CRYSTALLOGRAPHIC COMMUNICATIONS

Crystal structure of trihydrogen bis\{[1,1,1-tris(2-oxidoethylaminomethyl)ethane]cobalt(III)\} trinitrate

Waqas Sethi, Heini V. Johannesen, Thorbjørn J. Morsing, Stergios Piligkos and Høgni Weihe*
Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen \varnothing, Denmark. *Correspondence e-mail: weihe@kiku.dk

Received 7 December 2015; accepted 22 December 2015

Edited by V. V. Chernyshev, Moscow State University, Russia

The title compound, $\left[\mathrm{Co}_{2}(L)_{2}\right]^{3+} \cdot 3 \mathrm{NO}_{3}{ }^{-}$[where $L=$ $\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NHCH}_{2} \mathrm{CH}_{2} \mathrm{OH}_{1 / 2}\right)_{3}$], has been synthesized from the ligand 1,1,1-tris(2-hydroxyethylaminomethyl)ethane. The cobalt(III) dimer has an interesting and uncommon O $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding motif with the three bridging hydroxy H atoms each being equally disordered over two positions. In the dimeric trication, the octahedrally coordinated $\mathrm{Co}^{\mathrm{III}}$ atoms and the capping C atoms lie on a threefold rotation axis. The N atoms of two crystallographically independent nitrate anions also lie on threefold rotation axes. $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the complex cations and nitrate anions leads to the formation of a threedimensional network structure. The compound is a racemic conglomerate of crystals containing either D or L molecules. The crystal used for this study is a D crystal.

Keywords: crystal structure; cobalt(III) complex; 1,1,1-tris(2-hydroxyethylaminomethyl)ethane; hydrogen-bonding motif; racemic conglomerate.

CCDC reference: 1443816

1. Related literature

For the crystal structure of the related cis-aquahydroxido complex of chromium(III), see: Ardon et al. (1987).

2. Experimental

2.1. Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{25.5} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{3}$	$Z=3$
$M_{r}=799.57$	Mo $K \alpha$ radiation
Trigonal, $R 32$	$\mu=1.09 \mathrm{~mm}^{-1}$
$a=8.543(4) \AA$	$T=122 \mathrm{~K}$
$c=39.11(2) \AA$	$0.31 \times 0.25 \times 0.15 \mathrm{~mm}$

2.2. Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
32729 measured reflections
1357 independent reflections
1263 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.074$
$T_{\text {min }}=0.601, T_{\max }=0.746$

2.3. Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.048$
$S=0.81$
1357 reflections
81 parameters
3 restraints
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.24 \mathrm{e}^{\circ} \AA^{-3}$
$\Delta \rho_{\min }=-0.43$ e \AA^{-3}
Absolute structure: Flack x determined from 486 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons \& Flack, 2004)
Absolute structure parameter: 0.011 (8)

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.86(1)$	$1.59(1)$	$2.445(2)$	$172(4)$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 2$	0.98	2.09	$3.042(3)$	163

Symmetry code: (i) $y, x,-z+1$.
Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: olex2.solve (Bourhis et al., 2015); program(s)

data reports

used to refine structure: SHELXL2013 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Acknowledgements

The authors thank Professor Jesper Bendix for help with the graphics for the Scheme.

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5501)

References

Ardon, M., Bino, A. \& Michelsen, K. (1987). J. Am. Chem. Soc. 109, 19861990.

Bourhis, L. J., Dolomanov, O. V., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2015). Acta Cryst. A71, 59-75.

