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ABSTRACT Clostridium difficile is an important nosocomial pathogen associated
with potentially fatal disease induced by the use of antibiotics. Genetic characteriza-
tion of such clinically important bacteria is often hampered by lack of availability of
suitable tools. Here, we describe the use of I-SceI to induce DNA double-strand
breaks, which increase the frequency of allelic exchange and enable the generation
of markerless deletions in C. difficile. The usefulness of the system is illustrated by
the deletion of genes encoding putative AddAB homologues. The ΔaddAB mutants
are sensitive to ultraviolet light and the antibiotic metronidazole, indicating a role in
homologous recombination and the repair of DNA breaks. Despite the impairment
in recombination, the mutants are still proficient for induction of the SOS response.
In addition, deletion of the fliC gene, and subsequent complementation, reveals the
importance of potential regulatory elements required for expression of a down-
stream gene encoding the flagellin glycosyltransferase.

IMPORTANCE Most sequenced bacterial genomes contain genes encoding proteins
of unknown or hypothetical function. To identify a phenotype for mutations in such
genes, deletion is the preferred method for mutagenesis because it reduces the like-
lihood of polar effects, although it does not eliminate the possibility. Allelic ex-
change to produce deletions is dependent on the length of homologous regions
used to generate merodiploids. Shorter regions of homology resolve at lower fre-
quencies. The work presented here demonstrates the utility of inducing DNA
double-strand breaks to increase the frequency of merodiploid resolution in Clostrid-
ium difficile. Using this approach, we reveal the roles of two genes, encoding homo-
logues of AddAB, in survival following DNA damage. The method is readily applica-
ble to the production of deletions in C. difficile and expands the toolbox available
for genetic analysis of this important anaerobic pathogen.
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Clostridium difficile, also known as Clostridioides difficile (1), is a Gram-positive obli-
gately anaerobic spore-forming bacillus originally isolated in 1935 from the fecal

microbiota of healthy neonates (2). C. difficile was first associated with human infections
in 1962 (3), but its role as the pathogen responsible for antibiotic-associated pseu-
domembranous colitis was not confirmed until the late 1970s (4–6). C. difficile is
currently one of the most commonly reported pathogens in nosocomial infections in
the United States and the European Union (7–11). The bacterium is acquired through
ingestion of vegetative cells or spores, which are ubiquitous in the environment, and
although not part of the normal gut microbiota of humans, 1% to 3% of adults are
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carriers (12). Exposure to antibiotics is a major risk factor for C. difficile infection (CDI)
(13, 14). Disruption of the normal gut microbiota leads to a loss of colonization
resistance which, together with spore germination due to exposure to bile salts, results
in proliferation of C. difficile (15–17). The organism adheres to the mucus layer covering
the epithelial surface of the gastrointestinal (GI) tract via multiple adhesins, and then it
penetrates the mucus and adheres to enterocytes, marking the beginning of the first
phase of the pathogenic process (18, 19). The second important phase of pathogenesis
is toxin production (18, 19). Toxigenic C. difficile strains produce two major toxins, toxin
A (TcdA) and toxin B (TcdB), which are encoded on a 19.6-kb chromosomal region
termed the pathogenicity locus (PaLoc) and are recognized as primary virulence factors
(20, 21).

Although treatment of CDI depends on the clinical presentation of disease (13, 22),
the first step is usually the discontinuation of the inciting antibiotic. Metronidazole is
the first choice for mild to moderate CDI (23), while vancomycin is preferred as the
first-line drug for moderate to severe CDI (23, 24). Due to an increased rate of failure of
metronidazole and vancomycin treatments and recurrence of CDI (25), alternatives,
such as fidaxomicin, a narrow-spectrum antibiotic (26, 27), rifaximin, a broad-spectrum
nonabsorbable antibiotic (28), and nitazoxanide, a broad-spectrum antiparasitic (29),
have been tested against C. difficile.

