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Abstract

There is great variation in the rates of sequence evolution among proteins encoded by the same genome. The strongest

correlate of evolutionary rate is expression level: highly expressed proteins tend to evolve slowly. This observation has led to

the proposal that a major determinant of protein evolutionary rate involves the toxic effects of protein that misfolds due to

transcriptional and translational errors (the mistranslation-induced misfolding [MIM] hypothesis). Here, I present a model that

explains the correlation of evolutionary rate and expression level by selection for function. The basis of this model is that
selection keeps expression levels near optima that reflect a trade-off between beneficial effects of the protein’s function and

some nonspecific cost of expression (e.g., the biochemical cost of synthesizing protein). Simulations confirm the predictions

of the model. Like the MIM hypothesis, this model predicts several other relationships that are observed empirically. Although

the model is based on selection for protein function, it is consistent with findings that a protein’s rate of evolution is at most

weakly correlated with its importance for fitness as measured by gene knockout experiments.
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Introduction

It has long been known that there is considerable variation in

the rate of sequence evolution among proteins encoded by

a genome (Kimura 1986). This variation is much larger than

the variation in synonymous substitution rates, so an expla-

nation involving variation in mutation rates seems unlikely.

These observations have been abundantly confirmed with

the availability of more sequence data, including sequences

of entire genomes (see, e.g., Makalowski and Boguski 1998;

Waterston et al. 2002; Stein et al. 2003). An explanation of

protein evolution should account for within-genome differ-

ences, and the nature of these differences may help us to

distinguish among such explanations.

Protein evolutionary rate is correlated with many other
variables, many of which also correlate with each other.

The causal connections among these variables are unclear.

However, an important fact has emerged: the best predictor

of a protein’s evolutionary rate is its expression level (Pál

et al. 2001; Krylov et al. 2003; Rocha and Danchin 2004;

Drummond et al. 2006; Drummond and Wilke 2008). Spe-

cifically, more highly expressed proteins tend to have lower

evolutionary rates. Measures of a protein’s contributions to

fitness, such as the apparent cost of gene disruption or the

propensity of a gene to be lost over evolutionary time, are

comparatively poor predictors of the rate of sequence evo-

lution. This has led some to question the role of selection for

function as a determinant of protein evolutionary rate and

as a major constraint on protein evolution. It has also led to

alternative hypotheses, most notably the suggestion that se-

lection against the harmful effects of mistranslation-induced
misfolding of proteins is the major determinant of evolution-

ary rate (the MIM hypothesis) (Drummond et al. 2005;

Drummond and Wilke 2008).

Here, I present a model that accounts for the correlation

between expression level and evolutionary rate in terms of

selection for protein function. This model is similar to that

recently proposed by Gout et al. (2010). The assumptions

involve a cost of gene expression and diminishing returns
for the production of any particular protein. If expression

levels are optimal, the fitness cost of the loss of a small frac-

tion of protein function will be approximately proportional

to the protein’s expression level. Thus, more highly ex-

pressed proteins will be subject to stronger selection for

function, leading to greater constraints on protein sequence

and a lower rate of protein sequence evolution.
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Materials and Methods

Concrete Model

A genotype consisted of two or three parts, depending on

whether codon choice was included in the model. A ‘‘pro-

tein sequence’’ was modeled by 1,000 bits that determined

specific activity. An additional 12 bits determined expression

level. For modeling selection on codon choice, an additional
1,000 bits were included, each associated with a particular

‘‘nonsynonymous’’ bit. For modeling selection for transla-

tional efficiency, it was only necessary to keep track of

the total number of optimal codons because the positions

of these codons were irrelevant to the overall translational

efficiency.

The protein’s specific activity was determined by the se-

quence as follows. Each of the 1,000 bits was assumed to
make a certain contribution to the logarithm of specific ac-

tivity. A number representing this contribution was assigned

to each position. For most of the simulations, the ith bit was

assigned a contribution gi equal to i/1,000; the results pre-

sented in figure 6 involve different assumptions, which are

specified in the corresponding text. The specific activity of

the most active sequence, consisting of all ones, was taken

to equal one. Each zero-valued bit decreased the specific ac-
tivity by a factor of exp(gi). Thus, if Z is the set of all indices

for which the corresponding bit is zero, the specific activity is

given by

expð �
X

i2Z
giÞ:

Expression level was taken to equal expð0:005nÞ=109,
where n is an integer between 0 and 4,095 (inclusive) that

is determined by the 12 bits that specify expression level.

These 12 bits were interpreted as a Gray code for the inte-

ger. Specifically, the value 0 was represented by 12 zeros,

and the representation of n þ 1 was obtained from the rep-

resentation of n by inversion of the lowest-order bit that

yielded an encoding not already assigned to a smaller inte-

ger. The details of the encoding of expression level are not
relevant to the theoretical predictions, which simply assume

that expression level is optimized.

Fitness was given by equation 1. The cost factor c was

taken to be 1, except where translational efficiency was as-

sumed to depend on codon choice, in which case it de-

pended on Fop according to equation 5.

The rates ofmutationwere taken to be the same for all bit

positions in the genotype and to be independent of the
genotype.

Simulations

Simulations were performed using the Python programming

language along with the NumPy package (Oliphant 2007).