Bruker (2012). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2014). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Parsons, S. \& Flack, H. (2004). Acta Cryst. A60, s61.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2015). E71, m275-m276 [doi:10.1107/S2056989015024664]

Crystal structure of trihydrogen bis\{[1,1,1-tris(2-oxidoethylaminomethyl)ethane]cobalt(III)\} trinitrate

Waqas Sethi, Heini V. Johannesen, Thorbjørn J. Morsing, Stergios Piligkos and Høgni Weihe

S1. Comment

We present here a new hexadentate ligand which, when coordinated to a metal center, facilitates dimer formation through H-bonding (Fig. 1, Table 1). This type of structural motif is rare, but some examples exist in the literature, for example cis-aqua-hydroxo complexes of chromium(III) (Ardon et al., 1987).
The ligand, 1,1,1-tris(2-hydroxyethylaminomethyl)ethane, is synthesized from 1,1,1-tris (bromomethyl)ethane and ethanolamine and purified by destillation and column chromatography producing the trihydrochloride. Reaction of a suitable metal salt such as $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and oxidation with hydrogen peroxide affords the title compound (the nitrate salt is much less soluble than the chloride salt).
The title compound, large pink hexagonal single crystals, crystalizes in the trigonal space group $R 32$ with the Co-Co axis along the trigonal axis. The compound synthesized is racemic, but upon crystallization it resolves spontaneously to produce a racemic conglamorate. The crystal mounted contains the Δ-form as indicated by a Flack parameter of 0.011 (8) (if the structure is inverted, R1 doubles).
The coordination geometry around the Co ions are close to octahedral with the Col— N 1 distance being 1.95111 (18) \AA and the $\mathrm{Co} 1 — \mathrm{O} 1$ distance being 1.9314 (14) \AA. The $\mathrm{O} 1-\mathrm{Co1}-\mathrm{O} 1$ angles are 91.01 (6) ${ }^{\circ}$ and the $\mathrm{N} 1-\mathrm{Co1}-\mathrm{N} 1$ angles are 92.38 (7) ${ }^{\circ}$. The three bridging H -atoms could not be completely located in the Fourier map and were added with a riding model. However, because of the high symmetry and disorder, six equivalent H atom positions exist with the occupancies fixed to 0.5 . ORTEP plot in Fig. 1 shows all six possible positions. Solving the structure in a space group of lower symmetry does not resolve three H atoms in the trigonal prism formed by the six oxygen atoms, and we take this as a sign that the three H -atoms are disordered over the six positions. The Co - Co distance in the dimer, which is of interrest in regards to future analogues with paramagnetic metal ions, is 4.607 (2) \AA. This could give interesting magnetic characteristics for the metal ions like $\mathrm{Cr}(\mathrm{III})$ and Mn (III).

S2. Experimental

Synthesis of the ligand: 1,1,1-tris(bromomethyl)- ethane ($60 \mathrm{~g}, 0,20 \mathrm{~mol}$) was dissolved in ethanolamine ($200 \mathrm{ml}, 3,3$ mol) in a flask fitted with a condenser and a nitrogen in and outlet. After the system was flushed with nitrogen 10-15 min. the mixture was refluxed $\left(170^{\circ} \mathrm{C}\right)$ for 4 h under continued nitrogen flow. The result is a clear pale yellow oil. To remove surplus ethanolamine the reaction mixture was azeotropically distilled using Chlorobenzene (b.p. at approx. 128 ${ }^{\circ} \mathrm{C}$). After approximately one week ethanolamonium bromide crystallizes and can be removed by filtration. The resulting oil was disolved in $1 M \mathrm{HCl}$ is put on a cation exchange column (AG $50 \mathrm{~W}-\mathrm{X} 2$ cation exchange resin ($\mathrm{H} \pm$ form), $5 \times 50 \mathrm{~cm}$) and washed with copious amounts of water. The column is then eleuted with $1 M \mathrm{HCl}$ followed by $2 M \mathrm{HCl}$ to remove excess ethanolamine. Finally, the column was eluted with $3 M \mathrm{HCl}$ to isolate the product. The 3 M HCl eluate was evaporated to dryness to get the product as the hydrochloride salt (an oil). The yield was around $40-50 \%$. 1 H NMR