Metronidazole targets the DNA of bacterial cells. The antibiotic enters cells by
passive diffusion, and the prodrug is activated in the cytoplasm. The molecule is
converted to a nitroso free radical, which interacts with DNA to cause single- or
double-stranded chromosomal breaks, resulting in DNA degradation and cell death (30,
31). In Bacteroides fragilis, resistance to metronidazole can result from the presence of
nim genes, which inactivate the nitroso radicals causing DNA damage (32). Alterna-
tively, resistance can be mediated by deficiency of the ferrous iron transporter FeoAB,
which potentially interferes with metronidazole activation (33) or increased production
of proteins involved in homologous recombination, such as RecA (34) and RecQ (35).
Increased expression of other genes involved in DNA repair, such as recF, recN, and
uvrA, has been observed during the growth of B. fragilis under subinhibitory concen-
trations of metronidazole, indicating the importance of recombination as a response to
the drug (36). Similar mechanisms of resistance have also been described for C. difficile,
including an increase in RecA production by metronidazole-resistant strains (37, 38).

The C. difficile genome has a large number of integrated and extrachromosomal
mobile genetic elements, including conjugative and nonconjugative transposons and
bacteriophages (39, 40), which illustrates the importance of horizontal gene transfer
during the evolution of this bacterium (41, 42). Conjugative transposon-mediated
transfer of the PaLoc from toxigenic to nontoxigenic C. difficile strains has also been
described (43). It has been hypothesized that the chromosomal transfer and recombi-
nation events require the action of the relaxosome on the oriT of the conjugative
transposon without prior excision of the element, a mechanism similar to the well-
characterized Hfr conjugation mediated by an integrated F plasmid in Escherichia coli,
albeit occurring at a much lower frequency (43). Integration of transferred chromo-
somal fragments requires homologous recombination with processing of double-
stranded DNA ends to enable loading of RecA. However, little is currently known about
homologous recombination in C. difficile.

Reverse genetics requires methodologies for generating defined mutations. The lack
of selectable markers in multidrug-resistant strains of bacteria poses a particular
problem for tool development, while insertional inactivation of genes using antibiotic
resistance makes the production of multiple mutations problematic. Markerless dele-
tions are therefore preferred because they are less likely to produce polar effects, and
the resistance determinant, used during construction, can be recycled for multiple
rounds of mutagenesis. Deletions can be generated by allelic replacement, where a
construct lacking the gene of interest is first integrated into the genome of the target
strain (Fig. 1). Integrants can be selected based on antibiotic resistance; however,
resolution of the merodiploid can be a rare event which makes the process potentially
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laborious. To increase the frequency of resolution events, a method originally described
for E. coli, involving the yeast homing endonuclease I-SceI, can be used (44, 45). This
approach utilizes site-specific cleavage by the endonuclease of an 18-bp cognate
recognition site present in the vector carrying the construct of interest, resulting in loss
of the vector at high frequencies and selecting for bacteria in which homologous
recombination has successfully repaired the double-stranded break (Fig. 1). Induction
of double-strand breaks has been used successfully in pathogens which were once
considered genetically intractable, such as Bacteroides fragilis (46). In this study, the
application of I-SceI-mediated DNA cleavage to create markerless mutants in C. difficile
is described. Further, markerless mutants of addAB homologues and fliC in C. difficile are
described to gain insight into homologous recombination in this bacterium and to
demonstrate the utility of this method, respectively.

RESULTS
Enhancing allelic exchange using double-strand breaks. To facilitate the gener-

ation of markerless mutants, an erythromycin-sensitive strain, C. difficile 630Δerm, was
used for mutagenesis. Sequence analysis of the parental strain (GenBank accession
number AM180355) identified two adjacent genes annotated as encoding ATP-
dependent helicase/DNase subunits, suggesting that they were involved in double-
strand-break repair. The proteins encoded by genes CD630DERM_RS05940 and
CD630DERM_RS05945 share 34% identity (399/1,182 residues) and 38% identity (484/
1,279 residues) with AddB and AddA of Bacillus subtilis, respectively (here referred to as
addAB). In most Gram-positive and many Gram-negative bacteria, the AddAB het-
erodimer is involved in degradation of double-stranded DNA as part of the presynaptic
processing step of homologous recombination (47, 48).

