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Abstract: Recent technological advancements have led to the emergence of supportive robotics to
help children with developmental disabilities become independent. In conventional research, in
robot therapy, experiments are often conducted by operating the robot out of the subject’s sight. In
this paper, robot therapy using a system that can autonomously recognize the emotions of a child
with developmental disabilities and provide feedback was developed. The aim was to quantitatively
infer emotional changes in children using skin conductance (EDA) during robot therapy. It was
demonstrated that the robot could recognize emotions autonomously and provide feedback to
the subjects. Additionally, a quantitative evaluation was conducted using EDA. By analyzing the
symptoms related to developmental disorders, it may be possible to improve the recognition rate and
tailor therapy based on symptoms.
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1. Introduction

With the development of robot technology in recent years, research on educational
support robots, which support or replace the education of teachers and parents, has been
attracting substantial attention in educational facilities such as nursery schools and schools,
as well as in homes. One in seven people worldwide have several disabilities. Among them,
even though it varies depending on the definition, the portion of children was estimated as
5.1 percent of children aged 0–14 years-old have moderate or severe disabilities [1]. How-
ever, according to the World Health Organization, people with disabilities are particularly
vulnerable to a lack of services such as healthcare, rehabilitation, support, and assistance [2].
Recent technological developments may offer the potential to alleviate these problems,
meet user needs, and provide cheaper support systems. Therefore, assistive robotics that
can help children with developmental disabilities to become independent have been in-
troduced [3]. As support robotics to help children with developmental disabilities, robot
therapy, in which robots and children with developmental disabilities interact with one
another, has emerged. Robot therapy is effective for autistic children because they are not
good at reading complicated facial expressions, but robots have a simpler structure than
humans, so interpretation by autistic children enables easier active communication [4]. A
study by Wood et al. showed the comparison of responses from children with a disability
when they are in an interview with either robot or human [5]. Prior to this study, a similar
experiment was conducted on healthy children, and it was found that the responses of
children to the human and robot interviewers were very similar [6]. The results of the
experiment with children with disabilities were same. It was demonstrated that they inter-
acted with the human and robot interviewers in a very similar way. These results suggest
that robot therapy may be effective for children with developmental disabilities.
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1.1. Human–Robot Interaction and Robot Therapy

Human–robot interaction (HRI) is the field of understanding, designing, and eval-
uating robot systems that humans actually use or with which they coexist [7]. In recent
years, robots have become more complex and sophisticated, and they have been integrated
into everyday life, including workplaces, homes, hospitals, remote areas, dangerous envi-
ronments, and battlefields [7–9]. As robots continue to enter people’s daily lives, it is of
great importance to investigate the interactions between humans and robots. However,
the structures, natures, and types of these interactions are dependent on the problems that
are addressed in HRI research and development [7]. Moreover, in such interactions, robots
communicate in the same manner as humans, using voice dialogue, gestures, and gazes.
Thus, the term interaction in HRI is used in a fairly broad sense. In addition, effective
analysis methods for HRI have not yet been elucidated or defined. Knowledge of human-to-
human communication is often applied in this domain, and experiments may be designed
or analyzed with reference to behavioral and clinical psychology [10].

In this context, the robot therapy field has been widely studied. Robot therapy is
a psychotherapy technique mediated by robots that is aimed at improving autism and
dementia. Regarding the therapeutic effect, research based on various verification methods
has been conducted and quantitative knowledge is being accumulated [11]. Robot therapy
is aimed at various people. In the field of elderly care, experiments have been conducted
on the psychological and social effects of elderly people using lizard-type robots in nursing
care facilities and, as a result, the mood of the elderly. This method was confirmed to be
effective in improving depression [12]. Moreover, it takes elderly people’s preferences into
account and has different appearances and functions [13].

1.2. Robots for Children with Autism

Autism spectrum disorder (ASD) is diagnosed when problems occur in daily life
with the following symptoms. Individuals on the autism spectrum have difficulty in
communication and speech delay, interpersonal interactions (communication with others),
and obsession with particular objects [14]. ASD is a group of lifelong disorders that
affect communication skills and the ability to understand social cues. It may also be
associated with an intellectual disability or with other disorders or characteristics, such
as hyperesthesia. Within this concept, the concept of ASD as a continuum has been
redefined by including all of the various autism disorders and eliminating the boundaries
with normality [15]. ASD is thought to be a congenital brain disorder. Other features
include non-responsiveness to calls, hyperesthesia and bluntness, difficulty in sustaining
concentration, poor attention and memory, difficulty in controlling emotions, immediate
panic, and a dislike of environmental changes. Symptoms include those listed in [16].

Numerous studies in robots for children with autism and their findings present the
effective and positive results of therapy by using the robots [17]. The reason to use the
robots in this field is that, although it is difficult for autistic patients to read the complex
facial expressions of humans, robots have a simpler structure than humans, which makes
it easier for autistic children to interpret and communicate actively [4]. For example,
Rudovic examined the effectiveness of robot therapy using three modalities (audio, visual,
and autonomic physiology) [18]. Therefore, communication between a robot and an autistic
child may help to improve the communication ability of the child. Besides this study, there
are many studies and types of robots. We list the robots that have been used in robot
therapy for children with autism, which is the focus of this study. Various designs have
been implemented for robots aimed at patients with autism.