Each simulation consisted of a series of steps, each corre-

sponding to the fixation of a mutant allele, and thus the in-
version of one bit of the genotype. In each step, all possible

single-bit changes were evaluated for their fitness effects. A

pseudorandom choice among the bits was made, with the

probability of each possible change proportional to its fixa-

tion probability, calculated from equation 4. At each stage,

the total rate of protein sequence change (proportional to

the sum of fixation probabilities across positions) was re-

corded, along with the rate of change at the bits encoding
expression level. The latter was important for calculating the

mean lifetime of a state. The mean rate was computed as

the average of the rate over all iterations, weighted by the

mean lifetime of the state. Where relevant, the rate of syn-

onymous change and the fraction of optimal codons were

also recorded at each step. The first 1,000 steps of a simu-

lation were not used for calculations of means. Simulations

were run for 10,000–3,000,000 steps, depending on the
model parameters.

Numerical Predictions

The decreasing curves in figure 2a represent the optimal

level of expression as a function of specific activity. For

any specific activity r, the expression level giving the highest

fitness was found by solution of @w
@e 50, with w given by

equation 1. This equation was solved numerically with

the ‘‘roots’’ function of the NumPy package. For each payoff

function considered, solution for a range of values of spe-
cific activity yielded the corresponding curve in figure 2a.

All the other predictions presented are independent of

the payoff function. Where relevant, predictions are calcu-

lated from a linearization of the payoff function under the

assumption that the ratio of change in fitness to fractional

change in specific activity is proportional to expression level

(eq. 3). This assumption will hold approximately, according

to the theoretical results presented here, when expression
level is optimal. Each bit position is analyzed separately un-

der this assumption. At any time, either a ‘‘1’’ or a ‘‘0’’ will be

fixed at the focal position. The ratio of the time spent

with a 1 fixed to the time spent with a 0 fixed is equal to

expð2NsÞ, with s reflecting the fitness effect of changing

a 0 to a 1 (this follows from eq. 2 and the symmetry of mu-

tation rates). Application of this approximation to each bit

allows prediction of specific activity as a function of expres-
sion level (the rising curve in fig. 2a). Furthermore, the

mean rate of evolution at any sequence position is propor-

tional to

2
1

1 þ expð2NsÞ pfixðs;NÞ:

Summation of this quantity over all relevant positions

(synonymous or nonsynonymous) yields an approximate

prediction of the corresponding evolutionary rate as a func-

tion of expression level.
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Results

The Model

The rate of a protein’s evolution relative to the mutation rate

depends on the distribution of fitness effect among mutant

sequences. The rate is determined primarily by the distribu-

tion among mutants of small effect; mutants with large del-

eterious effects are extremely unlikely to fix, and there can

be few reversals of such fixations if they rarely happen in the

first place.

Consider, then, the fitness effect of a change to a protein

sequence that alters its functionality by a small amount.

Suppose, for specificity, that it decreases some measure

of protein function by 1%. It might, for example, reduce

an enzyme’s activity by 1% due to a subtle alteration of

the active site or cause 1% of the protein to fail to fold cor-

rectly. What will be the fitness effect of such a change? How

might it relate to the protein’s expression level?

For many proteins, a 1% decrease in activity due to an

altered protein sequence will have roughly the same effect

as the disappearance of 1%of the proteinwithout any com-

pensatory advantage. For amore highly expressed gene, this

1% corresponds to a proportionately larger quantity of pro-

tein. If the protein that is notionally lost has the same value

per quantity for both genes, the total fitness loss will be pro-

portionately higher for the more highly expressed gene. This

equality of value of protein will hold approximately for mu-

tations of small effect if expression levels are optimized by

selection, as explained below.

The overall importance of a gene to fitness is not closely

linked to its expression level. Genes with low expression lev-

els may be essential and highly expressed genes might make

only small contributions to fitness. A gene’s total contribu-

tion to fitness and hence the total value of its product might

be unconnected to expression level. The average value of

a gene product—the ratio of its total fitness contribution

to its expression level—would then decrease with expression

level.

However, neither the total nor the average value of a gene

product is directly related to the question at hand. What

matters is the sensitivity of fitness to small changes in the

amount of protein. In other words, what matters, in the limit

of small effect size, is the marginal value of the gene prod-

uct. Suppose that there is a general (non-gene–specific) cost

to increasing expression, such as the metabolic cost of pro-

tein, as appears to be the case for Escherichia coli (Stoebel

et al. 2008). When expression levels are optimal, the mar-

ginal values of different proteins will be identical. If this were

not so, shifting protein production from products with low

marginal value to those with high marginal value would be

advantageous, so this would not be an optimum after all.

Selection would be expected to keep expression levels near

their optimal values, and adaptation of this sort has been

demonstrated in laboratory experiments (Dekel and Alon

2005). Thus, for changes to the protein sequence that have

a small effect on function, the effect on fitness should be

approximately proportional to the expression level.

Essentially the same argument can be given from the

point of view of a single gene whose expression comes
at a cost that is unrelated to the protein’s function. This ar-

gument is given below. The formal model that emerges is

then used as a basis for computer simulations and numerical

analyses that confirm the argument given above and dem-

onstrate other predictions about the evolution of coding se-

quences.

Suppose that the contribution of protein function to fit-

ness increases with expression level but with diminishing re-
turns (the blue curve in fig. 1). A relationship of this typemay

be derived, for example, from theoretical results concerning

fluxes throughmetabolic pathways (Kacser and Burns 1973;

Hartl et al. 1985). Suppose also that expression comes with

a proportional cost (the green line in fig. 1). There will then

be an evolutionary trade-off between the benefit of protein

function and the cost of expression (the red curve). At low

expression levels, increasing expression will have a net ben-
eficial effect because the benefit of increased protein func-

tion will outweigh the cost of the additional expression. At

high expression levels, it will be favorable to decrease ex-

pression because the decrease in the corresponding cost will

outweigh the lost functional benefit. The optimum expres-

sion level will be intermediate, at the point where the mar-

ginal benefit of protein function equals the cost of

FIG. 1.—The relationship between expression level and fitness. A

cost-free fitness function with diminishing returns is shown in blue. The

total fitness cost of protein is proportional to the expression level, as

shown in green. Fitness, equal to the difference between these, is

shown in red. The peak of the red fitness curve occurs where the slope

of the blue curve equals the slope of the green line. Thus, the tangent to

the blue curve is necessarily parallel to the green line. This relationship

holds regardless of the shape of the blue curve.