FIG 1 Schematic illustrating the generation of markerless deletions in C. difficile by induction of double-
strand breaks. (A) DNA flanking the addAB genes (LF, left flank; RF, right flank) was amplified and ligated
into a plasmid containing an I-SceI recognition sequence (pES271). Homologous recombination between
the LF sequences on the plasmid and chromosome led to integration of the vector. The introduction of an
I-SceI-expressing plasmid generates a double-strand break in the chromosome which must be repaired for
the cell to survive. Recombination between LF sequences regenerates the original chromosome configu-
ration of addAB, while recombination between RF sequences generates a deletion of the intervening DNA.
Small arrows above LF and below RF represent the positions of primers used to differentiate between
wild-type and deletion genotypes. (B) Example of an agarose gel showing PCR products for genotyping-
resolved integrants. Primers used in the reaction correspond to the small arrows at LF and RF shown in
panel A. The wild-type amplicon is 8.2 kb, while the deletion amplicon is �1 kb. Lane 1, 1-kb size ladder;
lane 2, negative PCR control; lane 3, deletion amplicon from pES271; lane 4, wild-type addAB amplicon from
630Δerm; lanes 5 and 6, products from two independent ΔaddAB mutant strains; lane 7, product from
resolved wild-type strain.
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Approximately 500-bp sequences flanking both sides of addAB were amplified and
fused by PCR. The fusion product was inserted into an unstable conjugative vector,
pES185, which is based on pJIR1456 (49) but modified to contain an I-SceI recognition
sequence. The resulting plasmid containing the deletion construct, pES271, was con-
jugated into C. difficile 630Δerm using the RP4 functions provided by E. coli S17-1�pir.
Transconjugants were selected on brain heart infusion (BHI) plates containing thiam-
phenicol, followed by analysis using PCR to confirm presence of the deletion construct
present in the plasmid. Potential integrants resulting from a single crossover between
the plasmid and chromosome were selected on thiamphenicol after multiple passages
in broth without selection. Thiamphenicol-resistant integrants were screened by PCR
using primers that annealed to plasmid and chromosomal DNA to generate a unique
amplicon. Integration can occur either between sequences on the left flank (LF) or the
right flank (RF) of the deletion construct. Note that Fig. 1A illustrates integration via a
single crossover at the left flank.

To generate double-strand breaks, a plasmid containing the gene encoding I-SceI
under the control of the constitutive fdx promoter from Clostridium sporogenes (50) was
constructed by ligation into pMTL82254. This I-SceI-expressing plasmid, pES288, was
introduced into merodiploids by conjugation, and erythromycin-resistant (Ermr) colo-
nies were screened for sensitivity to thiamphenicol. The resolution frequency from
three independent matings varied from 7% to 33%. In contrast, screening of 80
transconjugants with a vector that did not contain the gene encoding I-SceI failed to
yield any thiamphenicol-sensitive strains following the same procedure. Thus, expres-
sion of I-SceI enhanced the second recombination event, which was required for
resolution of the merodiploids.

Phenotypic analysis of C. difficile �addAB mutants. Recombination to resolve

integrants should theoretically produce an equal ratio of wild-type to deletion geno-
types, provided there are no confounding factors, such as the presence of chi sites or
growth defects of the mutants which might affect the outcome. Screening by PCR of
thiamphenicol-sensitive strains allowed the identification of mutants derived from the
addAB merodiploid (Fig. 1B). However, the frequency of ΔaddAB mutants (4% to 7%)
present within all the resolved strains indicated some form of bias against the deletion
genotype during or after the resolution event. Such a bias could reflect the frequency
of chi sites in the sequences flanking the double-strand break; however, the sequence
of potential chi sites in C. difficile has not been determined. Sequencing of PCR products
spanning the addAB region in the deletion strains showed that 7.25 kb of DNA had
been deleted precisely at the point defined by the sequence of the primers used to
generate the construct in pES271 (data not shown).

Previous studies in other species have demonstrated growth defects in mutants
defective in presynaptic processing of double-strand breaks. In E. coli, recBC mutants
have reduced viability and increased doubling times (51). This is also true for addAB
mutants of Streptococcus pneumoniae and Bacteroides fragilis (52, 53). The growth of
two independently derived ΔaddAB mutants was studied in anaerobic investigation
medium (AIM) broth, and both strains had an average doubling time of �45 min,
similar to that of the parental strain 630Δerm (�40 min). This suggests that in C. difficile,
the deletion of addAB has a minor effect on viability.