• KASPAR is a child-sized robot that was developed by the Adaptive Systems Group
of the University of Hertfordshire, which can create human facial expressions and
gestures. KASPAR has been recently updated to its fifth version for working more
suitably in autism therapy [19]. With the fifth version of KASPAR, four children with
autism participated in a game regarding emotions.
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• Keepon is a robot with a yellow, round-shaped minimal body that was developed
by the CareBots Project. The upper body has a head, left and right eyes, a wide-angle
video camera equipped, and microphon-attached nose. With four degrees of freedom,
Keepon expresses a state of mind with a gesture [20]. Twenty-five children participated
in the environment, interacting with Keepon for 10 to 20 min, and the emotional
communication was observed. Children made eye contact with, touched, and talked
to Keepon [21].

• Muu is also famous as a simply designed robot that has only one eye in the robot body.
It is covered with a soft material. It moves irregularly due to the internal spring, and is
covered with a soft material. In the experiment with Muu [22], children with autism
played with Muu for 5 to 10 min. This study was run once a month and observed for
six months. The case study showed that Muu, described as an inanimate robot in the
study, works for children with autism as a social agent.

• QTrobot, which was created by LuxAI, is an artificial-intelligence robot with an LCD
face and a robot arm. It improves the emotion-recognition ability of autistic children
by imitating their emotions with expressive faces and moving arms. The behavior
of the robot is limited to a certain extent and the child is never denied. By using the
attached tablet terminal, an individual can interact with QTrobot to increase the level
of interest in the other party and to reduce confusion [23].

• CASTOR is a small humanoid that was produced by Diego et al. It offers a replicable
robot platform that integrates the concepts of soft actuators and compliant mechanisms,
and is aimed at real-world therapies, including physical interactions between children
and robots [24].

• NAO is a small humanoid robot developed by Aldebaran Robotics (Softbank Robotics)
that walks on two legs independently and has verbal and nonverbal communication
functions [25]. This robot has been widely used and one of these fields is autism
therapy, such as in study of Shamsuddin et al. [26]. They conducted a case study
of autistic-child-and-robot interaction and compared his reactions in a normal class
with people, by observation. The result shows that the child showed more active
interactions when playing with robot then in the normal class.

The studies shows there are many different types of robots, but the results still indicate
positive aspects for the children. These studies show that a robot could be an effective tool
or agent for children with a developmental disability in their therapy session.

1.3. EDA in HRI

Electrodermal activity (EDA) is an electrical phenomenon in the skin [27] that has
a psychological meaning. When the eccrine sweat glands are emotionally stimulated,
they produce sweat, which has high electrical conductivity [28]. Therefore, the electrical
properties of the skin change. As emotional stimuli cause changes in the skin conductance
values through the activation of the eccrine sweat glands, EDA measurements can provide
information for inferring emotions. Therefore, to quantify the degree of arousal caused
by a stimulus, it is necessary to measure the amount of sweating, as indicated by an
increase in the skin conductance value [29]. EDA measurements involve determining
the electrical conductivity, resistance, impedance, and admittance of the skin [27]. When
stimuli are recognized as important and cause an emotional response, the brain signals
to the eccrine sweat glands through the sympathetic nerve branches of the autonomic
nervous system, thereby activating sweating activity [30]. When sweat is secreted from
the eccrine sweat glands, the skin conductance increases sharply and the skin conductance
value increases. The process of increased skin conductance occurs within seconds of
the stimulation occurring [31]. A sharp increase in skin conductance is known as the
skin conductance response (SCR), electrocutaneous activity response, or peak. Previously,
the SCR was commonly referred to as the galvanic skin reaction [32]. The arousal value
is evaluated using Russell’s circumplex model, which defines emotions in a circle that is
composed of comfort and discomfort, arousal, and drowsiness [33]. In this study, we use
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the emotions surprise, anger, joy, and sadness, indicated in red letters, for the four emotions
with different degrees of arousal. In the experiment, the discrete wavelet transform and an
SVM classifier were used for the EDA analysis. The reason for using the discrete wavelet
transform is that the EDA signal is not periodic and its amplitude, phase, and frequency
change. The wavelet transform is generally considered as effective in dealing with such
unsteady signals [34]. The discrete wavelet transform is not easily affected by noise and
it can easily be applied to unsteady signals [35]. The features that were used in this
experiment are those that Rudovic demonstrated to be necessary for EDA analysis (z-
normalized value, mean, SD, maximum, minimum, integral, slope, number of peaks,
and number of zero intersections) [18]. The SVM is a supervised learning technique that
can handle classification and regression, and it can perform the wavelet transform for
EDA data. The SVM classifier was used to improve the emotion-classification performance
significantly [36].

As mentioned in Section 1, children with autism are not good at reading complex
facial expressions. However, by joining the robot with the therapist, it becomes possible
to communicate more actively than when communicating only with the therapist, and
emotional expression and communication abilities can be improved. In HRI, the robot
is often operated by moving the robot to a location that is invisible to the subject (WoZ
method [37]). The robot recognizes the emotion of the subject and feeds back the recognized
emotion to the subject. Furthermore, in studies that have specialized in the developmental
disorder known as autism, experiments produced quantified results using biometric data.
However, in experiments that only included developmental disorders of children with
developmental disabilities, a questionnaire was administered. Many experiments have
been conducted in which guesses of emotional were made based on the above, and few
have provided quantified results. Therefore, in this study, the interaction of the robot was
autonomous, so that the emotions of the subject that were recognized could be fed back to
the subject. Subsequently, the characteristics of the EDA in the emotions that were exhibited
by a child with developmental disabilities during the interaction between the child and
robot were extracted, and the emotions at that time were inferred from the EDA.