supporting information

$\left(\mathrm{D}_{2} \mathrm{O}\right): \delta=1.03\left(3 \mathrm{H},-\mathrm{CH}_{3}\right), 2.94\left(6 \mathrm{H},\left\{-\mathrm{CH}_{2}\right\}_{3}\right), 3.05\left(6 \mathrm{H},\left\{-\mathrm{CH}_{2}\right\}_{3}\right), 3.52\left(6 \mathrm{H},\left\{-\mathrm{CH}_{2}\right\}_{3}\right)$ p.p.m..
$\mathrm{C}_{11} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{3} \cdot 3 \mathrm{HCl}^{-10 \mathrm{H}_{2} \mathrm{O}(535.9): \text { calcd. C } 24.65 \text {, } \mathrm{N} 7.84 \text {; found C } 24.88 \text {, } \mathrm{N} 7.91 . ~ . ~ . ~}$
Synthesis of the title compound: $3 \mathrm{~g}(10 \mathrm{mmol}) \mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}{ }^{2} 6 \mathrm{H}_{2} \mathrm{O}$ is dissolved in 10 ml water. $5 \mathrm{~g}(10 \mathrm{mmol})$
$\mathrm{CH}_{3} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{NHC}_{2} \mathrm{H}_{4} \mathrm{OH}\right)_{3} \cdot 3 \mathrm{HCl}^{\cdot} 10 \mathrm{H}_{2} \mathrm{O}$ is dissolved in 10 ml water and added dropwise to the CoII solution. $0.6 \mathrm{~g}(6$ mmol) trimethylamine is also added to the reaction mixture. Concentrated $\mathrm{H}_{2} \mathrm{O}_{2}$ is added dropwise to the reaction mixture until a red powder precipitates. The red powder can be recrystallized from water. Yield: $1.77 \mathrm{~g}(45 \%) . \mathrm{Co}_{2} \mathrm{H}_{45} \mathrm{C}_{22} \mathrm{~N}_{9} \mathrm{O}_{15}$ (793.518): calcd. C 33.30 , N 15.89; found C 33.31, N 15.07 .

S3. Refinement

H atoms were geometrically positioned and refined as riding. The hydroxy atom H 1 was placed in the calculated position with occupncy fixed to $1 / 2$, and refined with bond restraint of $\mathrm{O}-\mathrm{H}=0.87$ (1) \AA.

Figure 1
The molecular structure of the dimer cation showing the atomic labels for non-carbon atoms and 50% probability displacement ellipsoids [symmetry codes: (i) $-y, x-y, z$; (ii) $-x+y,-x, z$]. H atoms have been removed for clarity, except for the bridging hydroxy H atoms, each of which is disordered over two positions. Dashed lines denote hydrogen bonds.

Trihydrogen bis\{[1,1,1-tris(2-oxidoethylaminomethyl)ethane]cobalt(III)\} trinitrate

Crystal data

$\left[\mathrm{Co}_{2}\left(\mathrm{C}_{11} \mathrm{H}_{25.5} \mathrm{~N}_{3} \mathrm{O}_{3}\right)_{2}\right]\left(\mathrm{NO}_{3}\right)_{3}$
$M_{r}=799.57$
Trigonal, R32
$a=8.543$ (4) \AA
$c=39.11(2) \AA$
$V=2472(3) \AA^{3}$
$Z=3$
$F(000)=1260$

Data collection

Bruker APEXII CCD

diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
$T_{\min }=0.601, T_{\max }=0.746$
32729 measured reflections
$D_{\mathrm{x}}=1.611 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 6958 reflections
$\theta=2.8-28.1^{\circ}$
$\mu=1.09 \mathrm{~mm}^{-1}$
$T=122 \mathrm{~K}$
Prism, pink
$0.31 \times 0.25 \times 0.15 \mathrm{~mm}$