The role of AddAB in DNA repair was tested by exposing cells to the DNA-damaging
agents ultraviolet (UV) light and metronidazole. Exposure of the ΔaddAB mutant strains
to 10 J/m2 of UV resulted in a 1,000-fold decrease in viability, while exposure of the
parental strain to the same dose of UV had little effect (Fig. 2A). A merodiploid that had
resolved to produce the wild-type genotype (R-WT) behaved in a manner similar to the
parental strain. Growth of the parental strain 630Δerm on subinhibitory concentrations
(0.06 �g/ml) of metronidazole was unaffected compared to that with absence of the
antibiotic, but the growth of the two ΔaddAB mutant strains was reduced by 1,000-fold
in the presence of metronidazole (Fig. 2B).
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The presence of single-stranded DNA resulting from inhibition of replication or
following DNA damage leads to induction of the SOS response in many bacteria,
including C. difficile (54). By microscopy, cultures of 630Δerm grown in the presence of
0.125 �g/ml metronidazole for 4 h showed the presence of filamentous cells, consistent
with division inhibition associated with the SOS response (Fig. 2C). Growth of the
ΔaddAB mutant strains in the same concentration of metronidazole also produced
similar filamentous cells, suggesting that AddAB is not required for induction of the SOS

FIG 2 Phenotypic analysis of ΔaddAB mutant strains. (A) Exponentially growing cultures of parental
(630Δerm), ΔaddAB mutant (ΔaddAB-1 and ΔaddAB-2) and resolved wild-type (R-WT) strains were diluted,
spotted onto AIM agar, and irradiated at 10J/m2 with UV light (bottom images). The no-UV control is shown
in the top images. Dilution values are shown at the top of the panel. Note the similar viability of the parental
and ΔaddAB mutant strains in the absence of DNA damage. Undil, undiluted. (B) Exponentially growing
cultures of all strains were diluted (shown at the top of the panel) and spotted onto AIM agar with and
without 0.06 �g/ml metronidazole (Mz). (C) Micrographs showing random fields of cells (�400 magnifica-
tion), illustrating the effect of 0.125 �g/ml metronidazole or 1 �g/ml levofloxacin on cell morphology for
parental and ΔaddAB mutant strains. The micrographs on the left show cells grown in the absence of
antibiotics, while the images on the right show cell filamentation for both strains when metronidazole or
levofloxacin was present.

Generating Markerless Deletions in Clostridium difficile Applied and Environmental Microbiology

February 2019 Volume 85 Issue 3 e02055-18 aem.asm.org 5

https://aem.asm.org


response. To confirm that inhibition of division was due to the SOS response, we
treated cells with levofloxacin, which has previously been shown to induce filamenta-
tion associated with a LexA-regulated pathway (54). Treatment of the 630Δerm strain
with a subinhibitory concentration of levofloxacin (1 �g/ml) for 6 h led to an increase
in length of a subpopulation of cells (Fig. 2C). The average length of 630Δerm cells in
an untreated culture was 5.1 � 0.99 �m, while the addition of levofloxacin increased
the average cell length to 11.3 � 8.9 �m. The addition of levofloxacin to the ΔaddAB
mutant strain had a similar effect (Fig. 2C). The average cell length of the ΔaddAB
mutant strain was 5.3 � 1.6 �m, while treated cells had an average length of 18.8 � 9.4
�m. Together, these data suggest that the AddAB homologues present in C. difficile are
dispensable for induction of the SOS response.

Deletion and complementation of fliC. Despite the success of the deletion strat-
egy, screening for integrants was a time-consuming process. To improve the efficiency
of the system, another plasmid, pMTL83151, was used, which was reported to show
segregational instability and therefore had the identifiable phenotype of two different
colony sizes. In the presence of thiamphenicol, smaller colonies appear to result from
a loss of plasmid in the population and so have fewer resistant cells, while larger
colonies have a chromosomally integrated plasmid and are thus resistant to the
antibiotic (55, 56). This plasmid was modified by introducing an I-SceI recognition
sequence to produce vector pES242. To validate this approach, a deletion of the fliC
gene (CD630DERM_RS01750), which encodes the major structural protein of the fla-
gellum, was generated. This target was chosen because of the previously described loss
of motility in a C. difficile strain in which the fliC gene had been insertionally inactivated
(57).