1.4. Contributions and Paper Overview

This work aims at developing a robot-assisted therapy system and analysis of emotions
of children with autism during the therapy. A system was created in which a robot
autonomously recognizes the emotions of a children with developmental disabilities and
provides feedback to the therapist. During the therapy, the system understands children’s
emotions by recognizing their faces. After that, we estimated their emotions by their
EDA data. Besides a robot, various devices were needed for the precise measurement and
performing of the therapy. By integrating various devices and a robot, the therapist was able
to lead the robot-assisted therapy system. Moreover, the system was capable of providing
feedback to the therapist so that he/she could understand the status of the children at the
time. By analyzing their EDA, it was possible to quantitatively infer emotional changes
during robot therapy. To the best of our knowledge, this is the first study to integrate all
devices in the context of robot-assisted therapy for children with developmental disabilities.
Previous work on robot-assisted therapy usually used an observation [26] as an assessment,
and needed an operator for controlling the system [38]. In this work, by integrating all
different devices into a system, it automatically recognizes and quantitatively assess the
children’s emotional states. In addition, it became easier to use as the therapist was able
to run the system. With this, we provide the future direction of robot-assisted-therapy
research, that the therapist’s workload should be considered when developing the system
and also the way to effectively use the analysis data of children’s emotional status during
the therapy.
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2. Methods

In previous studies, robot interactions were often manipulated by moving the robots
out of sight of the subject (the WoZ method) [37]). Many studies used the WoZ method
in robot-assisted autism therapy. In our previous study [39], we used WoZ method and
the robot did not recognize the emotions of the subject and provide feedback. WoZ could
help the robot interacts with human more naturally than interacting in an autonomous
way. The therapy session, however, has a unique situation in comparison to general HRI,
because of the presence of therapists. They are not the subjects of the experiment, but still
the end user of the robot system and, at the same time, they are required to lead the
sessions, instead of the robot operators. In this experiment, the robot recognized emotions
autonomously and performed motions. The result of recognition was indicated by the
light of the robot eyes so that the therapist understands if the robot correctly works. If the
therapist judged that the recognition of robot is wrong or it is better to move on to other
certain steps of session, they can control the robot directly through numeric keypad.

As a robot interacting with the children, we used NAO robot in this work. The NAO is
a small humanoid capable of having a conversation with people and expressing emotions.
This robot is used in therapy for the elderly and children with autism, and as a programming
tool in many educational institutions and research facilities. In this experiment, the NAO
moved only its upper body while sitting to express the four emotions.

Only the subject child and the therapist entered the room, and the NAO was enclosed
in a partition to make it invisible at the start of the experiment. Each experiment was
conducted for 10 min in three parts (the break-in, facial-expression game, and free parts,)
as shown in Figure 1. A photograph of the experimental scene in the break-in and other
parts obtained from camera 3 is presented in Figure 2. Both the facial-expression game and
free parts faced the NAO.

Figure 1. The procedure of the interaction between child and NAO robot.

• Break-in part: The therapist showed the child a facial expression card for each of the
four emotions and the child practiced expressing the emotions.

• Facial-expression-game part: The NAO showed the child the facial expressions that
were practiced in the break-in part. Thereafter, the therapist showed the facial-
expression card that was identified by the NAO to the child and paired it with the
facial expression performed by the NAO. The therapist then asked the child to perform
the facial expressions specified by the NAO. The NAO instructed the child, “Show me
one of the four facial expressions,” and the therapist encouraged the child to exhibit
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one. The NAO recognized the facial expressions and conveyed them to the subject.
This was repeated until the correct answer was provided with four facial expressions.

• Free-structure-play part: When the facial-expression-game part was over, the therapist
could freely operate the NAO using the numeric keypad. At this time, the NAO could
indicate four facial expressions and compliment the subject.

Figure 2. (Left) the scene in camera 1, C: child, T: therapist; (center) the scene in camera 3, C: child, T:
therapist; (right) the experiment setup, C: child, T: therapist. At the very beginning of session, child
and therapist sit in front of desk for around 10 min to relax before child was exposed to the robot.
CAM 1 records only face and upper body of the participants. CAM 2 is used for recognizing the facial
expressions. CAM 3 records the whole scene of session for reference.

Approximately 10 min were required in the break-in part to stabilize the biological
signal data of the subject. The use of the facial-expression card only by the subject and
therapist allowed the subject to recognize the facial expression that the card expressed.
When the break-in part was over, the therapist was asked to move the partition and chair,
and the child and therapist played the game with facial expressions facing the NAO. When
the facial expression game was over, the therapist could move the NAO by operating the
numeric keypad. Therefore, the subject moved the NAO freely and the robot played with
the subject. The subjects of the experiment were 11 children with developmental disabilities
(6 males, 5 females; mean age: 6.9 years; standard deviation: 1.1).

