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ABSTRACT: Chiral amino acid-derived formamides represent one of the most versatile components in multicomponent reactions.
Herein, we describe a facile synthesis of Nβ-protected amino sulfenyl methyl formamides and sulfonyl methyl formamides via the
Mannich reaction of Nα-protected amino alkyl thiols followed by oxidation using 3-chloroperbenzoic acid (m-CPBA). This protocol
is applicable to a wide range of Fmoc- and Cbz-protected amino acids. Notably, the reaction provides high yield and retains the
stereochemistry of the chiral center of the starting component.

■ INTRODUCTION

The formamide group has been considered as an important
synthon for the synthesis of isocyanides,1 which has shown
diverse applications in isocyanide-based multicomponent
reactions (IMCRs).2 A massive variety of formamides and
their corresponding isocyanides3 have been investigated,
thereby greatly expanding the capacity of molecular diversity
through IMCRs.4 Some isocyanides are less stable and possess a
foul smell compared to formamides, and therefore, the ability to
perform one-pot dehydration/MCR would significantly widen
the versatility and scope of formamides.5 This protocol proved
to be particularly valuable when the desired isocyanides were
inaccessible. In this context, several groups have made a
significant contribution for one-pot dehydration/MCR without
the isolation of isocyanides or sensitive aldehydes.6 It is
important to note that amino acid- and peptide-derived
formamides and its isocyanides have gained attention in
MCRs for medicinal chemistry and drug discovery applications.7

We also explored the C-terminal modification of amino acids to
prepare formamides and isocyanides (Figure 1) and employed
in MCRs for the construction of a new class of peptidomi-
metics.8 With a view toward enabling a new class of formamides
as well as isocyanides, we considered that sulfonyl formamides
derived from chiral amino acids (Figure 1b) might be useful for
generating a novel class of peptidomimetics. In this context,
impressive applications of para-tosylmethylisocyanide (Tos-
MIC)9 inspired us.
TosMIC serves as a precursor for the synthesis of several drug

intermediates and pharmacologically active compounds.10 Its
utility in the synthesis of nitriles, aldehydes, ketones, alkanes,

cyclophanes, and a large number of natural products is known.11

The solid-phase version of TosMIC has also been utilized for the
synthesis of various heterocycles.12 More importantly, chiral
TosMIC analogues have been synthesized and employed for the
synthesis of optically active compounds.13 In addition, the
incorporation of sulfur into a given biomolecule can dramatically
modify its physical and biological properties, thereby resulting in
the enhancement of the stability against proteolysis and improve
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Figure 1. Variations of amino acid-derived formamides.
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bioavailability.14 Certain other properties, such as receptor
selectivity or potency, often can be substantially improved. As a
result, the development of novel sulfur-based unnatural amino
acids and peptidomimetics within a peptide framework
constitutes a prime goal of interest in the drug discovery space.
In this regard, we report a novel class of amino acid-derived

sulfonyl methyl formamides from the corresponding thiol
through acid-catalyzed three-component Mannich type reaction
followed by oxidation under mild conditions in a two-step
process.

■ RESULTS AND DISCUSSION
We had described an efficient protocol for the synthesis of N-
protected amino alkyl thiols and demonstrated their multiple
applications for the construction of sulfur-containing peptido-
mimetics.15 In the proposed protocol, the sulfonyl methyl
formamides were synthesized from corresponding N-protected
amino alkyl thiols, which were prepared from our previously
reported protocol.15a All the N-protected amino alkyl thiols
could be stored for a long time under an inert atmosphere.
Initially, the reaction was commenced using Cbz-Phe-

ψ[CH2SH] as a model substrate for optimizing the reaction
conditions. Cbz-Phe-ψ[CH2SH] was treated with formamide
(1.0 equiv) and para formaldehyde (1.0 equiv) in tetrahydrofur-
an (THF) and stirred at rt. The reaction failed to proceed even
after 4 h of stirring, leaving behind the reactant as it is. Further,
the investigation of the use of acid catalysts was carried out.
Initially, the reaction was performed using PhCOOH and turned
to be unproductive, although liquid chromatography−mass
spectrometry data provided the formation of 2a in trace
amounts. As shown in Table 1, when 20 mol % of CF3COOH
was used, a low conversion (12%) of 2a was observed. Next,
without varying the equivalents of formamide and paraformal-
dehyde, PhSO3H was used wherein a 28% yield of 2a was
observed. Thereafter, the reaction was carried out at 90 °C in
THF and the equivalents of formamide and paraformaldehyde
when increased; the progressive yield of 2a was noticed (Table