Evolutionary Rate and the Cost of Expression GBE
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additional expression (the vertical line in fig. 1). Consider
a gene expressed at this optimal expression level, eopt. De-

creasing the expression level by an infinitesimal fraction d
(changing it to (1�d) eopt,) will leave fitness unchanged;

there will be a fitness loss due to loss of protein function,

equal to ceopt d for some constant c, but a compensatory

fitness gain of ceopt d due to the decreased cost of expres-

sion. Now consider a change to the protein sequence that

causes the loss of a fraction d of protein function (e.g., de-

creases the specific activity of an enzyme). This will incur the

same fitness loss of ceopt d due to the loss of protein function
but without the compensatory decrease in the cost of ex-

pression. Thus, the net effect will be to decrease fitness

by a quantity that is proportional to the expression level

and, therefore, larger for more highly expressed genes. Sim-

ilarly, the fitness gain due to a fractional increase in protein

function will be larger for more highly expressed genes.

Therefore, the fitness effects of changes to the protein se-

quence are expected to be larger for more highly expressed

genes, leading to lower rates of protein sequence evolution.

More formally, assume that, neglecting the cost of ex-

pression, fitness is given by a function fðaÞ, where a is

a quantity that I will call ‘‘activity.’’ The (total) activity is pro-

portional to both the expression level e and the ‘‘specific ac-
tivity’’ r, which is determined by the protein sequence.

Specifically, a5 r e. I will refer to the function f as the ‘‘pay-
off function.’’

Note that activity is used here in a broader sense than its

strict enzymological meaning. It is meant to be applicable

even to proteins that are not enzymes. Furthermore, even

for an enzyme it need not correspond to what a biochemist

would call ‘‘enzyme activity,’’ which is proportional to kcat.
For example, on the basis of metabolic control analysis

(Kacser and Burns 1973), fitness has been modeled as

a function of a quantity that is proportional to kcat/KM (Hartl

et al. 1985). Also, although the parameter r is referred to as

specific activity, it can reflect such factors as the failure of

a fraction of the protein to fold correctly.

The cost of protein production is taken to be proportional

to the expression level e. Fitness is then given by

wðr; eÞ5 fðreÞ � ce ð1Þ

Because the scale on which we measure expression level

is arbitrary, it will sometimes be convenient to take the cost

factor c to equal one. To model the effect of codon choice

on the cost of expression, we can allow c to depend on co-

don usage.

Fitness might instead be given by an expression such as
fðreÞ � ð1� ceÞ or fðreÞ � expð � ceÞ. On a related note,

we should distinguish between the ordinary fitness and

its logarithm, the Malthusian fitness. Such details have

negligible effects on the numerical results presented below,

for which ce,,1 (as expected for all but very highly

expressed proteins) and wðr; eÞ � 1. More importantly,
these details are not relevant to the general argument pre-

sented above.

One might also use a nonlinear cost function such as that

proposed by Dekel and Alon (2005) based on experiment.

However, use of this function has negligible effect on the

numerical results presented below. This is so because the

deviations from linearity only become significant at ex-

tremely high expression levels and are negligible in the rel-
evant range of expression. For the vast majority of real

genes, expression levels will also be too low for such devia-

tions to be significant. Moreover, a nonlinear cost function is

likely inappropriate for gene-wise treatment of genes in the

same genome. This is because, on the simplest model, high

expression of a genewill increase the cost of expression of all

genes, leaving the relative marginal costs unchanged. This

expectation is largely borne out by the results of Stoebel
et al. (2008).

If fitness is given by equation 1, the partial derivatives of

fitness are given by

@w

@e
ðr; eÞ5 rf ’ðreÞ � c ð2aÞ

and

@w

@r
ðr; eÞ5 ef ’ðreÞ: ð2bÞ

From equation 2a, it follows that when expression level is

optimal, f ’ðreÞ5c=r. From equation 2b, it then follows that
@w
@r ðr; eÞ5ce=r when expression level is optimal. Equiva-

lently, the fitness effect of a small change in specific activity

Dr is given approximately by

Dw � ce
Dr
r

ð3Þ

Thus, the sensitivity of fitness to a small change in specific

activity is proportional to the gene’s expression level.
The above considered a fixed specific activity. In reality,

the specific activity changes as the protein sequence evolves.

Suppose that the expression level were held constant. Fit-

ness would then be an increasing function of specific activity

that is similar to the blue curve in figure 1. The higher the

specific activity, the greater the tendency of fixations to be

deleterious. There are two reasons for this. First, as the slope

of the curve decreases, selection for activity becomes weak-

er (Hartl et al. 1985; Cherry 1998). Second, as the protein

sequence becomes more adapted, mutation is increasingly

biased toward maladaptive changes (this is true, at least, on

many reasonable models). Specific activity will tend to

evolve toward a value at which advantageous and deleteri-

ous fixations are balanced (Cherry 1998).

The level of expression and the protein sequence evolve in

concert, each affecting the selective force acting on the

Cherry GBE
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other. Evolution will tend to keep the expression level and
specific activity in a certain region where two conditions

hold. First, the expression level is approximately optimal

for the specific activity. Second, the specific activity has

roughly the value it would tend to evolve toward if expres-

sion level was fixed at that value. These two conditions are

expected to hold under fairly general conditions. When fit-

ness takes the form of equation 1, the protein sequence will

behave as though equation 3 applied. The specific activity
will therefore tend to increase with expression level, and

the rate of protein evolution will decrease.