2.1. Facial Expression Game Part

The facial expression game is a method that is used for emotional expression education
for autistic children with robotic support. In the facial expression game in this experiment,
the therapist used cards with basic facial expressions (sad, anger, surprise and happy) as
Figure 3 [40].

Figure 3. (Left) facial-expression cards, from left, sad, anger, surprise, happy; (right) the expressions
by NAO, from left, sad, anger, surprise, happy

The NAO showed the expressions of these emotions to the child, and the therapist
asked the child which emotions the robot expressed and made them aware of the emotions.
Thereafter, the NAO asked the child to perform one of the four facial expressions (sadness,
joy, anger, and surprise). The NAO read the child’s facial expression and told the child,
“You have this facial expression out of the four facial expressions.” The NAO showed the
emotion to the child, asked if it was correct, and asked the therapist to answer whether it
was correct or incorrect using the numeric keypad provided to the therapist. If the answer
was correct, the process of showing the facial expression was repeated using the three
remaining facial expressions, and the process continued until the final facial expression
was completed. If the recognized facial expression was different from the facial expression
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performed by the child, the four facial expressions were repeated. If the answers were
correct, the facial expressions that were answered correctly were removed and the process
continued until the final facial expression was reached. These steps were obtained from the
theory-of-mind concept and designed to foster “sociological imagination”, which is a key
challenge faced by many children [41]. The NAO movements were created for each of the
four emotions using the “Choregraphe” for moving the NAO.

For “sad,” the NAO brings its arm in front of its face from the sitting position and
makes a crying voice while making a human crying movement. For “joy,” the NAO shakes
its hands and expresses joy in a loud voice. For “anger,” the NAO raises its arm and swings
it back and forth while using a low voice. For “surprise,” the robot raises its hand slightly
and lowers its face slightly behind, making a human hiccup-like voice.

2.2. Devices

We used multiple devices in the experiment, but all data were acquired from multiple
laptops instead of one. Therefore, all E4, video, and audio data were recorded using
coordinated universal time (UTC), making it easier to set the time with the other data for
later analysis. The E4 wristband that was used to acquire the EDA in this experiment was
connected to the E4 streaming server using a Bluetooth connection, and the acquired data
were uploaded online to E4 Connect. Subsequently, the uploaded data were extracted
in real time, and the UTC and Japan Standard Time (JST) were sequentially assigned to
the acquired data in the text file. The network flow of the E4 wristband is described later.
Furthermore, the NAO was connected to a personal computer using a wired cable. This
was to prevent the connection with the NAO from being disrupted during the experiment.

In this experiment, an E4 wristband was used to obtain the EDA. The E4 wristband is a
wristwatch-type terminal developed by Empatica that can acquire biological signals in real
time. Sweating increases as the arousal value increases. The E4 wristband reads the amount
of sweating from the skin potential and acquires it as the skin-potential activity. The unit of
the acquired data was microseconds. In addition to the skin-potential activity, the blood
volume pulses, acceleration, heart rate, and body temperature can also be measured. In this
experiment, the EDA was used as the biological signal that could be obtained. It is also
possible to measure the EDA in real time via a Bluetooth connection using a smartphone.
However, this makes it difficult to match the time with other data such as video; thus, in the
experiment, it was written to a text file using a program.

We used three web cameras (Logitech C922) in the experiment. The first was used to
photograph the entire laboratory, the second captured the facial expressions of the subject,
and the third captured the state and sound of the experiment from the front.

2.3. Integration of Systems

The robot therapy system included an app that controls the NAO, a mood mirror for
facial recognition, a numeric keypad whereby the therapist operated the NOA, a recording
app, and an app that acquires biological signals from the E4 wristband.

2.3.1. NAO Interactive Application

The NAO app was created in Python using naoqi. First, the NAO introduced itself
to the child and therapist. Thereafter, the NAO showed the child four facial expressions
(sadness, joy, anger, and surprise). When the NAO was finished showing all of the emotions,
the child was asked to show their facial expressions one by one. At that time, if the NAO
could not recognize the facial expression and could not proceed, it was possible to proceed
to the next expression by operating the numeric keypad. When the NAO had shown a
series of facial expressions, the facial-expression game started. The NAO asked the child to
express one of the facial expressions. At that time, the facial-expression data of the subject
that was output from the mood mirror of the software for recognizing facial expressions
was acquired, and the child was asked, “Is this the facial expression you are doing now?”
Correct and incorrect answers were transmitted to the NAO by the therapist by operating
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the 10 keys. If the answer was correct, the game was played again with the three remaining
facial expressions and if the answer was incorrect, the facial expression was repeated
with the four facial expressions. Therefore, the game ended when the correct answer was
provided four times (the NAO recognized all facial expressions). When the game was over,
it was possible to operate the NAO with the numeric keypad when the child was told,
“From here, play with the therapist’s teacher”. Thereafter, when the therapist pressed the
end key, the program ended by saying “Thank you for playing with us today”.

2.3.2. Recording Systems

The recording app was a Python app that was created using Tkinter, OpenCV, and other
tools. When the app was initially run, the subject-information input screen appeared. When
the subject information was entered and the OK button was clicked, the GUI for outputting
the video was displayed, and the video was displayed in real time. If the camera was not
connected, a dummy image was output. The video was not shot as a video, but the video
that was captured by the camera using OpenCV was displayed as a video by superimposing
it similar to a flip book. All captured images were saved in png format, and the image
number and time when the image was captured (UTC and JST) were recorded in the log
file. Audio data were recorded using Pyaudio. The times when the recording started and
ended were recorded in JST in the log file.

