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As the standard of living improves, chronic diseases and end-stage organ failure

have been a regular occurrence in human beings. Organ transplantation has

become one of the hopes in the fight against chronic diseases and end-stage

organ failure. However, organs available for transplantation are far from

sufficient to meet the demand, leading to a major organ shortage crisis. To

solve this problem, researchers have turned to pigs as their target since pigs

have many advantages as xenograft donors. Pigs are considered the ideal organ

donor for human xenotransplantation, but direct transplantation of porcine

organs to humans faces many obstacles, such as hyperacute rejection, acute

humoral xenograft rejection, coagulation dysregulation, inflammatory

response, coagulation dysregulation, and endogenous porcine retroviral

infection. Many transgenic strategies have been developed to overcome

these obstacles. This review provides an overview of current advances in

genetically modified pigs for xenotransplantation. Future genetic

engineering-based delivery of safe and effective organs and tissues for

xenotransplantation remains our goal.
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Introduction

In recent years, the incidence of vital organ failure has increased(Abouna, 2008).

Different types of diseases progress to the end stage, and organs are no longer able to meet

the most basic needs of the body. Despite the use of drugs and conventional surgery, organ

transplantation has become one of the most viable solutions to this problem. To date,

more than 106,120 patients have required organ transplants in the United States, while

only approximately 40,000 transplants were performed in 2021 (data from URL: https://

www.organdonor.gov/statistics-stories/statistics.html). Based on urgent clinical needs,

replacing human organs with fully functional animal organs for xenotransplantation

therapy is an effective method to address the shortage of donor organs.

Compared with nonhuman primates, pigs have characteristics such as fast

reproduction, easy breeding, lower cost, and closer anatomical characteristics and

physiological indices to humans, and the use of pigs can avoid the ethical problems

caused by the use of nonhuman primate organs (Gao et al., 2021). The use of pigs as
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donors for pig-to-nonhuman primate (NHP) organ

transplantation has become a standard model for preclinical

xenotransplantation studies(Klymiuk et al., 2010). However,

the clinical application of xenotransplantation still faces many

problems: immune rejection of xenotransplantation, abnormal

coagulation due to endothelial damage caused by rejection and

abnormal growth of transplant donors and biosafety. Gene

editing technology has been widely used to solve these

problems and prolong the survival rate of organ

transplantation. This article reviews the status of

xenotransplant organ development and future perspectives.

Antigens existing in porcine cells that
introduce xenograft rejection

The major carbohydrate antigen on porcine vascular

endothelial cells has been identified as galactose-α1,3-galactose
(α-Gal), to which humans and nonhuman primates have anti-pig

antibodies(Cooper et al., 2016). Activation of natural antibodies

and the complement cascade mediated by α-Gal (α-1,3-
galactosyl) epitopes on the pig cell surface is the main cause

of hyperacute rejection (HAR), which leads to severe immune

rejection in xenotransplantation (Cowan et al., 2000; Bucher

et al., 2005). In 2002, Lai et al. (2002) generated α-1,3-
galactosyltransferase knockout pigs, which significantly

reduced HAR in pig-to-primate organ transplantation.

Subsequently, many research groups have deleted the porcine

α-1,3-galactosyltransferase gene and have shown that

transplantation of organs from α-1,3-galactosyltransferase
knockout (GTKO) pigs significantly prolonged the survival of

transplants(Dai et al., 2002; Phelps et al., 2003; Chen et al., 2005;

Kuwaki et al., 2005).

Furthermore, previous studies(Chen et al., 2005; Kuwaki

et al., 2005; Ezzelarab et al., 2009) have shown that antibody

binding to non-Gal antigens and complement activation also lead

to xenograft rejection. Acute humoral xenograft rejection

(AHXR) caused by non-Gal antibodies and complement

activation are obstacles at present. Non-Gal antigens that have

been identified to cause AHXR include N-acetylneuraminic acid

(Neu5Gc) synthesized by cytidine monophosphate-N-

acetylneuraminic acid hydroxylase (CMAH) and Sda produced

by β4GalNT2 glycosyltransferase(Byrne et al., 2015; Wang et al.,

2018). Several research groups(Estrada et al., 2015; Martens et al.,

2017; Zhang et al., 2018; Tanihara et al., 2021) have developed

GGTA1/CMAH/β4GalNT2 knockout pigs, which greatly

reduced HAR and AHXR. In 2021, Tanihara’s group(Tanihara

et al., 2021) generated GGTA1/CMAH double gene-edited pigs

and GGTA1/CMAH/B4GALNT2 triple gene-edited pigs using

the CRISPR/Cas9 system, which was the first time that multiple

gene-edited pigs had been generated from CRISPR/Cas9-

mediated gene-edited zygotes using electroporation. However,

there is also some basal reactivity in the TKO (triple knockout)