Numerical Confirmation

In order to explore concrete instances of this model, I con-

sider a simplified model of a protein sequence. A protein

sequence is modeled as a sequence of 1,000 bits. The high-

est possible specific activity is 1, which is achieved by a se-

quence of all ‘‘ones.’’ Every ‘‘zero’’ diminishes the specific
activity by a factor that depends on its position in the se-

quence. Equivalently, every sequence position is assigned

a value that specifies the logarithm of its multiplicative effect

on specific activity. I initially assume that the natural loga-

rithm of the contribution of the ith bit is given by i/1,000
(i 5 1, 2 . . . 1,000). Other possibilities are explored below.

The expression level is also assumed to be encoded by the

genotype. It is determined by a sequence of 12 bits, which
are interpreted as a Gray code representation of an integer

between 0 and 4,095. The use of the Gray code guarantees

that an increment or decrement by one unit can always be

achieved by the change of a single bit (a single ‘‘mutation’’),

while allowing other bits to have larger effects. The expres-

sion level is an exponential function of the integer n, namely

expð0:005nÞ=109. Thus, changing the integer by 1 changes

the expression level by approximately 0.5%.
The population was assumed to be a haploid Wright–

Fisher population. It was assumed that each newly arising

allele goes to fixation or extinction before new mutant al-

leles enter the population (the ‘‘weak mutation’’ approxima-

tion). Therefore, the fixation probability of a newly arising

allele is given approximately by

pfixðs;NÞ5
1 � expð � 2sÞ
1 � expð � 2NsÞ ; ð4Þ

where N is the population size and s is the selection coeffi-

cient (Kimura 1957). The population size was taken to be

106. The selection coefficient was calculated as the natural
logarithm of the ratio of the fitness of the novel genotype to

that of the established allele.

Simulations consisted of a series of steps in which an es-

tablished genotype was replaced by one of its single-bit var-

iants. Each variant’s probability of being chosen as the

replacement was proportional to its fixation probably as

given by equation 4, with selection coefficients calculated

from equation 1. These equations also formed the basis

of approximate theoretical predictions, which can be com-

pared with the simulation results.

Figure 2a shows the evolution of expression level and spe-
cific activity for payoff functions of the form a / (Kþ a). From

FIG. 2.—Evolution in simulation results. The trajectories of

simulation results are shown for payoff functions of the form a/(a þ
K) for K 5 10�12, 10�11, . . . 10�5. The plots show the first 500 steps of

each simulation. Each step corresponds to a single sequence change,

affecting either the protein sequence or the expression level. (A)

Expression level and specific activity. Each sequence change produces

either horizontal or vertical movement, corresponding to a change in

expression level or protein sequence, respectively. Each trajectory is

drawn toward the intersection of the corresponding falling curve

(specific to the benefit function) and the single rising curve. (B)

Expression level and protein evolutionary rate. Changes to the protein

sequence again yield vertical movement because they do not affect

expression level. Changes to the expression level yield diagonal

movement because they also affect the rate of protein evolution. The

curve represents a numerical prediction that is independent of the

payoff function.

Evolutionary Rate and the Cost of Expression GBE
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a common starting point, each simulation moves fairly rap-
idly to a different region of the plane, where it largely re-

mains. The rising curve gives a prediction of the specific

activity to which the systemwill evolve for a fixed expression

level. It is based on a linearization that assumes that the se-

lective effect of a change in specific activity is proportional to

the level of expression (eq. 3), which is predicted to hold

approximately by the argument given above. Each falling

curve is specific to a payoff function. It gives the expression
level that maximizes fitness, according to equation 1, for any

specific activity. Its intersection with the rising curve repre-

sents the simultaneous satisfaction of two conditions that

are expected to hold approximately at evolutionary steady

state. For each falling curve, the corresponding simulation

evolves to the vicinity of this point, as predicted by theory.

Figure 2b shows, for the same simulations, the evolution

of expression level and protein evolutionary rate. Each sim-
ulation again evolves toward a different region of the plane.

These regions lie along a falling curve that represents a the-

oretical approximation, based on equation 3, that is inde-

pendent of the payoff function. Payoff functions that

result in higher expression levels also result in lower evolu-

tionary rates. Thus, this figure illustrates the fundamental

prediction of the argument: protein evolutionary rate de-

creases as expression level increases.
In all the simulations whose results are show in figure 2,

the payoff function had the form a / (Kþ a). Thus, the payoff
functions had the same shape, differing only by scaling. In

particular, the gene being modeled was in all cases essential

to fitness: the absence of protein activity would lead to zero

fitness, even neglecting any cost of the protein. Theory pre-

dicts that the rate of a protein’s evolution should be largely

unaffected by the payoff function, except through the effect
of the payoff function on the optimized expression level. If

their expression levels are the same, a protein essential to

fitness should have approximately the same evolutionary

rate as a protein that makes only a small contribution to fit-

ness. This prediction can be confirmed by simulations using

a wider variety of payoff functions.