2.3.3. E4 Wristband System

The E4 app was also written in Python. A computer and E4 connected via Bluetooth
were required in preparation for running the app. According to the specifications, when
E4 was connected to the E4 streaming server, the acquisition of biological signals started,
and the acquired biological-signal data were saved in E4 Connect via the Internet. In the
E4 program, E4 Connect and telnet were connected, and the biological-signal data were
constantly acquired and written to a text file separately for each piece of information.
By visualizing the biological signals that were acquired at that time using a GUI, it was
possible to confirm whether the data were acquired correctly at the same time. The acquired
biological-signal data were also recorded as a set of acquired times (UTC and JST).

2.4. Analysis

Feng showed that the frequency analysis of raw EDA signals can provide a feature
space for recognizing different emotions. To obtain a feature space for recognizing emotions,
wavelet transform was performed on the center frequency and bandwidth parameters of
the raw data to output the features, following which emotion classification was performed
using an SVM classifier. It was found that the emotion classification performance was
significantly improved by using the feature quantity after the wavelet transform and SVM
classifier [36]. Ayata performed discrete wavelet transforms of EDA and brain waves, ex-
tracted the features, performed emotion recognition using machine learning, and compared
machine-learning algorithms and feature-extraction methods [34]. Rudovic demonstrated
the features (z-normalized value, mean, SD, maximum, minimum, integral, slope, number
of peaks, and number of zero intersections) that are required for EDA analysis [18].

Therefore, in this experiment, the data that were obtained by extracting the features
after performing the discrete wavelet transform and extracting the features as raw data
of the EDA were subjected to machine learning. The reason for performing the wavelet
transform is that biological signals are unsteady and change with time; therefore, the Fourier
transform is inconvenient for analyzing EDA signals. EDA signals are nonperiodic and
exhibit changes in the amplitude, phase, and frequency. Wavelet transforms are generally
considered to be effective in dealing with such unsteady signals [34]. The discrete wavelet
transform is a technique that was developed to overcome the shortcomings of the Fourier
transform on unsteady signals, is less susceptible to noise, and can easily be applied to
unsteady signals [35]. The machine learning we used in this work is a supervised learning
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technique using an SVM that can handle classification and regression, and it can deal with
nonlinear data by margin maximization and the kernel method.

Features in EDA

The raw EDA data that were measured in this experiment and the data following the
discrete wavelet transform were graphed. In this experiment, the data in the horizontal
axis (time axis) direction were not constant because the time until the robot recognized the
emotion of the subject varied. Noise data were removed from the data that were subjected
to discrete wavelet transform and the number of peaks was reduced. The horizontal axis of
the graph represents the time (s) and the vertical axis represents the measured EDA data
[µS]. Moreover, the raw EDA data that were acquired in this experiment and the Z-values
that were obtained from the data following the wavelet transform were graphed. This
graph indicates the time on the horizontal axis (s) and Z-values on the vertical axis.

2.5. Hypothesis

As mentioned, Feng extracted the features following wavelet transform and demon-
strated that the classification performance of the emotions was significantly improved by
using the SVM classifier. Subsequently, Ayata performed discrete wavelet transform of the
EDA and brain waves, extracted the features, and performed emotion recognition using
machine learning to show the effectiveness of the discrete wavelet transform. Therefore,
in these experimental data, it was considered that the emotion recognition is higher in the
data that were obtained by performing wavelet transform and then extracting the features
than in the method of extracting the features from the raw data.

3. Results

The EDA data and Z-values of the subjects are presented in Figure 4. The mean,
standard deviation, maximum, minimum, integral, slope, and zero intersection that were
obtained from the EDA data are listed in Tables 1 and 2. The top-four datasets in the tables
are the features that were calculated from the raw data, whereas the bottom four are the
features that were obtained following the wavelet transform.

Table 1. Features in EDA data of all subjects (1–8).

S1 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 0.43149 0.00203 0.43654 0.42758 4.20634 −0.00050 7 0
Joy 0.46136 0.01170 0.52360 0.43782 6.79693 −0.00096 10 0

Sadness 0.41464 0.00817 0.44039 0.39814 10.2608 0.00036 17 0
Surprise 0.35291 0.01088 0.38790 0.32773 16.1393 0.00035 42 0

Wavelet

Anger 0.43150 0.00197 0.43669 0.42761 4.20636 −0.0005 6 0
Joy 0.46117 0.00949 0.49402 0.43901 6.79779 −0.00103 8 0

Sadness 0.41465 0.00807 0.44204 0.39984 10.2610 0.00036 12 0
Surprise 0.35291 0.01075 0.38882 0.33504 16.1395 0.00034 20 0

S2 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 0.52904 0.04389 0.57608 0.4391 6.21269 −0.00947 7 0
Joy 0.47970 0.02236 0.50951 0.38790 3.25197 −0.00155 6 0

Sadness 0.50582 0.23713 0.66058 0 4.47646 −0.05765 6 0
Surprise 0.68445 0.02883 0.73381 0.61860 5.30536 0.00308 5 0

Wavelet

Anger 0.43150 0.00197 0.43669 0.42761 4.20636 −0.00050 6 0
Joy 0.47925 0.02133 0.50300 0.40257 3.24552 −0.00093 4 0

Sadness 0.50591 0.23201 0.68548 −0.00423 4.47763 −0.0577 6 2
Surprise 0.68445 0.02851 0.73536 0.61731 5.30490 0.00314 4 0
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Table 1. Cont.