Approximately 500-bp sequences flanking both sides of fliC were amplified and
fused by PCR, followed by cloning into pES242 to produce the allelic replacement
vector pES2921. This plasmid was transferred into 630Δerm by conjugation. When
streaked onto thiamphenicol BHI plates, two colony sizes were evident, suggesting that
integrants were present. Putative integrants were cultured in the absence of thiam-
phenicol and restreaked onto agar with thiamphenicol until no small colonies were
evident. Integration of pES2921 was confirmed by PCR (data not shown). The I-SceI-
expressing plasmid pES288 was introduced by conjugation, and Ermr colonies were
screened for loss of thiamphenicol resistance. The resolution frequencies of integrants
derived from two independent matings were 2% (3/144) and 3.6% (4/111). The intro-
duction of pMTL82254 into one of the integrants did not produce any thiamphenicol-
sensitive colonies, again indicating the action of I-SceI on the merodiploids to enable
resolution. Screening of resolved strains by PCR showed that approximately half the
colonies were wild type, and half contained deletions of fliC (Fig. 3A). Motility assays in
soft agar demonstrated that two independently derived ΔfliC mutant strains (strains 88
and 383) were incapable of penetrating the medium beyond the site of inoculation (Fig.
3B), a phenotype indicative of the deletion genotype. Transmission electron microscopy
(TEM) of cells grown on AIM showed the production of peritrichous flagella (observed
as numerous thread-like extensions from the cell surface) in the parental strain and an
absence of flagella in the ΔfliC mutant strains (Fig. 3C), again confirming successful deletion
of the target gene. In addition, we note that resolution of the integrants also produced cells
that were motile and contained a wild-type copy of the fliC gene (Fig. 3B).

One potential advantage of markerless deletions, compared to insertion mutations,
is the reduced possibility of polar effects on the expression of downstream genes. Since
the fliC gene is within a gene cluster required for flagellar assembly and function, we
tested complementation of the deletion using a plasmid-borne copy of the gene. The
native fliC promoter and gene, as previously identified (57), were amplified and ligated
into pMTL84151 to produce pES196, followed by conjugation of the plasmid into the
ΔfliC mutant strains and the parental 630Δerm strain. Electron microscopy showed
visible production of flagella by the ΔfliC mutant strains and the parental strain when
they contained pES196 (Fig. 4A). When the control plasmid pMTL84151 was present,
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flagella were only produced by the parental strain and not in the ΔfliC mutant strains.
These data demonstrate successful complementation of the ΔfliC mutation by the
presence of assembled flagella on the cell surface. Despite the observations made by
TEM, motility assays in soft agar showed that the complemented ΔfliC mutant strains
were not capable of penetrating the medium (Fig. 4B), and the inoculum had the same
appearance as the stab tubes from the deletion strains (Fig. 3B). Microscopy of cells in
a wet mount showed that ΔfliC cells containing pES196 had a tumbling behavior rather
than the linear swimming motion of the parental strain (data not shown). Together,
these data indicate that the flagella observed on the complemented ΔfliC mutant
strains were functionally defective, possibly due to either misassembly of the structure
or polarity affecting the expression of downstream genes.

DISCUSSION

The abundance of genome sequence data has facilitated the application of reverse
genetics to study the function of predicted genes in bacteria. Genetic manipulation of
model organisms, such as E. coli, is achieved with relative ease primarily due to the
“domestication” of strains by removal of restriction-modification (R/M) systems which
degrade foreign incoming DNA (58). Manipulation of wild-type bacteria with medical or
industrial importance is hampered both by a lack of tools and the presence of multiple