Representatives of four families of payoff functions are

plotted in figure 3. In three of the families, the contribution
to fitness has a Michaelis–Menten form as above, but the

total possible contribution to fitness varies. These payoff

functions have the form

fðaÞ5 ð1 � dÞ þ d
a

K þ a
: ð5Þ

The parameter d dictates the maximum contribution to

fitness that can bemade by a gene and puts an upper bound

on the fitness cost of deletion of the gene. Families with

d equal to 1, 0.1, and 0.01 are represented in figure 3 (blue,
yellow, and red curves, respectively) and are used in the sim-

ulations discussed next. In addition, a family with an expo-

nential approach to maximum payoff is considered:

fðaÞ5 ð1 � dÞ þ dð1 � expð � a=KÞÞ; ð6Þ

with d 5 0.1 (cyan curve in fig. 3).
Figure 4 shows results for simulations for all four families

of payoff functions. Results roughly fall along the same the-

oretical curve, which relates evolutionary rate to expression

level. To a good approximation, the evolutionary rate de-

pends only on the expression level, not on the payoff func-

tion. Thus, a highly expressed gene making only a small

contribution to fitness has a lower evolutionary rate than

an essential gene with a lower expression level. Consider,
for example, the gene represented by the rightmost red

square in figure 4. Disruption of this gene would lead to less

than a 1% loss of fitness. Nonetheless, the protein sequence

is under stronger selection and evolves more slowly than

most of the others represented in the figure, including sev-

eral that are essential to fitness. Conversely, some essential

genes (blue circles) are among the most rapidly evolving

genes.

The Effect of the Distribution of Mutational Effects

The downward trend illustrated by figure 4 is expected un-
der fairly general conditions. The particular form of the re-

lationship, however, depends on how protein sequence

maps to specific activity. Over part of its range, the curve

in figure 4 approximates a straight line with slope equal

to�1, corresponding to an evolutionary rate that is approx-

imately proportional to the reciprocal of expression level. As

expression level becomes large, evolutionary rate begins to

drop precipitously. This behavior can be understood in terms
of the model for protein function. Any position in the se-

quence has an associated selection coefficient that,

FIG. 3.—Representatives of four families of payoff functions.

Fitness, neglecting the cost of protein, is plotted as a function of total

activity for four different payoff functions. Each plotted function is

a representative of a family related by scaling in the horizontal

dimension. These families are specified in the text.
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according to the model, is proportional to the level of ex-

pression. The rate of evolution at that site is a decreasing
function of the selection coefficient. It was assumed above

that the effect of position i on the logarithm of specific ac-

tivity is proportional to i. Thus, the distribution of effect sizes

among sites can be approximated by a uniform distribution

for sufficiently small effect size, as illustrated in figure 5. Also

shown in the figure are curves relating the evolutionary rate

at a site to its effect on specific activity. Each curve corre-

sponds to a different expression level: increasing expression
level contracts the curve horizontally. Over a wide range of

expression levels, the overall evolutionary rate is approxi-

mately proportional to the area under the corresponding

curve. Evolutionary rate is therefore proportional to the re-

ciprocal of expression level. For very high expression levels

(corresponding to narrow curves), the continuous approxi-

mation breaks down and the evolutionary rate falls rapidly

as expression level increases.
Figure 6 shows theoretical predictions and simulation re-

sults for four assumptions about the effects of different sites

on specific activity:

� Blue circles: As in the simulations above, the effect of
the ith site on the logarithm of specific activity is equal
to i/1,000.

� Green squares: The effect of the ith site is equal to i/
10,000. Because the effect sizes are all 10-fold
smaller, the curve is similar but is shifted to the right.

� Red triangles: The effect of the ith site is proportional
to i2. Reasoning analogous to that illustrated in
figure 5 may be applied to this case. The curve is
again predicted to be well approximated by a straight
line over a range of expression levels. However, due to
the i2 dependence, the slope is predicted to be �1/2.
Figure 6 bears out this prediction.

� Cyan diamonds: The effect of the ith site is pro-
portional to i1/2. In this case, a slope of �2 is expected
for the approximately linear portion of the curve. This
is also confirmed by figure 6.

Despite very different assumptions about the effects of

mutations on specific activity, the four cases yield the same
qualitative result: evolutionary rate decreases with expres-

sion level, as predicted by the general model. Furthermore,

evenwhen all of these results are combined, there is a strong

negative correlation between expression level and evolu-

tionary rate.

FIG. 4.—Evolutionary rate as a function of expression level for

a wide variety of payoff functions. Expression levels and evolutionary

rates observed in simulations are plotted, along with a theoretical curve.

Each point represents the results of a simulation using a particular

payoff function. These functions come from the four families illustrated

in figure 3, with plot symbols colored accordingly. Blue circles: equation

5 with d 5 1 and K5 10�12, 10�11, . . . 10�5. Yellow triangles: equation

5 with d 5 0.1 and K 5 5 � 10�12, 5 � 10�11, . . . 5 � 10�5.

Red squares: equation 5 with d 5 0.01 and K 5 2 � 10-11, 2 � 10�10,

. . . 2 � 10�4. Cyan diamonds: equation 6 with d 5 0.1 and K 5 10�7,

10�6, 10�5, 10�4. FIG. 5.—Basis for the shape of the relationship between expres-

sion level and evolutionary rate. Each curve corresponds to a particular

expression level and gives the relative evolutionary rate as a function of

effect size. Moving right to left, expression level increases by a factor of

two with each curve. (A) At intermediate expression levels, the total

evolutionary rate is approximately proportional to the area under the

curve. Doubling the expression level approximately halves the evolu-

tionary rate. (B) At high expression levels (narrow curves), the total

evolutionary rate falls more rapidly as expression level increases due to

the discrete nature of the distribution of effect sizes.
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Synonymous Codons

The analysis presented above does not consider selection

among synonymous codons. There are two reasons for con-
sidering this type of selection. First, it might affect the rela-

tionship between expression level and the rate of

nonsynonymous change. This effect turns out to be small

under the models of synonymous selection explored here.

Second, predictions may be made about additional relation-

ships, such as the relationship between synonymous and

nonsynonymous rate. Themodel analyzed here predicts sev-

eral such relationships that are observed empirically and pre-
dicted by a model of the MIM hypothesis.

