subjected to immunostain-
ing with 1:50 diluted Alexa Fluor 647-conjugated anti-
myeloperoxidase antibody (ab252131; Abcam, Cambridge,
UK) in 0.5% (v/v) Triton X-100 in PBS at room temperature
for 2 days. The specimen was washed with PBS at room
temperature and cross-linked in 1% paraformaldehyde in
PBS for 1 hour at room temperature. The stained specimen
was immersed in 50% CUBIC-Rþ reagent overnight and
CUBIC-Rþ reagent for 1 day. Images of the lamina propria
surface were obtained by confocal microscopy.
Microscopy and Image Analysis
Three-dimensional images of human colonic mucosae

and lung tissue with pulmonary aspergillosis shown in
Figures 3–6, 8, 9, and 11C were acquired using a confocal
fluorescence microscope (LSM880 Confocal/Multiphoton;
Carl Zeiss, Oberkochen, Germany). A 3D image of a colonic
polyp shown in Figure 11A was acquired using a light-sheet
fluorescence microscope (Lightsheet 7; Carl Zeiss). A 3D
image of a colonic polyp shown in Figure 11B was acquired
using a custom-designed light-sheet microscope.36 Raw
image data were reconstructed and analyzed with Imaris
software (version 9.2.1; Bitplane, Zurich, Switzerland).
Crypt highlighting was performed by 3D rendering with
Imaris. Crypt area was determined on the basis of PAFhy-
positive basal membrane at 13-mm (Figures 3, 5, 8 or
iseases. (A) Reconstructed 3D image of whole colonic polyp
e image derived from this 3D model is also shown. This polyp
slides after PAFhy-3D imaging and subsequent phosphate-
al images show that the polyp consists of tubular adenoma.
(B) PAFhy-3D imaging of a human colonic polyp by light-sheet
ing by a fluorescence-conjugated lectin. A colonic polyp was
e, propidium iodide (PI), and DyLight 649-conjugated Lyco-
heet fluorescence microscopy. Only this 3D image underwent
ividual channels (Ch-PAFhy with an excitation wavelength at
m) were independently downscaled into 1/15.4 (from 2048 �
to image processing with a normalized filer. Subsequently, a
ositive) was generated from the Ch-PAFhy image. This mask
yLight 649. Scale bar, 1 mm. (C) Reconstructed 3D image of
images from glass slides generated from the same lesion and
3D model are also shown. Scale bar, 100 mm.
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66-mm (Figure 6) optical slice intervals, followed by auto-
matic 3D reconstruction and surface rendering. Imaris was
also used to calculate the 3 parameters defined in Figure 6.
Volume was calculated by a preset statistic in Imaris.
Ellipticity (prolate) was also preset in the statistics of Imaris
and calculated using the formula shown in Figure 6E. Tor-
tuosity was semi-manually calculated. In each crypt at 250
mm depth, a point indicating the crypt center was marked in
each 50-mm optical slice (Figure 6E). Distances between
points (Da-b, Db-c, Dc-d, Dd-e, and De-f) were measured by
Imaris, as was the shortest distance between the top and
bottom of the crypt (Da-f). Tortuosity was calculated as
follows: (Da-bþDb-cþDc-dþDd-eþDe-f)/(Da-f). To normalize
the analyses, the 3 quantitative parameters were calculated
using data from crypts located no deeper than 250 mm from
the mucosal surfaces, even if the specimens were thicker
than that value.
Deep Learning System
The DLS was based on EfficientNet-B4,45 a state-of-the-

art convolutional neural network architecture, with Ten-
sorFlow 2.547 (Figure 9A). Optical slice images exported
from 3D images of UC, CD, or non-IBD specimens were used
for DLS training and testing. Stratified-group 10-fold cross-
validations were performed to evaluate DLS performance.

Data Preparation for the Deep Learning–Based
Diagnostic System

Three-dimensional data of 63 specimens (27 UC, 17 CD,
and 19 non-IBD) were used to train and evaluate the DLS
(Figure 9). These data were same as the data used in
Figure 6; however, 3D data with poor image quality (2 UC, 2
CD, and 4 non-IBD) were excluded from the analysis.
Sagittal and horizontal plane images were extracted from
the 3D data using AICSImageIO48 and preprocessed as fol-
lows. Because of inconsistent slice size, each sagittal plane
image was cropped to a square from the center at the
maximum possible size. Subsequently, the cropped images
were resized to 256 � 256 pixels. Horizontal plane images
were 512 � 512 pixels; they were resized to 256 � 256
pixels. Finally, the pixel values were rescaled to a range of
0 to 1 via division by 255.

Construction of the Deep Learning System
The DLS was based on EfficientNet-B445 and used Grad-

CAM46 to produce visual explanations for the predictions.
The input and output shapes of EfficientNet-B4 were
changed to 256 � 256 and 3, respectively; the weights were
randomly initialized. Adam and the categorical cross-
entropy were used as the optimizer and loss function. The
epochs, learning rate, and batch size hyperparameters were
set to 30, 0.001, and 16, respectively; early stopping with
the patience of 10 epochs was used to prevent overfitting. A
learning rate schedule that used exponential decay with a
decay rate of 0.95 was applied to the Adam optimizer at
each epoch after 5 epochs. While training the models, data-
augmentation techniques based on horizontal and vertical
flips, random rotation between –20� and 20�, and random
erasing49 were used to improve prediction performance. To
evaluate the DLS, a stratified-group 10-fold cross-validation
was performed. All models were trained using TensorFlow
version 2.5.0 and an NVIDIA GeForce RTX 3090 with 24 GB
of memory.
Evaluation Metrics
To evaluate the diagnostic performance of the DLS, we

evaluated its accuracy, sensitivity, specificity, precision, and
F1 score. The F1 score is the harmonic mean of precision
and recall calculated using the following equation: F1
score ¼ 2 precision recall/(precision þ recall).
Statistical Analyses
Statistical analysis was performed using Microsoft Excel

(Redmond, CA) or EZR.50 The Shapiro–Wilk test was used to
evaluate the normality of the data distribution at a signifi-
cance level of .05. If normality was confirmed, the homo-
geneity of variance was determined by F test at a
significance level of 0.05. If 2 groups were normally
distributed with or without equal variance, Student t test or
Welch t test was applied, respectively. When the normality
of data could not be assumed, the Mann–Whitney U test was
used. Spearman rank correlation coefficients were calcu-
lated using EZR software.
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