1357 independent reflections
1263 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.074$
$\theta_{\text {max }}=28.1^{\circ}, \theta_{\text {min }}=2.8^{\circ}$
$h=-11 \rightarrow 11$
$k=-11 \rightarrow 11$
$l=-50 \rightarrow 51$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.021$
$w R\left(F^{2}\right)=0.048$
$S=0.81$
1357 reflections
81 parameters
3 restraints
Primary atom site location: iterative
Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.003$
$\Delta \rho_{\text {max }}=0.24 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.43$ e \AA^{-3}
Absolute structure: Flack x determined from 486 quotients $\left[\left(I^{+}\right)-\left(I^{-}\right)\right] /\left[\left(I^{+}\right)+\left(I^{-}\right)\right]$(Parsons \& Flack, 2004)
Absolute structure parameter: 0.011 (8)

Special details

Experimental. Absorption correction: SADABS2014/3 (Bruker, 2014) was used for absorption correction. wR2(int) was 0.1434 before and 0.0855 after correction. The Ratio of minimum to maximum transmission is 0.8053 . The $\lambda / 2$ correction factor is Not present.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Co1	0.0000	$0.17219(17)$	$0.19761(18)$	$0.55889(2)$	$0.00936(12)$
O1	$0.176(5)$	$0.194(3)$	$0.5089(3)$	$0.0118(3)$	
H1	0.0000	0.0000	$0.67637(7)$	0.018^{*}	0.5
C5	0.6667	0.3333	$0.57385(6)$	$0.0116(5)$	
N2	$0.54318(19)$	$0.3734(2)$	$0.57427(4)$	$0.0237(4)$	
O2	$0.1892(3)$	$0.0424(3)$	$0.62458(4)$	$0.0143(4)$	
C3					

H3A	0.2763	0.1666	0.6304	0.017^{*}
H3B	0.2231	-0.0352	0.6367	0.017^{*}
N1	$0.1977(2)$	$0.0158(2)$	$0.58647(4)$	$0.0115(3)$
H1A	0.3088	0.1208	0.5781	0.014^{*}
C2	$0.2123(3)$	$-0.1482(3)$	$0.57812(4)$	$0.0133(4)$
H2A	0.1193	-0.2535	0.5900	0.016^{*}
H2B	0.3295	-0.1298	0.5849	0.016^{*}
C4	0.0000	0.0000	$0.63662(7)$	$0.0130(6)$
C1	$0.1742(4)$	$0.3620(2)$	$0.53957(4)$	$0.0144(4)$
H1B	0.0776	0.3682	0.5278	0.017^{*}
H1C	0.2885	0.4659	0.5330	0.017^{*}
N3	0.3333	0.6667	0.6667	$0.0389(11)$
O3	0.3333	$0.5219(4)$	0.6667	$0.0790(12)$
H5	$-0.123(2)$	$-0.032(3)$	$0.6841(4)$	$0.008(5)^{*}$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.00673(14)$	$0.00673(14)$	$0.01463(19)$	$0.00336(7)$	0.000	0.000
O1	$0.0113(7)$	$0.0081(7)$	$0.0151(6)$	$0.0042(6)$	$0.0011(5)$	$0.0002(5)$
C5	$0.0201(11)$	$0.0201(11)$	$0.0129(14)$	$0.0100(6)$	0.000	0.000
N2	$0.0084(8)$	$0.0084(8)$	$0.0180(11)$	$0.0042(4)$	0.000	0.000
O2	$0.0130(8)$	$0.0180(9)$	$0.0423(8)$	$0.0095(8)$	$-0.0007(6)$	$0.0011(6)$
C3	$0.0134(10)$	$0.0152(10)$	$0.0144(8)$	$0.0072(8)$	$-0.0034(7)$	$-0.0018(7)$
N1	$0.0107(9)$	$0.0098(8)$	$0.0146(7)$	$0.0055(7)$	$0.0000(6)$	$0.0003(6)$
C2	$0.0104(11)$	$0.0115(11)$	$0.0213(9)$	$0.0081(10)$	$-0.0001(7)$	$0.0014(7)$
C4	$0.0129(9)$	$0.0129(9)$	$0.0133(13)$	$0.0064(5)$	0.000	0.000
C1	$0.0145(12)$	$0.0071(8)$	$0.0211(8)$	$0.0050(10)$	$0.0012(9)$	$0.0014(6)$
N3	$0.0359(18)$	$0.0359(18)$	$0.045(3)$	$0.0179(9)$	0.000	0.000
O3	$0.087(3)$	$0.0450(14)$	$0.119(3)$	$0.0435(14)$	$-0.060(2)$	$-0.0300(10)$