1, entry 7). The preliminary optimization indicated the influence
of temperature on reaction; in other words, no increase in yield
was recorded when the reaction was carried at rt to 60 °C (Table
1, entries 2−6). These observations also inferred that the
increase in the acidic strength of a catalyst led to a gradual
improvement in the yield, as reflected in Table 1 until entry 7.
When none of the above acid catalysts was found efficient in
conversion to 2a, we turned out to use 98% HCOOH. Using 30
mol % of HCOOH, stoichiometric amounts of both formamide
and paraformaldehyde were increased to 4.0 equiv, and the
reaction was carried out at reflux in toluene till the completion.
The reaction proceeded well to afford 2a in moderate to good
yield. Among the reactions carried out with HCOOH, the
optimized condition for the efficient conversion was found when
5.0 equiv of formamide and 4.0 equiv of paraformaldehyde were
used which led to the highest yield (90%) of 2a without any
formation of noticeable impurities (Table 1, entry 10). Further,
when the reaction was carried out with increased equivalents of
formamide and formic acid, no improvement in the yield was
observed. Alongside, different commonly used solvents, such as
dichloromethane, CH3Cl, THF, CH3CN, and toluene, were
examined; however, toluene was found beneficial to the reaction
to furnish the target molecule 2a in good yield by a one-pot
manner and allowing complete solubility of Nα-protected alkyl
thiol.
This protocol could be used for the gram-scale synthesis, as

the desired compound 2a was isolated in 84% yield (1.29 g) for
1.3 g of the starting material. All the title compounds were
obtained as stable solids and could be stored at room
temperature for several months.
To represent the generality and scope of the optimized

protocol, various Fmoc- and Cbz-protected amino alkyl thiols
were investigated. As shown in Scheme 1, all the thiols were valid
substrates and smoothly proceeded to afford corresponding
sulfenyl methyl formamide (2) in good to excellent yields. Even
sterically constrained residues such as Phe, Phg, Val, and Ile were
well tolerated without demanding additional time for the
completion of the reaction.
Next, we set out to carry out the oxidation of sulfenyl to

sulfone using m-CPBA as an oxidizing agent. Thus, a reaction of
sulfenyl methyl formamides 2 with 2.0 equiv of m-CPBA in dry
CH2Cl2 at 0 °C afforded the corresponding formamides 3 in
excellent yield in an hour (Scheme 2).
To check the potential loss of chiral integrity during the

transformation of the title compounds, chiral reversed-phase
high-performance liquid chromatography (RP-HPLC) analysis
was carried out employing the Phe residue. Initially, the
racemization study was carried out using an enantiomeric
mixture of 2a and 2a*, which showed well-separated twin peaks
at 23.25 and 28.12min, respectively (Figure 2, ii). This indicated
the presence of two enantiomers and used the same as the
reference racemate. The sample 2a gives a single peak at
retention time 24.29 min (Figure 2, i), which revealed the
retention of the stereochemistry of sample 2a with respect to
Figure 2, ii. These results indicated that the protocol was devoid
of racemization. Further, the oxidized product sulfonyl methyl
formamide was also screened. A single peak appeared for 3a at
retention time 19.42 min (Figure 2, iii), and a mixture of 3a and
3a* showed two distinct peaks with a significant difference at
19.12 and 19.86 min, respectively (Figure 2, iv). These data
inferred that optical homogeneity is maintained throughout the
protocol (Figure 2).

Table 1. Optimization of Reaction Conditions for the
Synthesis of Sulfenyl Methyl Formamidea

s. no catalyst (mol %)
NH2CHO
(equiv)

(CH2O)n
(equiv)

yield
(%)b

1 1.0 1.0
2 PhCOOH (10) 1.0 1.0 trace
3 PhCOOH (20) 1.0 1.0 trace
4 CF3COOH (20) 1.0 1.0 12
5 PhSO3H (20) 1.0 1.0 28
6 PhSO3H (20) 2.0 2.0 36
7 PhSO3H (30) 3.0 3.0 54
8 HCOOH (30) 3.0 3.0 74
9 HCOOH (30) 4.0 4.0 82
10 HCOOH (30) 5.0 4.0 90
11 HCOOH (30) 6.0 4.0 89
12 HCOOH (40) 5.0 4.0 88

aEntries 2−6 = reaction carried out at 60 °C. Entries 7−12 = reaction
carried out at 90 °C. bYield obtained after column chromatography.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://dx.doi.org/10.1021/acsomega.0c05419
ACS Omega 2021, 6, 4680−4686