FIG 3 Identification and phenotypic analysis of ΔfliC mutants. (A) Example of an agarose gel showing PCR
screening of resolved merodiploids. PCR primers used will amplify a 1.9-kb sequence which includes the
fliC gene. Lane 1, 1-kb size ladder; lanes 2, 3, and 6, resolution to the wild type; lanes 4, 5, 7, and 8,
deletions of fliC; lanes 9 and 10, controls amplifying the fliC region in 630Δerm and the deletion construct;
lane 11, PCR negative control. (B) Motility stab assay using 0.175% soft agar. The parental strain 630Δerm
and resolved wild-type (R-WT) strains showed penetration of the medium from the initial inoculum. Two
independent fliC deletion mutants (88 and 383) grew at the site of inoculation but failed to spread into
the agar. (C) Transmission electron micrographs of the parental strain (1) and a resolved wild-type strain
(2) show the presence of thread-like flagella (examples indicated by arrows) associated with the cells.
There was no evidence of flagella on the cell surfaces of either of the fliC mutants (3 and 4).
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R/M systems, which makes transformation and conjugation inefficient when using DNA
derived from E. coli. In C. difficile 630, there are at least five type II R/M systems and one
type IV restriction system (41), which partially explains the difficulties in introducing
unmodified DNA into this strain.

A predominant method for generating mutations in C. difficile is the ClosTron
system, which was originally designed to make insertional mutations, but this is
limited by the number of selectable markers subsequently available to produce
multiple mutants (59). Alternative methods to produce markerless deletions either
require prior mutagenesis of strains, e.g., pyrE mutants to allow selection of
integrants using 5-fluoroorotic acid (5-FOA) (60), or screening of multiple colonies
to identify spontaneous resolution of integrants (61). A novel allelic exchange
procedure using CRISPR-Cas9 has been described (62), but each deletion will
require cloning of regions of homology and an appropriate single guide RNA
(sgRNA). The frequency of spontaneous resolution for regions of homology be-
tween 300 and 600 bp have been reported to be low and inconsistent (61),
presumably reflecting the stochastic nature of DNA damage or replication errors
that occur within the repeat regions, which subsequently require recombination for
repair. In our experiments, we were unable to detect resolution of merodiploids
that contained 500-bp regions of homology unless I-SceI was expressed in the cells.
Using this method with induction of double-strand breaks, we were able to
generate a large deletion covering the putative addAB genes and a deletion of the

FIG 4 Complementation of ΔfliC mutants. (A) Transmission electron micrographs of strains containing
either pES196 (fliC�) or the vector alone (pMTL84151). 1, 630Δerm/pES196; 2, ΔfliC 383/pES196; 3, ΔfliC
88/pES196; 4, 630Δerm/pMTL84151; 5, ΔfliC 383/pMTL84151; 6, ΔfliC 88/pMTL84151. Flagella are indi-
cated by arrows. (B) Motility stab assay for strains containing either the fliC complementing plasmid
(pES196) or the vector alone (pMTL84151). The strain genotype is indicated above each tube, with the
presence of each plasmid shown at the top of each set of tubes. Only wild-type strains (630Δerm)
containing a chromosomally carried fliC gene showed penetration of the medium.

Theophilou et al. Applied and Environmental Microbiology

February 2019 Volume 85 Issue 3 e02055-18 aem.asm.org 8

https://aem.asm.org


fliC gene. The heterodimer of AddAB is involved in processing of double-strand
breaks in a number of Gram-positive and Gram-negative bacteria. Our previous
single-molecule observations for AddAB from B. fragilis demonstrated a transloca-
tion rate of 250 bp per s with up to 40 kb being unwound and degraded from a
double-strand end (53). The sensitivity of our ΔaddAB mutant strains to UV light and
metronidazole is consistent with the encoded proteins performing the same func-
tions in C. difficile. The model organism E. coli is the paradigm for homologous
recombination and the SOS response in prokaryotes. Regulation of the SOS re-
sponse in other bacteria has been relatively understudied in comparison. In C.
difficile, the SOS regulon is controlled by a LexA homologue which modulates not
only responses to DNA damage, but also regulates other processes, including
motility and biofilm formation (54). Induction of the SOS response in E. coli requires
the generation of single-stranded DNA which activates RecA to facilitate self-
cleavage by LexA (63, 64). This single-stranded DNA is produced by the action of the
RecBCD complex preferentially degrading one DNA strand; therefore, recBCD mu-
tants do not show an SOS response (65). In B. subtilis, the SOS response is reported
to be greatly reduced in the absence of AddAB (66). In contrast, our C. difficile
ΔaddAB mutant strains demonstrated activation of SOS, as indicated by cell fila-
mentation when grown in subinhibitory concentrations of metronidazole. These
data suggest there is potential redundancy in the pathway and that another
exonuclease is responsible for generating single-stranded DNA from a double-
strand break in the absence of AddAB. One potential candidate could be the
single-stranded exonuclease RecJ, since recJ mutations increase the sensitivity of
addAB mutants to DNA-damaging agents in B. subtilis (67). The action of other
proteins on double-strand breaks in the absence of AddAB would also be consistent
with the minor effect of the addAB deletion on the growth rate of our strains. This
is also in contrast to addAB mutants of B. subtilis, which show a 50% reduction in
viability (68).