background, leading to poor pig-to-NHP xenotransplantation

(Firl and Markmann, 2022).

Martens et al. (2017) revealed SLA class I as an additional

target for gene editing in xenotransplantation by screening for

human antibody binding using flow cytometric crossmatch

(FCXM) in 2017. HLA is a protein complex expressed on

human tissue that stimulates the production of new antibodies

in allotransplantation. These antibodies can lead to graft failure

through hyperacute, acute, or chronic rejection(Ladowski et al.,

2021).

In 2014, Reyes et al. (2014) produced piglets lacking the

expression of class I SLA proteins, which developed normally.

However, class I SLA antigens are critical for viral control in

pigs(Ambagala et al., 2000), and class I SLA antigen knockout in

pigs still requires long-term evaluation to determine the

susceptibility of these animals to infectious diseases and

cancer. In 2019, Fischer et al. (2020) produced pigs carrying

four gene knockouts of GGTA1, CMAH, B4GALNT2 and either

the SLA-I heavy α-chain or light β-chain (B2M), which showed

functional knockdown of B2M in animals as well as a lack of

SLA-I molecules on the cell surface. However, one group

reported negative effects of B2M knockout in mice(Santos

et al., 1996). Although the absence of SLA expression is

possible, it makes pigs susceptible to infectious complications.

A potential alternative effective strategy is to screen key amino

acids in SLA by base editor-mediated screening to produce pigs

that eliminate cross-reactive binding in the future.

Human proteins involved in
alleviating xenograft rejection

Although knockdown of antigens in pigs helps to reduce graft

rejection, there are still other factors that affect graft survival,

such as human complement-mediated injury, inflammatory

response, and coagulation dysregulation. The expression of

human C-reactive proteins (hCRPs) has been reported to

prevent damage to pig cells by complement activation(Lin

et al., 2009). A number of attempts have been made to

deplete or inhibit the complement cascade, generating pigs

expressing hCRPs (human C-reactive proteins), hDAF

(human decay-accelerating factor, also known as CD55)

(Cozzi and White, 1995), hMCP (human membrane cofactor

protein, also known as CD46) (Diamond et al., 2001) and

hCD59(Fodor et al., 1994). A series of studies have shown

that organs from pigs expressing hCRPs effectively resist

complement-mediated cytolysis, thereby increasing the

survival time after xenotransplantation(Diamond et al., 1996;

Ramirez et al., 2000).

However, several other immunological and

nonimmunological barriers remain. In 2008, Sprangers et al.

(2008) noted that humoral and cellular immune-mediated acute

vascular rejection (AVR) mechanisms play key roles in
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xenotransplantation. The human A20 gene (hA20) is considered

to be potentially involved in AVR regulation (Opipari et al., 1990;

Daniel et al., 2004; Ferran, 2006). AVR is characterized by

endothelial cell (EC) activation and coagulation disorder. In

2009, Oropeza et al. (2009) successfully prepared pigs

expressing hA20. The expression of hA20 protects cells

against TNF-mediated apoptosis and cell damage caused by

inflammation. In addition to A20, haem oxygenase-1 (HO-1)

is also a potential factor in the regulation of acute vascular

rejection (AVR). HO-1 and its derivatives have anti-apoptotic

and anti-inflammatory effects and can resist reactive oxygen

species(Nath et al., 1992; Ramackers et al., 2008). In 2011,

Petersen et al. (2011) reported hHO-1 gene-modified pigs,

and hHO-1 expression was detected in various organs and

cells cultured in vitro, such as heart, kidney, endothelial and

fibroblast cells. Moreover, their results demonstrate that HO-1

plays a protective role in TNF-α-mediated apoptosis(Houser

et al., 2004; Shimizu et al., 2005; Shimizu et al., 2008; Shimizu

et al., 2012).