4681

https://pubs.acs.org/doi/10.1021/acsomega.0c05419?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.0c05419?fig=tbl1&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://dx.doi.org/10.1021/acsomega.0c05419?ref=pdf


A plausible mechanism based on the experimental results
obtained during the reaction is depicted in Scheme 3. The
proposed mechanism occurs via a Mannich-type three-
component acid-catalyzed fashion. The reaction proceeds
through the formation of key intermediate protonated imino
formamide (I) by the reaction of paraformaldehyde and
formamide in the presence of formic acid. Further, thiol as a
Mannich donor attacks the imino carbon of the intermediate (I)
to furnish sulfenyl methyl formamide (II). In the next step,
sulfonyl methyl formamide (III) forms by the oxidation of

sulfenyl methyl formamide by a well-known oxidizing agent m-
CPBA.

■ CONCLUSIONS

In conclusion, a straightforward procedure has been described
for the preparation of a series of Nβ-protected amino sulfonyl
methyl formamides by a two-step protocol. The present
procedure can afford Nβ-protected amino sulfenyl methyl
formamides and Nβ-protected amino sulfonyl methyl forma-
mides in good to excellent yields. These formamides could be

Scheme 1. List of Nβ-Protected Amino Sulfenyl Methyl Formamides Synthesized
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employed for MCR for the construction of novel peptidomi-
metic molecules.

■ EXPERIMENTAL SECTION

General Information. All reagents were obtained from
commercial suppliers and used without further purification.
Thin-layer chromatography (TLC) experiments were carried
out using precoated silica gel 60F254. HRMS spectra were
recorded on a micromass Q-TOF spectrometer. 1H and 13C
NMR spectra were recorded on a Bruker AMX 400 MHz and
100 MHz spectrometer, respectively, in DMSO-d6 and analyzed
using MestrNova software and reported as chemical shifts (δ) in
parts per million (ppm). The coupling constants were reported
in hertz (Hz). Column chromatography for purification of
products was performed on silica gel (100−200 mesh). The RP-
HPLC experiments were carried out on a Agilent 1260

instrument (chiral column: amylose-2 and cellulose-1, pore
size: 5 μm, diameter × length: 4.6 × 250 mm). The melting
points of the compounds were determined on a VEEGO
(model: VMP-DS) melting point apparatus.

General Procedure for Nβ-Protected Amino Sulfenyl
Methyl Formamide. To a stirred solution of Nβ-protected
amino thiol (1.0 equiv) in toluene (10 mL), formamide (5.0
equiv), para formaldehyde (4.0 equiv), and formic acid (30 mol
%) were added, and the solution was refluxed for 4 h. After the
completion of the reaction (monitored by TLC), the mixture
was cooled to room temperature, and the solvent was vacuum
evaporated and diluted with EtOAc, washed with water (2 × 10
mL) and brine (10 mL), dried over Na2SO4, filtered, and
concentrated under reduced pressure. The residue was purified
by column chromatography (silica gel 100−200 mesh) with 4:6

Scheme 2. List of Nβ-Protected Amino Sulfonyl Methyl Formamides Synthesized
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ethyl acetate and hexane to afford the corresponding sulfenyl
methyl formamide.

General Procedure for Nβ-Protected Amino Sulfonyl
Methyl Formamide. To a stirred solution of Nβ-protected

Figure 2. RP-HPLC profiles of DL & L Cbz-Phe residue sulfenyl and sulfonyl methyl formamides.
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amino sulfenyl methyl formamide (1.0 equiv) in CH2Cl2, m-
CPBA (2.0 equiv) was added at 0 °C, and the solution was
stirred for 1 h at 0 °C. After completion of the reaction
(monitored by TLC), the solvent was vacuum evaporated and
diluted with EtOAc, washed with water (2 × 10 mL) and brine
(10 mL), dried over Na2SO4, filtered, and concentrated under
reduced pressure. The residue was purified by column
chromatography (silica gel 100−200 mesh) with 5:5 ethyl
acetate and hexane to afford the corresponding title compounds.
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