In order to model a degenerate genetic code, I assume

that each of the 1,000 bits in the model protein sequence

is paired with an additional bit that is analogous to a fully

degenerate site in a coding sequence. In essence, a codon

is modeled as a pair of bit positions: a nonsynonymous po-

sition and a synonymous position. The synonymous position

affects either the efficiency of translation (and hence the
cost of expression) or translational accuracy (and hence

the mean specific activity of the protein produced). A 1

at the synonymous position corresponds to a preferred

(more efficiently or more accurately translated) codon

and a 0 to a nonpreferred codon.

To model selection for translational efficiency, I assume

that the cost factor c of equation 1 depends on the fraction

of optimal codons, Fop, as follows:

c5 Fopk1 þ ð1 � FopÞk0; ð7Þ

with k1 5 2/3 and k0 5 4/3. With these parameters, c 5 1

for an equal mix of preferred and nonpreferred codons

(Fop 5 1/2), and the cost of expression with Fop 5 1 (all

preferred codons) is half the cost of expression with
Fop 5 0 (all nonpreferred codons).

Figure 7a shows numerical predictions and simulation re-

sults for this model of selection for translational efficiency.

As the figure shows, the protein’s evolutionary rate (the non-

synonymous rate) again decreases with expression level. The

form of the relationship is slightly different. This reflects the

fact that the total cost of a protein increases less than lin-

early with its expression level becausemore highly expressed
genes havemore nearly optimal codon usage at equilibrium.

Figure 7a also shows that, as expected, the rate of synon-

ymous evolution decreases with expression level. The de-

crease in synonymous rate is fairly abrupt on the

logarithmic scale. This reflects the fact that the magnitude

of the selection coefficient is identical for all synonymous

changes. On a more realistic model, different synonymous

changes would have different effects on fitness and the de-
crease in synonymous rate with expression would be some-

what more gradual.

Figure 7b shows results under the assumption that the

synonymous site affects translational accuracy. Specifically,

it was assumed that a 0 at the synonymous site leads to

a 1% translational error at the corresponding amino acid

position, whereas a 1 yields error-free translation at that

position. Again both the nonsynonymous and synonymous
rates decrease with expression level. The relationship be-

tween nonsynonymous rate and expression level is largely

unchanged by the introduction of synonymous sites and

translational error. In fact the predicted relationship shown

in figure 7b was calculated without consideration of trans-

lational error. The decline in synonymous rate with expres-

sion level is more gradual than in figure 7a because there is
great variation in selection coefficient among synonymous
sites: those associated with more important amino acid

positions are more strongly selected for translational

accuracy.

Figure 8 shows the pairwise relationships among several

variables for both models of synonymous selection. Increas-

ing relationships are colored yellow and decreasing relation-

ships are colored cyan. These relationships may be

compared with those in Drummond and Wilke (2008). If
dS/dN is substituted for the transition:transversion ratio

(see Discussion), the signs of all ten pairwise relationships

are reproduced with either model of synonymous selection.

Discussion

The model presented here, which is similar to that proposed

by Gout et al. (2010), explains the negative correlation be-
tween expression level and protein evolutionary rate in

terms of selection for protein function. With the addition

of either of two models for selection on codon usage, sev-

eral other relationships that have been empirically observed

can be produced by the model.

FIG. 6.—Evolutionary rate and expression level for different

distributions of effect size. Predicted and observed rates are shown

for four assumptions about the distribution of effect sizes among

sequence positions. The distributions are specified in the text.
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The model assumes that there is a cost to expression and

that expression levels are approximately optimized by natu-

ral selection. Under these conditions, the marginal values of

all gene products will be identical, even if their total contri-
butions to fitness are very different. This principle of optimi-

zation is familiar in other contexts, such as ecology and

economics. One economics textbook (Gwartney et al.

2008, p. 422) sums it up as follows: ‘‘the consumer will max-

imize his or her satisfaction (or total utility) by ensuring that

the last dollar spent on each commodity yields an equal de-

gree of marginal utility.’’ As with commodities, so with gene

products. Loosely speaking, fitness is maximized when the
organism allocates costly expression such that the last mol-

ecule ‘‘spent’’ on each protein yields an equal fitness benefit.

A change to a protein’s sequence that decreases its function-
ality by a small fraction will, by assumption, have the same

effect on fitness as the loss of the same fraction of the pro-

tein. For a more highly expressed gene, this corresponds to

the loss of a larger number of approximately equally valu-

able protein molecules. Thus, selective constraints on pro-

tein sequences are stronger for more highly expressed

proteins.

Although cost plays a central role in themodel, the fitness
effect of a change to the protein sequence derives solely

from the resulting gain or loss of protein function, not from

a change in the total cost of expression. The sequence

change does not itself alter the expression level or the asso-

ciated cost, even though it may create selective pressure for

subsequent changes in expression level.

The correlation does not result from a simple direct effect

of expression level on evolutionary rate. If the expression
level of a gene were somehow held artificially high through-

out evolution, the consequence would not be a correspond-

ingly lower rate of protein evolution. In fact the opposite

would be true: the evolutionary rate would increase due

to relaxed selection on the more abundant protein. The

predicted relationship holds only when expression level is

optimized.