The second target for demonstrating the utility of I-SceI-induced double-strand
breaks was fliC. The deletion of fliC led to the expected phenotype of loss of motility,
as reported previously for insertional mutations generated using the ClosTron system
(57). Complementation of the ΔfliC mutation enabled the production of flagella, as
visualized by TEM; however, the strains were not able to penetrate soft agar, which
indicated a defect in flagellar function. One possible explanation is that overexpression
of FliC had a detrimental effect on flagellar assembly or function in the ΔfliC mutant
strain, although overexpression in the parental strain had no apparent effect. The fliC
deletion in our strains extended 21 bp beyond the stop codon of the reading frame.
The next downstream gene (CD630DERM_RS01755) is a glycosyltransferase which is
separated from fliC by 92 bp. Flagella in C. difficile are posttranslationally modified with
N-acetylhexosamine by the action of the glycosyltransferase encoded downstream of
fliC. Insertional disruption of the gene RS01755 using ClosTron produced cells with
reduced numbers of flagella and a nonmotile phenotype (69). The canonical �10
(TATAGT) promoter sequence of gene RS01755 is identifiable, while the putative �35
sequence (TTATTC) is more divergent from the consensus. The deletion spanning fliC,
however, does not disrupt the putative RNA polymerase binding site for RS01755. We
therefore suggest that our ΔfliC mutant strain is also defective in modification of
flagellin as a consequence of reduced or altered expression of the glycosyltransferase.
While one advantage of markerless deletions is the reduced possibility of polarity,
in this case, deletion of 21 bp after the fliC gene exposed a potential regulatory
sequence which is involved in controlling or modulating expression of the down-
stream gene.

Together, these results demonstrate that induction of double-strand breaks by
expression of I-SceI is a useful and generally applicable tool for generating mark-
erless deletions in C. difficile. The absence of the 18 bp I-SceI recognition sequence
in all Clostridium species, and the ability of plasmids with pBP1 and pCB102 origins
of replication to function in diverse clostridia, makes this approach suitable for a
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wide range of important organisms. Additional advantages are that amplification
and cloning of large regions of homology, and counterselection, are not required,
which will make the generation of deletions in wild-type strains more practical.

MATERIALS AND METHODS
Bacterial strains and growth conditions. C. difficile 630Δerm (70) was used for mutagenesis

throughout this study. Cultures were routinely grown at 37°C in an atmosphere containing 10% CO2,
10% H2, and 80% N2 within an anaerobic cabinet (Don Whitley). The medium used for cultivation of
C. difficile was either brain heart infusion (BHI) or anaerobic investigation medium (AIM), while LB
was used for E. coli. Antibiotics were used at the following concentrations: 10 �g/ml erythromycin,
15 �g/ml thiamphenicol, 250 �g/ml D-cycloserine, and 8 �g/ml cefoxitin for C. difficile, and
500 �g/ml erythromycin and 30 �g/ml chloramphenicol for E. coli. The plasmids used in this study
are shown in Table 1.

Oligonucleotides. A list of oligonucleotides used to generate deletions is given in Table 2. PCR
amplicons representing deletion products were ligated into the appropriate vectors following digestion
with the relevant restriction endonuclease using standard procedures.