S3 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 0.01057 0.00342 0.01537 0.00129 0.08179 −0.00065 8 0
Joy 1.34860 −0.05213 1.52668 0.32300 8.54974 −0.05213 6 0

Sadness 0.13925 0.01050 0.16262 0.12036 0.66230 −0.00079 4 0
Surprise 0.19759 0.02413 0.25865 0.16774 2.16917 0.00464 12 0

Wavelet

Anger 0.01058 0.00307 0.01495 0.00315 0.08181 −0.00063 3 0
Joy 1.35171 0.21511 1.59836 0.50761 8.54695 −0.04914 5 0

Sadness 0.13916 0.00998 0.15575 0.11871 0.66207 −0.00076 2 0
Surprise 0.19887 0.02437 0.25580 0.16911 2.23338 0.00496 6 0

S4 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 2.84252 0.19124 3.30177 2.67971 24.8388 0.05799 6 0
Joy 2.51112 0.11441 2.7619 2.36640 19.4837 −0.01499 5 0

Sadness 3.13211 0.09746 3.37641 3.02315 24.2489 0.02746 5 0
Surprise 2.25934 0.16982 2.59158 2.02948 19.7752 −0.05478 4 0

Wavelet

Anger 2.84270 0.19162 3.29200 2.67752 24.8380 0.05815 5 0
Joy 2.51067 0.11261 2.74637 2.37213 19.48200 −0.01502 3 0

Sadness 3.13210 0.09633 3.37472 3.05084 24.2487 0.02746 2 0
Surprise 2.25934 0.16982 2.59158 2.02948 19.7752 −0.05478 4 0

S5 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 33.9771 0.88651 36.0453 32.9277 127.196 −0.62724 2 0
Joy 34.3520 0.34325 34.8394 33.4283 163.152 0.16487 4 0

Sadness 41.1273 0.44909 41.6308 39.7299 359.940 −0.08252 6 0
Surprise 37.5190 1.59681 39.7418 34.0201 178.622 0.77806 2 0

Wavelet

Anger 33.9707 0.87512 36.0630 33.0540 127.000 −0.64781 2 0
Joy 34.3571 0.33700 34.7807 33.5023 163.000 0.15909 2 0

Sadness 41.1272 0.43593 41.5292 39.8615 360.000 −0.08425 5 0
Surprise 37.5162 1.60449 39.5258 34.0479 179.000 0.78431 1 0

S6 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 1.11767 1.05655 4.30188 0 9.37177 −0.32224 5 0
Joy 4.50357 1.62758 6.06718 0.80439 39.1786 0.47677 3 0

Sadness 6.14001 0.10694 6.24970 5.82469 23.0507 −0.07339 0 0
Surprise 7.87500 0.30894 6.47427 4.79894 92.4318 −0.03553 9 0

Wavelet

Anger 1.11760 1.05880 4.29840 −0.16029 9.38515 −0.32420 4 4
Joy 4.50490 1.62674 6.03391 0.96924 39.1920 0.47578 3 0

Sadness 6.14143 0.10092 6.24910 5.87374 23.0504 −0.07152 1 0
Surprise 5.87119 0.29414 6.47482 5.25587 92.4337 −0.03549 6 0

S7 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 0.11154 0.00396 0.11904 0.09728 3.42962 −0.00034 23 0
Joy 0.11540 0.01626 0.14848 0.07808 4.58717 −0.00020 27 0

Sadness 0.10286 0.01197 0.12544 0.04480 3.78928 0.00033 29 0
Surprise 0.09654 0.01340 0.12928 0.05504 3.83536 −0.00054 29 0

Wavelet

Anger 0.11153 0.00383 0.11988 0.09826 3.42974 −0.00034 18 0
Joy 0.11540 0.01612 0.14951 0.08161 4.58725 −0.00020 22 0

Sadness 0.10286 0.01176 0.11850 0.04423 3.78926 0.00033 25 0
Surprise 0.09654 0.01310 0.12113 0.05889 3.83521 −0.00054 22 0

S8 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 5.91103 0.17873 6.25988 5.60335 116.714 0.00314 9 0
Joy 4.68259 0.11362 4.84751 4.35351 69.0545 −0.01744 12 0

Sadness 6.43958 0.12888 6.68935 6.19407 94.9965 −0.00588 7 0
Surprise 6.70039 0.34390 7.77854 6.17104 219.547 0.01438 21 0

Wavelet

Anger 5.91138 0.17695 6.19766 5.61145 117.000 0.00329 12 0
Joy 4.68262 0.11302 4.84765 4.39869 69.1000 −0.01745 9 0

Sadness 6.43941 0.12853 6.68754 6.21155 95.0000 −0.00590 6 0
Surprise 6.70031 0.34300 7.69505 6.15898 220.000 0.01438 18 0
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Figure 4. Raw and wavelet transferred data, and z scores of all subjects.
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Table 2. Features in EDA data of all subjects (9–11).