Although it is based on selection for function, the model
does not imply a relationship between a protein’s evolution-

ary rate and the contribution of the protein’s function to fit-

ness (fig. 4). It is therefore compatible with evidence that

there is little relationship between a protein’s evolutionary

rate and its importance to fitness, except perhaps through

their mutual correlation with expression level (Hurst and

Smith 1999; Pál et al. 2003; Rocha and Danchin 2004;

Drummond et al. 2006). This is so because the rate of se-
quence evolution under purifying selection depends mainly

on the fitness effects of small fractional changes to the

amount of function, and the effect of complete loss of a pro-

tein’s function is not directly relevant to this (the marginal

contribution to fitness is not determined by the total contri-

bution to fitness). Thus, evidence that a gene’s evolutionary

rate is not related to its functional importance is no reason to

abandon the hypothesis that selection for function is the
main constraint on protein sequence evolution.

Assumptions and Variations

The predictions of the model rest on several assumptions.

Although these assumptions plausibly hold for many genes,

some genes undoubtedly violate them. Such violations de-

serve consideration, but they do not invalidate the model as
an explanation of a general trend.

Certain assumptions were made about how a protein’s

sequence and its expression level together determine its

functional contribution to fitness. It was assumed that, ex-

cept for the cost of the additional protein, a genotype that

FIG. 7.—Synonymous and nonsynonymous rates. Predicted and

observed relationships between expression level and synonymous and

nonsynonymous evolutionary rates are shown for two assumptions

about selection for codon usage. (A) Selection for translational

efficiency. (B) Selection for translational accuracy.
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produces a large amount of relatively inactive protein is

equivalent to one that produces a smaller amount of corre-

spondingly more active protein. This assumption is embod-

ied in equation 1, where the specific activity appears only in

its product with expression level. Where stoichiometry is crit-

ical, this assumption may not hold. This assumption is likely

to be an excellent approximation for most enzymes, as sug-

gested by the usual approximations of enzyme kinetics, ac-
cording to which the reaction velocity depends on the

specific activity and the quantity of enzyme only through

their product. The model may apply even to cases where

stoichiometry is important. Suppose that the main way in

which changes to the protein sequence lead to loss of func-

tion is by causing some fraction of the protein to fail to fold

properly. Equation 1 may then apply because the quantity of

functional protein is proportional to the product of the frac-
tion of proper folding and the expression level.

It was also assumed that, although there are diminishing

returns for increases in a protein’s activity, additional activity

can only improve fitness (neglecting any cost of any addi-

tional protein). For many proteins, this will not be the case:

increasing the total activity beyond some point may de-

crease fitness, even if it comes at no cost in terms of protein

production. Still, even for such proteins the model may ap-

ply. Consider figure 1. It is necessary for the argument that

the cost-free fitness function—the blue curve—is increasing

in the vicinity of the optimal expression level. However, sup-

pose that this curve turns downward at some point far to the

right, as it might well do in the region to the right of the plot.
This will have no effect on the location of the expression op-

timum or the slope of the curve at that point. Nor would it

invalidate the linear approximation for small relative

changes in activity. It therefore has no effect on the conclu-

sion that the strength of selection is approximately propor-

tional to the expression level for mutations with small effect.

For some genes, however, selection may bring the total ac-

tivity to the vicinity of a peak in the payoff function, so that
the conclusions will not hold. Genes encoding regulatory

proteins may fall into this category.

These considerations suggest that the model will not ap-

ply to every gene. However, it need only apply to a significant

fraction of genes in order to explain the correlation between

FIG. 8.—Predicted and observed relationships among several variables. Relationships between pairs of variables (dN, dS, expression level, Fop, and

dS/dN) are shown for two models of selection for codon usage: a model of selection for translational efficiency (above and to the right of the main

diagonal) and a model of selection for translational accuracy (below and to the left of the main diagonal). Yellow coloring indicates an increasing

relationship, and cyan indicates a decreasing relationship.
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expression level and evolutionary rate, which is far from
perfect.

For genes to which the model applies, the form of the

relationship between expression level and evolutionary

rate will depend on how protein sequence maps to specific

activity. This mapping might be called the activity land-

scape (by analogy to the fitness landscape). The argument

illustrated in figure 1 tells us that the fitness effect of a small

change in specific activity depends, to a first approxima-
tion, only on the gene’s expression level. For any particular

activity landscape, the evolutionary rate will then be deter-

mined, approximately, by the expression level alone, as il-

lustrated in figure 3. However, differences in the nature of

the landscape could lead to different evolutionary rates

for genes with the same expression level. As illustrated

by figure 6, differences of this sort need not mean that

there is no correlation between expression level and evo-
lutionary rate. They would imply only that genes with the

same level of expression can differ in their evolutionary

rates. Some such variation among genes with similar

expression levels is allowed—indeed required—by the

imperfect correlation between expression level and evolu-

tionary rate. Differences of this sort would account for

a component of rate variation that is specific to ortholog

pairs but unconnected with expression level. According to
one analysis (Wolf et al. 2010), a substantial fraction of

rate variation is of this type.

Nature of the Cost

An obvious cost of gene expression is the metabolic cost of

the protein. Protein constitutes approximately half of the dry

weight of bacteria, and polymerization of amino acids con-
sumes approximately half of the ATP equivalents required

for growth (Gottschalk 1986, p. 38–39; Neidhardt et al.

1990, p. 4). Furthermore, increasing the expression level

of a protein consumes some of the protein synthetic capac-

ity of the cell, decreasing the overall rate of protein synthesis

or requiring increased production of the expensive transla-

tional apparatus. To the extent that codon bias is the result

of selection for translational efficiency, it reflects this cost.
Other costs of expression might also be invoked, with

similar consequences. These include harmful effects of

the protein product, such as the toxicity of misfolded pro-

teins invoked by the MIM hypothesis. If this cost does not

vary as the protein sequence changes, the model presented

here applies fully; selective constraints on the protein se-

quence reflect selection for protein function, and the role

of toxicity is only to affect the optimal expression level. A
more general model could allow changes to the protein se-

quence to affect both the protein’s function and the cost of

expression.