It has also been shown that thrombotic microangiopathy

occurs in most pig grafts, which may induce the recipient to

develop consumptive coagulopathy, leading to graft failure. hTM

(human thrombomodulin) is a natural anticoagulant. TM

inhibits thrombosis by suppressing direct prothrombinase

activity through binding to prothrombinase and enhances its

activation of protein C, which is an anticoagulant when

activated(Conway, 2012; Yazaki et al., 2012). In 2014,

Wuensch et al. (2014) created a genetically modified pig

expressing hTM and proved that hTM-expressing pig

endothelial cells had anticoagulant properties in a human

whole-blood assay. In addition, the biological efficacy of hTM

indicated that hTM gene-modified pigs could overcome the

coagulation incompatibility in pig-to-primate

xenotransplantation.

In addition, the expression of other human coagulation-

regulatory proteins (endothelial protein C receptor, tissue

factor pathway inhibitor, CD39, CD73) has undergone

extensive testing (Lee et al., 2008; Roussel et al., 2008;

Petersen et al., 2009; Miwa et al., 2010; Mohiuddin et al.,

2014c; Iwase et al., 2014; Mohiuddin et al., 2016). It has been

demonstrated that human coagulation proteins greatly minimize

coagulation-related problems after xenotransplantation, and

coexpression of these coagulation proteins can further

improve graft survival (Mohiuddin et al., 2014a; Mohiuddin

et al., 2014b; Mohiuddin et al., 2014c). CD47 is a negative

regulator of macrophages and is widely expressed in many

cells(Oldenborg et al., 2000). The production of CD47 gene-

edited pigs is an approach to reduce intrinsic and inflammatory

responses and thus improve xenograft survival(Navarro-Alvarez

and Yang, 2011). Porcine CD47 does not induce SIRPα tyrosine

phosphorylation in human macrophage-like cell lines, and the

expression of soluble human CD47-Fc fusion protein induces

SIRPα tyrosine phosphorylation, thereby inhibiting phagocytosis

of porcine cells by human macrophages. Ide et al. expressed

human CD47 in porcine cells and fundamentally demonstrated

that it reduced phagocytosis (Ide et al., 2007). Subsequent groups

have reported prolonged skin graft survival after the use of

human CD47-expressing porcine cells, as well as a substantial

protective effect of porcine cell expression of human CD47 on

xenografts(Tena et al., 2014; Tena et al., 2017; Chen et al., 2019).

Inhibiting the activation of human macrophages through the

CD47-SIRP-α signaling pathway is a feasible approach to

improve the success rate of xenotransplantation.

Advance of genetically modified pigs
in xenotransplantation

In recent years, the application of gene editing technology has

become increasingly common, which has led to prolonged

survival of transplanted pig organs in nonhuman primates

(NHPs) and a reduced risk of pathogen transfer in organs.

Xenotransplantation has made breakthroughs in many fields,

especially in heart (see Figure 1 and Table 1), liver (see Figure 2

and Table 2), kidney (see Figure 3 and Table 3), and islet

transplantation.

Advances in heart xenotransplantation

In 1964, Hardy performed the first clinical orthotopic cardiac

xenotransplantation (CXTx) when he implanted a chimpanzee’s

heart into a 64-year-old male patient who died within 2 h of

transplantation(Hardy and Chavez, 1969). Histopathological

examination showed that antibody-mediated rejection was the

primary cause of the patient’s death(Murthy et al., 2016). In 1968,

Donald performed the first clinical heterotopic abdominal CXTx

by implanting a wild-type porcine heart into a patient who died

of hyperacute rejection (HAR) within minutes after receiving the

xenotransplanted heart (Figure 1; Table 1) (Adams et al., 2000),

which was intended to confirm the feasibility of human heart

transplantation and to provide experience for subsequent human

xenotransplantation. In 1998, the Waterworth

group(Waterworth et al., 1998) attempted to transplant

transgenic porcine hearts to NHPs. They transplanted

hCD55 gene-modified pig hearts into baboons, and

histological studies showed acute vascular rejection resulting

in graft failure (Figure 1; Table 1). Expression of the

hCD55 gene extended survival to 21 days and abrogated

hyperacute rejection. In 2005, the Kuwaki group(Kuwaki

et al., 2005) used alpha1,3-galactosyltransferase knockout pigs

as donors for heart transplantation in baboons, which further

prevented hyperacute rejection and prolonged survival time to

2–6 months, though xenograft injury due to thrombotic

microangiopathy occurred. The transplantation of hearts from

galactosyltransferase gene knockout pigs increases graft survival
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compared to previous studies. In 2010, Bauer’s group(Bauer et al.,