S9 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 12.8038 0.50481 13.6106 11.5710 137.666 −0.09282 8 0
Joy 12.4684 0.82407 13.6375 9.82250 155.723 0.04463 7 0

Sadness 13.0196 0.65215 14.0324 11.8252 153.147 0.01768 9 0
Surprise 12.5225 0.33536 13.2030 12.0830 134.619 0.08715 7 0

Wavelet

Anger 12.8047 0.49672 13.5953 11.6240 138.000 −0.09210 6 0
Joy 12.4711 0.80853 13.6875 9.95330 159.000 0.04415 5 0

Sadness 13.0218 0.63702 14.0203 11.9910 153.000 0.01878 6 0
Surprise 12.5225 0.33543 13.2109 12.0873 135.000 0.08741 5 0

S10 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw

Anger 4.62988 0.54054 5.56541 3.50872 68.3935 0.09091 5 0
Joy 4.39484 0.55553 5.06021 3.48950 73.6648 0.09339 12 0

Sadness 2.42979 0.16078 2.69310 2.12594 23.6907 −0.04779 3 0
Surprise 3.63377 0.22659 4.04169 3.12761 57.2970 0.01891 7 0

Wavelet

Anger 4.62950 0.53832 5.51474 3.49822 68.3901 0.09107 4 0
Joy 4.39519 0.55496 5.05378 3.51319 73.6676 0.09337 7 0

Sadness 2.42985 0.15934 2.69442 2.16082 23.6916 −0.04788 2 0
Surprise 3.63373 0.22605 4.02052 3.11828 57.2966 0.01894 4 0

S11 Emotion Mean SD Max. Min. Integral Slope Peak Zero c.

Raw data

Anger 4.77608 0.11609 5.00440 4.58069 75.2565 0.00348 8 0
Joy 4.98669 0.14246 5.29370 4.78678 118.464 0.00435 13 0

Sadness 5.82886 0.18590 6.20250 5.62175 62.6857 0.02628 5 0
Surprise 6.32382 0.26272 6.99116 6.03171 93.2778 0.00233 4 0

Wavelet

Anger 4.77612 0.11578 5.00377 4.58275 75.2560 0.00350 7 0
Joy 4.98670 0.14240 5.29604 4.78298 118.000 0.00435 9 0

Sadness 5.82887 0.18581 6.19785 5.62209 62.6856 0.02627 2 0
Surprise 6.32389 0.26278 6.98930 6.03438 93.2793 0.00228 3 0

3.1. Features in Each Subject

• When the average values of the raw data of subject 1 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“joy,” “anger,”“sadness,” and “surprise.” As a result, in Russell’s circumplex model,
“surprise,” with the highest arousal value, was the lowest.

• When the average values of the EDA data from the raw data of subject 2 were arranged
in descending order, the order was “surprise,” “anger,” “sadness,” and “joy.” However,
when the EDA data following wavelet transform were sorted, the order was “surprise,”
“sadness,” “joy,” and “anger.” In both of these results, the arousal values of Russell’s
circumplex model were not in descending order, but the changes appeared in the order
of the mean value of the EDA data before and after the wavelet transform was applied.

• When the average values of the raw data of subject 3 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of “joy,”
“surprise,” “sadness,” and “anger.” This result was not in descending order of the
arousal value in Russell’s model.

• When the average values of the raw data of subject 4 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“sadness,” “anger,” “joy,” and “surprise.” As a result, the lowest on the arousal axis of
Russell’s model, “sad,” was the highest, and the highest, “surprise,” was the lowest,
on the arousal axis.

• The EDA data of subject 5 had a higher EDA value for all data than the other sub-
jects. When the average values of the raw data and the EDA data following wavelet
transform were arranged in descending order, they were both in the order of “sad,”
“surprise,” “joy,” and “anger.” In this result, "sad”, which should have the lowest
arousal value in Russell’s model, was the highest.

• When the average values of the raw data of subject 6 and the EDA data following
wavelet transform were arranged in descending order, they were both in the order of
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“surprise,” “sadness,” “joy,” and “anger.” This result demonstrates that “sad,” which
had the lowest arousal value in Russell’s model, was second highest.

• The EDA data of subject 7 did not visually differ for each emotion. When the average
values of the raw data and the EDA data following wavelet transform were arranged
in descending order, they were both in the order of “joy,” “anger,” “sadness,” and
“surprise.” This result indicates that “surprise,” which had the highest arousal value,
was the highest in Russell’s model.

• When the average values of the raw data of subject 8 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“surprise,” “sadness,” “anger,” and “joy.” As a result, “sadness,” which was the lowest
arousal value in Russell’s model, was the second highest.

• When the average values of the raw data of subject 9 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“sadness,” “anger,” “surprise,” and “joy.” This result was the highest for “sadness,”
which had the lowest arousal value in Russell’s model.

• When the average values of the raw data of subject 10 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“anger,” “joy,” “surprise,” and “sadness.” According to this result, “sadness,” which
had the lowest arousal value in Russell’s model, was the only one with the lowest
arousal value.