Because different proteins have different half-lives, pro-

teins synthesized at the same rate may be present at

different steady-state levels. We may ask which of the
two quantities—the rate of a protein’s synthesis or the pro-

tein’s concentration—is predicted to be more closely related

to its evolutionary rate. This question is particularly impor-

tant because of an argument advanced by Drummond

et al. (2005) concerning the correlation between expression

level and evolutionary rate. They argue against explanations

that are based on selection for protein function on the

grounds that the rate of synthesis of a yeast protein (as in-
ferred from mRNA abundance) is a better predictor of its

evolutionary rate than is the protein’s abundance. This argu-

ment rests on the assumption that any explanation based on

selection for function would imply that protein concentra-

tion is the better predictor. The model presented here sug-

gests otherwise. To the extent that the cost of expression is

dominated by such factors as the energetic cost of amino

acid polymerization and the use of the translational appa-
ratus, as appears to be the case for E. coli (Stoebel et al.
2008), the model predicts that the rate of synthesis will

be the better predictor of evolutionary rate. The consequen-

ces of the cost of the amino acids are somewhat more dif-

ficult to assess; they depend on how quickly the constituent

amino acids of a short-lived protein are made available for

reuse (they might, e.g., linger in the form of short peptides).

Different nonmetabolic costs would make different predic-
tions. In short, the model presented here cannot be rejected

on the basis of the argument made by Drummond et al.

The cost of a given amount of expression may vary with

cell type, developmental stage, and environmental condi-

tions. The strength of selection on protein sequence implied

by expression under these different conditions would vary

accordingly. Suppose, for example, that the cost of expres-

sion is particularly high in neurons, whether due to a greater
sensitivity to toxic effects of misfolded proteins or to some

other factor. The model would then explain the observation

(Drummond and Wilke 2008) that expression in neurons is

more strongly associated with low evolutionary rate than is

expression in other tissues.

Synonymous Codons

A simplified model of a degenerate genetic code allowed

exploration of selection for codon choice. The effects of

both selection for translational efficiency (Ikemura 1981)

and selection for translational accuracy (Akashi 1994) were

considered. As figure 7 demonstrates, the rate of synony-

mous substitution decreases as expression level increases

with either type of selection. The reason for this behavior

in the presence of selection for efficiency is familiar: a codon
that causes translation to be more costly will have a greater

fitness cost if it is translated more frequently (Sharp and Li

1986). With selection for accuracy, the synonymous rate de-

creases with expression level for the same reason that the

nonsynonymous rate decreases: changes to the protein

Evolutionary Rate and the Cost of Expression GBE

Genome Biol. Evol. 2:757–769. doi:10.1093/gbe/evq059 Advance Access publication September 30, 2010 767



sequence tend to be more unfavorable for highly expressed
proteins, whether they are due to nonsynonymous changes

or to translational errors.

Synonymous selection has only a small effect on nonsy-

nonymous selection. As figure 7a shows, selection for trans-

lational efficiency causes the nonsynonymous rate to fall off

less rapidly at high expression levels. Codon usage tends to

be more favorable at higher expression levels, so the total

cost of expression, and hence the strength of selection
for specific activity, increases less rapidly with expression

level than it would without selection for codon choice.

When codon choice affects translational accuracy, the effect

on the nonsynonymous rate is negligible. Because the trans-

lational error rate is always much smaller than one, the error

rate has little effect on the consequences of a nonsynony-

mous change. As a result, the predicted nonsynonymous

rates shown in figure 7b are in excellent agreement with
the simulation results despite the fact that they neglect

translational errors.

Drummond and Wilke (2008) considered the pairwise

relationships among five variables: expression level; dN
(proportional to the nonsynonymous rate); dS (propor-

tional to the synonymous rate); the transition to transver-

sion ratio, ts/tv; and the fraction of optimal codons, Fop.
The directions of empirical correlations among these vari-
ables were reproduced by their simulations of a model of

the MIM hypothesis. The simple binary model used here

lacks a distinction between transitions and transversions.

However, according to Drummond and Wilke (2008), ts/

tv correlates with the other variables only because it is

a proxy for the ratio of synonymous to nonsynonymous

changes. Thus, if we substitute dS/dN for transition:trans-

version ratio, we can consider all ten pairwise relationships.
As figure 8 shows, the model presented here produces re-

lationships with exactly the same signs as those observed

by Drummond and Wilke (2008), whether selection on co-

don choice is driven by translational efficiency or transla-

tional accuracy. Thus, selection for protein function can

reproduce all ten of the pairwise relationships produced

by simulations of a model of the MIM hypothesis and ob-

served empirically.
The directions of these relationships can be understood in

terms of the effect of expression level on each of the other

four variables. That dN is a decreasing function of expression

level is the main prediction of the model. If the strength of

synonymous selection increases with expression level, as it

does under the models considered here, then dS will de-

crease with expression level and Fop will increase. If dN is

more sensitive to expression level than is dS, dS/dN will de-
crease with expression level, as it does in figure 8. The di-

rections of all the relationships shown in figure 8 then

follow. These relationships can likely be produced by a wide

variety of models that predict a negative correlation be-

tween expression level and protein evolutionary rate.

Conclusions

The negative correlation between expression level and pro-
tein evolutionary rate can be explained by a model based on

selection for protein function. This force has generally been

considered to be the main constraint on protein evolution

and must constrain protein sequences to some extent.

The model can, like the MIM hypothesis, reproduce several

empirically observed relationships. Selection for function

should not be rejected as the main constraint on protein

evolution or the dominant determinant of protein evolution-
ary rate.
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