2010) performed the first heterotopic thoracic pig-baboon heart

transplantation, where the recipient heart could assist the donor

heart during rejection episodes, and the recipient eventually

survived for 50 days compared to the orthotopic transplant.

An immunosuppressive regimen of co-stimulation blockade

via anti-CD154 antibodies significantly prolonged cardiac

xenograft survival, but many coagulation disorders were

observed with the use of anti-CD154 antibodies. In 2013,

Mohiuddin’s group(Mohiuddin et al., 2014b) replaced anti-

CD154 antibody with anti-CD40 antibody in a GTKO/

hCD46 Tg pig-to-baboon heterotopic allograft model, and

graft survival was prolonged, with a maximum survival of

146 days. To solve the issue of thrombus formation, GTKO/

hCD46 Tg pigs were engineered to express hTBM. In 2013,

Mohiuddin’s group transplanted GTKO/hCD46/hTBM pig

hearts into baboons, and recipient survival occurred after

1 year(Mohiuddin et al., 2014a). In 2016, the Mohiuddin

group(Mohiuddin et al., 2016) achieved recipient survival of

945 days based on a GTKO/hCD46/hTBM modified pig

conjugated CD40 antibody regimen. In 2018, the Längin

group(Längin et al., 2018) achieved allograft transplantation

based on GTKO/hCD46/hTBM combined with nonischemic

preservation, continuous perfusion and controlled

FIGURE 1
CXTx technology evolution path.

TABLE 1 Progress in transgenic porcine heart xenotransplantation.

Year Recipient Genetic
modifications

Survival Reason of
experiment termination

References

1968 human WT <1 h hyperacute rejection Adams et al. (2000)

1998 baboon hCD55 21 d acute vascular rejection Baldan et al. (2004)

2005 baboon GTKO 179 d thrombotic microangiopathy Kuwaki et al. (2005)

2010 baboon GGTA1KO/hCD46 50 d no signs of infection and active rejection Bauer et al. (2010)

2013 baboon GTKO/hCD46/
hTBM

499 d heart xenografts were explanted after rejection and recipient baboons were
survived

Mohiuddin et al. (2014a)

2016 baboon GTKO/hCD46/
hTBM

945 d anti-CD40 significantly prolongs graft survival Mohiuddin et al. (2016)

2018 baboon GTKO/hCD46/
hTBM

195 d consistent life-supporting function Längin et al. (2018)

2022 human G10 8weeks multiple organ failure and a porcine virus Rothblatt, (2022)
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posttransplant growth of the heart and maintained stable life

support function for up to 195 days. Furthermore, on 7 January

2022, Baltimore reported the first-ever life-saving cardiac

xenotransplantation. The procedure was successful in

extending the patient’s life for 8 weeks. The patient received a

10G-pig xeno-heart (6 human genes knocked-in: CD55, CD46,

CD47, human hemeoxygenase-1, human endothelial protein C

receptor, hTM; four pig genes knocked-out: Alpha-Gal,

Beta4GalNT2, CMAH, growth hormone receptor) and a

modified immunosuppression protocol, including

costimulation blockade (anti-CD40) maintenance(Rothblatt,

2022). Early published results of posttransplant survival

showed that the heart performed very well in the absence of

rejection. In the eighth week posttransplant, the patient’s status

started to decline, and 2 months after posttransplant, the patient

died of multiple organ failure. It is encouraging to see that

hyperacute rejection has been defeated. A porcine virus was

detected in the transplanted heart andmay have been the cause of

the patient’s death(Kuehn, 2022).