• When the average values of the raw data of subject 11 and the EDA data following
wavelet transform were arranged in descending order, both were in the order of
“surprise,” “sadness,” “joy,” and “anger.” This result was not in descending order
of the arousal value in Russell’s model. Moreover, in this experiment, the time that
was required to acquire the emotions was not constant, but subject 11 exhibited a
significant change for each emotion according to the Z-value.

3.2. Average of EDA Data

The average values of the data that were acquired in this experiment for each emotion
are depicted in Figure 5. One of the subjects had a larger value than the other subjects, we
output the data in a log–log graph so that the distribution could be understood. When
the EDA was sorted in descending order according the mean value of the raw data and
the mean value of the data after the wavelet transform was performed, the raw data
and wavelet transform data were the same, except for those of one person. In Russell’s
circumplex model, when the emotional arousal values were arranged in descending order,
the order was “surprise,” “anger,” “joy,” and “sadness.” None of the EDA data were
arranged in the order of the arousal value.

Figure 5. Average of recognition rate in all subjects.
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3.3. Recognition Rate

The results of the machine learning (SVM) using the data that were obtained by
extracting the features from the raw data indicate that the emotion recognition rate was
38.6%. The confusion matrix is presented in Table 3 and the recognition rate for each
emotion is shown in Figure 6. The results of performing the wavelet transform, extracting
the features, and performing machine learning indicate that the emotion recognition rate
was 34.0%. The confusion matrix is presented in Table 3 and the recognition rate for each
emotion is shown in Figure 4. In the confusion matrix, the emotion that was identified
appears in the horizontal direction and the actual emotion is shown in the vertical direction,
and the heat map is rounded to the nearest number. As illustrated in the left of Figure 6,
for the analysis with the raw data, the recognition rate of “anger” was higher than that of the
other emotions. As can be observed from the right of Figure 6, when the feature quantity
was extracted following wavelet transform and emotion identification was performed,
the identification rate of “surprise” was approximately 82%, which was higher than that of
the other emotions. However, the emotional recognition rate of “sad” was less than 10% in
both cases.

Table 3. Confusion matrix of raw data and wavelet data.

Confusion Matrix Emotion Surprise Anger Happy Sad

Raw data

surprise 4 5 2 0
anger 0 7 4 0
happy 1 4 5 1

sad 1 8 1 1

Wavelet

surprise 9 0 2 0
anger 7 1 3 0
happy 6 0 5 0

sad 10 1 0 0

Figure 6. (Left) recognition rate for each emotion in raw data; (right) recognition rate for each
emotion in wavelet-transferred data.

4. Discussion

In this experiment, a robot autonomously recognized emotions and could feed the
recognized emotions back to the subject using the color of its eyes. However, the emotion
recognition rate was extremely low. This is because the number of subjects was small and
the data of various children with developmental disabilities were collectively identified
without distinction. Furthermore, according to the emotion recognition results, the emotion
recognition of “sadness” was less than 10% in both cases. “Sadness” had the lowest
arousal value among the emotions used in Russell’s circumplex model. However, “surprise”
had the highest arousal value among the emotions used. The “sad” emotions that were
identified from Figure 2 and 3 were classified as “anger” in the raw data and “surprise”
after the discrete wavelet transform. When the features were extracted from the data were
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subjected to discrete wavelet transform and identified, over 50% of all four emotions were
recognized as “surprise.” This may be related to the fact that children with developmental
disabilities are not good at expressing their emotions. According to the experimental
results, when the mean values of the EDA data for each of the four emotions were sorted in
descending order, none of the data were arranged in descending order of the arousal value
in Russell’s model. In Russell’s circumplex model, “sad,” with the lowest arousal value,
often appeared in the top two when the average values of the EDA data were arranged
in descending order; thus, the subjects expressed “sad” emotions. This could be because
subjects could not express this emotion well, even if they believed they were doing so.

5. Conclusions

According to the experimental results, it was possible for the robot to recognize
emotions autonomously and to feed the recognized emotions back to the subjects. However,
emotion recognition using the EDA data exhibited a low recognition rate and posed a
problem. In this experiment, the number of subjects was small; therefore, it was not
possible to distinguish between the symptoms of children with developmental disorders.
Furthermore, “sad” was classified as the emotion with the lowest arousal value among
the emotions used in Russell’s circumplex model, but it was the emotion with the highest
arousal value in this analysis result. Based on these results, it is necessary to analyze the
symptoms of children with developmental disabilities.

Differences exist in the strengths and weaknesses of emotional expressions depending
on the symptoms of children with developmental disorders. As the number of subjects in
this experiment was small, the analysis was performed not by symptom-based analysis
of children with developmental disabilities, but according to the group of children with
developmental disabilities. Therefore, the recognition rate of emotions was considered to
be low. Following the study of Robins [42], the types of development disabilities affect
interactions with a robot, which takes the symptom-based analysis into account. In future
experiments, by increasing the number of subjects and analyzing the symptoms of children
with developmental disabilities, the characteristics of each symptom will appear in the
EDA data, and it will be possible to identify emotions with a higher recognition rate than
that obtained in this experiment. Moreover, in this experiment, the recognition rate was
higher when the raw data were analyzed without the discrete wavelet transform; however,
this also increased with the number of subjects. Thus, it is necessary to investigate whether
the recognition rate can be improved by symptom analysis.
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