Conjugation of plasmids into C. difficile. Deletion constructs and the plasmid expressing I-SceI
were introduced into C. difficile by conjugation from E. coli S17-1�pir using a modification of a previously
described method (59). Briefly, exponential cultures of donor and recipient cells were centrifuged,
washed, and resuspended in a 1/10 volume of fresh medium. Different donor-to-recipient ratios were
mixed, spread onto BHI agar plates, and incubated anaerobically for 16 to 24 h. The conjugation mixture
was harvested in prereduced phosphate-buffered saline (PBS) and spread onto plates containing
thiamphenicol, D-cycloserine, and cefoxitin.

Metronidazole and UV sensitivity tests. Cultures of control and deletion strains were grown to an
optical density at 600 nm (OD600) of 0.3 in AIM and serially diluted in prereduced PBS. Five-microliter
aliquots were then spotted onto AIM plates. For metronidazole sensitivity, plates contained 0.25, 0.125,
or 0.06 �g/ml metronidazole. For UV sensitivity, plates were irradiated at 10, 15, or 20 J/m2. All plates
were incubated anaerobically for 48 h, and all experiments were performed in triplicate.

Motility assay. An inoculum from a single colony of each strain was stabbed into a glass tube
containing AIM with 0.175% agar. The swim agar tube was incubated anaerobically at 37°C for 24 h.

Microscopy and transmission electron microscopy. For phase-contrast microscopy, cells were fixed
with 20% formaldehyde before being placed on slides coated with poly-L-lysine. Images were captured
on a Metalux II microscope using a Hamamatsu digital camera with the Improvision Openlab software.
For TEM, a colony of each strain was resuspended in prereduced PBS before the addition of 3%
glutaraldehyde. A 20-�l sample was placed on a carbon-coated grid followed by staining with 1%

TABLE 1 Plasmids used in this work

Plasmid Descriptiona Reference or source

pJIR1456 E. coli-C. perfringens shuttle vector (pIP404 replicon, catP marker), Tmr Cmr 49
pMTL83151 E. coli-Clostridium shuttle vector (pCB102 replicon, catP marker), Tmr Cmr 55
pMTL82254 E. coli-Clostridium shuttle vector (pBP1 replicon, ermB marker), Ermr 55
pMTL84151 E. coli-Clostridium shuttle vector (pCD6 replicon, catP marker), Tmr Cmr 55
pES185 pJIR1456 � I-SceI recognition site (SacI site), Tmr Cmr This study
pES271 pES185 � addBA deletion cassette (SphI site), Tmr Cmr This study
pES242 pMTL83151 � I-SceI recognition site (SacI site), Tmr Cmr This study
pES2921 pES242 � fliC deletion cassette (FspI site), Tmr Cmr This study
pES288 pMTL82254 � Pfdx::I-sceI (SbfI site), Ermr This study
pES196 pMTL84151 � fliC gene and native promoter (NotI/XhoI site), Tmr Cmr This study
aTmr, thiamphenicol resistant; Cmr, chloramphenicol resistant.

TABLE 2 Sequences of oligonucleotides used to generate amplicons for allelic
replacement vectors pES271 and pES2921

Primer Sequence

SphI_addBA1 TTCCGCATGCTAAATGGGGATATAATACAGGC
addBA2 CCTAAGTCCCATAAATTTCCG
addBA2_addBA3 CGGAAATTTATGGGACTTAGGTGGAGTTGATGAAGCTGTTTG
SphI_addBA4 TTCCGCATGCTAGCAACCACAATATTTTCTCC
SphI-fliC1 TTCCGCATGCTTCAGCTTTAGAGTCTTTGTTG
fliC2 CTCCTTAGTATAGTTGACATCC
fliC3 GGATGTCAACTATACTAAGGAGAAAAGAAAGGATAAGGCTTTGC
SphI-fliC4 TTCCGCATGCTGGTTGTTCATGAACTTTCCC
cmFliCFora CCCTGGCGGCCGCAACTTTATGATAGTATGGAGC
cmFliCReva CCCTGCTCGAGCTATCCTAATAATTGTAAAACTC
aPrimers cmFliCFor and cmFliCRev were used to produce the fliC complementing plasmid pES196.
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phosphotungstic acid. Grids were examined using a Philips CM120 BioTWIN transmission electron
microscope.
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