Advances in liver xenotransplantation

To address the insufficient supply of living donor livers, liver

xenotransplantation is an attractive approach. In 1968, Calne’s

group(Calne et al., 1968) performed the first trial of liver

xenotransplantation using wild-type pigs as donors, with a

maximum survival time of 3.5 days for the recipients, and the

longest surviving recipient was treated with an

immunosuppressive therapy of glucocorticoids (GC) and

azathioprine (AZA). With the application of gene editing,

hDAF transgenic pigs with hearts and kidneys that prolong

survival and suppress hyperacute rejection have been reported.

In 2000, the Ramirez group(Ramirez et al., 2000) first

FIGURE 2
Lxt technology evolution path.

TABLE 2 Progress in transgenic porcine liver xenotransplantation.

Year Recipient Genetic
modifications

Survival Reason of
experiment termination

References

1968 baboon WT 6–84 h hyperacute rejection Calne et al. (1968)

1992 human WT 34 h hyperacute rejection Starzl et al. (1999)

2000 baboon hCD55 8 d development of sepsis and coagulopathy Ramirez et al. (2000)

2010 baboon GTKO/hCD46 4-7 d thrombocytopenia Ekser et al. (2010)

2012 baboon GTKO 9 d bleeding and enterococcal infection Kim et al. (2012)

2017 baboon GTKO 29 d minimal inflammation Shah et al. (2017)
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orthotopically transplanted h-DAF gene-modified porcine livers

into baboons, which survived up to 8 days postoperatively. The

results showed that HAR was abrogated. In 2010, Ekser’s

group(Ekser et al., 2010) performed the first orthotopic liver

xenotransplantation in baboons using GTKO minipigs

transfected with hCD46 as donors, and the baboons survived

4–7 days before dying of abdominal hemorrhage. Baboon

survival was prolonged, and hyperacute rejection was further

eliminated after transplantation using GTKO. hCD46 pigs as

donors compared to hCD46 pigs as donors.

With the elimination of the major obstacle (hyperacute

rejection), the current obstacle to the clinical application of

liver transplantation is severe thrombocytopenia(Rees et al.,

2002; Ekser et al., 2010). Burlak and his colleagues found

binding and phagocytosis of human platelets by sinusoidal

endothelial cells and Kupffer cells in an ex vivo perfusion

system. ASGR1 is a receptor expressed by Kupffer cells and

hepatocytes that mediates platelet phagocytosis based on the

carbohydrate profile of platelets. Paris and his colleagues(Paris

et al., 2011) knocked down ASGR1 to reduce ASGR1 expression

in asynchronous primary enriched liver sinusoidal endothelial

cells (eLSEC) and cripple the ability of primary porcine eLSEC to

bind and phagocytose human platelets. Xie’s group(Xie et al.,

2021) produced ASGR1-deficient pigs using the CRISPR/

Cas9 system. The ASGR1-deficient pigs unexpectedly

exhibited mild to moderate liver injury, which has not been

reported in humans with ASGR1 variants.

One of the possible approaches to address liver damage

resulting from ASGR1 defects in pigs is to screen key amino

acid functional loci of proteins at the individual level using base

editing techniques. The approach aims to eliminate the liver

damage caused by ASGR1 defects in pigs and to effectively

alleviate thrombocytopenia in liver xenografts as much as

possible.

FIGURE 3
Kxt technology evolution path.

TABLE 3 Progress in transgenic porcine kidney xenotransplantation.

Year Recipient Genetic
modifications

Survival Reason of
experiment termination

References

1968 baboon WT 6–84 h hyperacute rejection Calne et al. (1968)

1992 human WT 34 h hyperacute rejection Starzl et al. (1999)

2000 baboon hCD55 8 d development of sepsis and coagulopathy Ramirez et al. (2000)

2010 baboon GTKO/hCD46 4-7 d thrombocytopenia Ekser et al. (2010)
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Shah’s group(Shah et al., 2017) developed a complete pig-to-

NHP liver xenotransplantation protocol based on the long-term

survival of kidney and heart xenotransplants using GTKO pigs,

which do not carry cytomegalovirus, as the organ source. Then,

the pigs were supplemented with human clotting factors,

followed by applying anti-CD40 monoclonal antibodies to

block activation of the recipient costimulatory pathway. For

the first time, the protocol allowed for recipient survival

following pig-to-primate liver xenotransplantation (LXT) for

nearly 1 month. Amino acid and lipid profiles following pig-

to-primate liver xenotransplantation suggest that most of the

biochemical profiles of porcine liver can be maintained

postoperatively in baboons and that supplementation with

arginine after LXT may be a potential option to further

extend the survival of xenografts(Shah et al., 2019). Based on

costimulation blockade with posttransplant administration of

human coagulation factors, the team effectively circumvented

consumptive coagulopathy and prevented the development of

thrombotic microangiopathy (TMA).

Liver xenotransplantation still has a long way to go before

undergoing clinical trials, with thrombocytopenia and

coagulation dysregulation remaining major hurdles(Li et al.,

2021). Gene editing techniques and the combination of

tailored immunosuppression and coagulation factor support

will likely accelerate the arrival of clinical trials for pig-to-

human liver xenotransplantation.

Advances in kidney xenotransplantation

The rapid development of genome editing technologies such

as CRISPR‒Cas9 technology has led to significant progress in

kidney transplantation from pigs to NHPs. To date, some groups

have achieved more than 6 months of survival in life-supporting

pig-to-baboon kidney transplants(Iwase et al., 2017). Recently,

the Kim group(Kim et al., 2019) even achieved more than 1 year

of survival in life-supporting pig-to-macaque kidney transplants.

These recent experiments confirmed the feasibility of kidney

transplantation from pigs to NHPs. On 24 September 2021,

Robert’s group transplanted a GTKO experimental porcine

kidney xenograft into a brain-dead patient, and it functioned

immediately after transplantation, urinating and clearing

creatinine with no obvious signs of rejection. On 20 January

2022, Porrett’s group(Porrett et al., 2022) performed bilateral

native nephrectomies in a human brain-dead decedent. They

transplanted a TKO pig kidney with seven additional genetic

modifications (ten genetic modifications or 10G-pigs) into a

brain-dead patient. The absence of hyperacute rejection

(HAR) and the fact that the kidneys remained viable until

termination after 74 h suggested that the major barriers to

human xenotransplantation had been overcome (Figure 3;

Table 3). However, the biopsy revealed thrombotic

microangiopathy, which may have been caused by brain death

rather than antibody-mediated rejection (AMR). Because the

brain death model has many flaws, the next step is expected to be

transplanting kidneys from genetically engineered pigs into

patients who cannot wait for an allogeneic liver donor.

Advances in islet xenotransplantation

Pig islet xenotransplantation is a potential approach to patients

with type 1 diabetes. In 1994, Groth et al. (1994) performed the first

clinical islet xenotransplantation using foetal porcine islet cell-like

clusters (ICCs), providing preliminary data for subsequent clinical

islet xenotransplantation. There has also been some work in islet

xenotransplantation from pigs to NHPs and successful reversal of

recipient diabetes and achievement of long-term

normoglycemia(Dufrane et al., 2006; Hering et al., 2006; Cardona

et al., 2007). Moreover, in some clinical trials(Yang and Yoon, 2015),

xenografts were performed using encapsulated neonatal porcine

islets, and the grafts were maintained for more than 2 years with a

significant reduction in the number of hypoglycemic episodes. In

islet xenotransplantation, islet encapsulation and gene editing

technologies are currently used to alleviate

rejection(Dhanasekaran et al., 2017). Targeted specific removal of

porcine endogenous retroviruses from the genomes of porcine cell

lines using CRISPR/Cas9 can improve islet xenotransplantation

safety. The production of pigs with multiple genetic

modifications for xenotransplantation using the targeted

specificity of CRISPR/Cas9 has been discussed in this paper and

will not be discussed here.

Discussion

Although the current work has effectively reduced the

occurrence of immune rejection, the cross-species infection of

pathogens between pigs and humans remains a difficult problem

to be solved. This difficulty arises from two aspects: first,

overexpression of human genes may increase the risk of

human pathogens infecting genetically engineered pigs;

second, transplanting pig organs into human bodies may also

increase the risk of infection by pig pathogens.

Knock-in of certain human proteins in pigs may enhance the

susceptibility of certain viruses to the organism. In engineering

genetically modified pigs to overcome immune rejection, human

CD46 was introduced into porcine cells to inhibit complement-

mediated graft injury(Lu et al., 2019). CD46 not only regulates

complement activation and T-cell immunity but is also especially

able to control inflammation(Diamond et al., 2001; Astier, 2008;

Griffiths et al., 2009). However, CD46 has been shown to be the

receptor for measles virus(Okada et al., 1995; Pérez De La Lastra et al.,

1999). In addition, hCD55 has been shown to be a receptor for

pathogens(Bergelson et al., 1995). Knocking out porcine genomic

PERV sequences is a feasible solution to avoid cross-species
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transmission of PERV and improve the safety of xenotransplantation.

Certain groups have performed a large amount of work in this area.

Yang et al.(Yang et al., 2015) disrupted all copies of the PERVpol gene

in porcine PK-15 at the genome-wide level by using CRISPR/Cas9,

reducing the risk of human PERV infection during

xenotransplantation by approximately 1000 times. Niu et al. (2017)

successfully inactivated all PERV copies in primary pig cell lines using

CRISPR/Cas9 and generated PERV-inactivated pigs. Not only are

these pigs healthy, but their genome changes are heritable. All of these

efforts have effectively addressed the problemof transmission of swine

pathogens to humans. In the transplantation of porcine organs into

humans, a number of other roseoloviruses may be transmitted and

pose a risk in xenografts, such as porcine cytomegalovirus(Denner

et al., 2019). Increased viral replication occurs in xenografts during

immunosuppression(Mueller et al., 2004). Porcine cytomegalovirus is

responsible for a significant reduction in the survival time of

transplanted porcine organs. PCMV-negative piglets can be

obtained for PCMV elimination through a number of early

weaning strategies(Denner, 2022). Eliminating the safety concerns

associated with viral infections during xenotransplantation is an

essential safety consideration for xenotransplantation.

Furthermore, to further reduce the incidence of immune

rejection that is still an issue in current xenotransplants,

researchers could try to produce pigs with different genetic

modifications using different gene-editing combinations,

including knocking in human genes and knocking out pig

immunogenicity-related genes(Hinrichs et al., 2021; Yue et al.,

2021), to test whether immune rejection is further effectively

reduced. Adopting new editing tools is still a good option.

Several groups have attempted to use base editors, such as CBE

and ABE, to construct better xenograft model pigs(Yuan et al., 2020;

Zhu et al., 2022). CRISPR screening of new factors is also a

promising option. The emergence of CRISPR genetic screening

tools offers hope for screening for new antigenic factors in

xenotransplantation. Zhao’s group(Zhao et al., 2020) constructed

the first genome-scale CRISPR/Cas9 libraries for screening studies in

pigs. A porcine genome-scale CRISPR/Cas9 knockout (PigGeCKO)

library was designed, and key host factors promoting JEV infection

in porcine cells were identified. It is theoretically feasible to use a

porcine genome-scale CRISPR/Cas9 knockout (PigGeCKO) library

to identify novel antigens in xenotransplantation.

From the recent first-ever life-saving cardiac

xenotransplantation, patients died of multiple organ failure,

and organ grafts died from porcine virus infection(Kuehn,

2022). Therefore, with the hope of the eventual

implementation of clinical cardiac xenotransplantation, we

think it is important to eliminate porcine virus infections to

prolong the lifespan of these clinical grafts. The molecular

mechanisms associated with rejection involved in pig liver

xenotransplantation are more complex than those in cardiac

xenotransplantation(Lu et al., 2019). Thrombotic

microangiopathy and systemic consumptive coagulopathy are

more severe in grafts after liver xenotransplantation than in

xenotransplantations of other organs(Zhou et al., 2022).

Therefore, addressing thrombotic microangiopathy and

systemic consumptive coagulopathy remains a priority for

breakthroughs in liver xenotransplantation. In the field of

kidney xenotransplantation, which has recently been

performed successfully in a brain-dead patient, NYU porcine

kidney transplantation is just the beginning. More clinical data

are still needed, and the next step may be to initiate a pig kidney

transplant trial in patients with end-stage renal failure. More

clinical organ xenotransplantation may begin within a few years,

with clinical kidney xenotransplantation going first. This is

because in the event of a failed transplant, patients could also

be put back on dialysis to stay alive(Porrett et al., 2022). In islet

xenotransplantation, a current hot spot is the use of cell

encapsulation techniques to protect islets from host immune

rejection during the initial stages of transplantation.

Additionally, there are now some groups trying to transplant

porcine islets into different recipient sites(Zhou et al., 2022).
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