Geometric parameters ($A,{ }^{\circ}$)

Col-O1 ${ }^{\text {i }}$	1.9313 (14)	C3-N1	1.515 (2)
Col-O1 ${ }^{\text {ii }}$	1.9313 (14)	C3-C4	1.543 (2)
Co1-O1	1.9314 (15)	N1-H1A	0.9800
Col-N1	1.9511 (17)	$\mathrm{N} 1-\mathrm{C} 2$	1.503 (3)
Col-N1 $1^{\text {ii }}$	1.9511 (18)	$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9700
Col-N1 ${ }^{\text {i }}$	1.9511 (17)	C2-H2B	0.9700
O1-H1	0.861 (12)	$\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	1.523 (2)
O1-C1	1.436 (2)	$\mathrm{C} 4-\mathrm{C} 3{ }^{\text {ii }}$	1.543 (2)
C5-C4	1.555 (4)	C4-C3 ${ }^{\text {i }}$	1.543 (2)
C5-H5	0.987 (18)	$\mathrm{C} 1-\mathrm{C} 2^{\mathrm{i}}$	1.523 (2)
$\mathrm{N} 2-\mathrm{O} 2$	1.2612 (16)	C1-H1B	0.9700
$\mathrm{N} 2-\mathrm{O} 2^{\text {iii }}$	1.2612 (16)	C1-H1C	0.9700
$\mathrm{N} 2-\mathrm{O} 2{ }^{\text {iv }}$	1.2612 (16)	N3-O3 ${ }^{\text {- }}$	1.237 (3)
C3-H3A	0.9700	N3-O3	1.237 (3)
C3-H3B	0.9700	N3-O3 ${ }^{\text {vi }}$	1.237 (3)

$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Col-O1}{ }^{\text {ii }}$	91.01 (6)	Col-N1-H1A	106.7
O 1 - $\mathrm{Co} 1-\mathrm{O} 1$	91.01 (6)	C3-N1-Col	116.71 (12)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Co} 1-\mathrm{O} 1$	91.01 (6)	C3-N1-H1A	106.7
$\mathrm{O} 1{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 1^{\mathrm{i}}$	89.92 (7)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{Co} 1$	106.72 (11)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {ii }}$	177.58 (6)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	112.72 (14)
$\mathrm{O} 1-\mathrm{Col}-\mathrm{N} 1^{\text {i }}$	86.74 (7)	$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	106.7
$\mathrm{O} 1^{\mathrm{ii}}-\mathrm{Co} 1-\mathrm{N} 1^{\mathrm{i}}$	177.58 (7)	N1-C2-H2A	110.5
O1 ${ }^{\text {i }}$ - $\mathrm{Col} 1-\mathrm{N} 1$	177.58 (7)	N1-C2-H2B	110.5
$\mathrm{O}{ }^{1 i}-\mathrm{Co} 1-\mathrm{N} 1^{\text {ii }}$	89.92 (7)	$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	106.35 (14)
$\mathrm{O} 1{ }^{\text {ii }}-\mathrm{Col}-\mathrm{N} 1$	86.74 (7)	$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.7
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{N} 1$	89.92 (7)	$\mathrm{C} 1{ }^{\text {ii- }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	110.5
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Col-N1}{ }^{\text {ii }}$	86.74 (7)	$\mathrm{C} 1{ }^{\text {ii- }} \mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	110.5
$\mathrm{N} 1-\mathrm{Co} 1-\mathrm{N} 1^{\text {ii }}$	92.37 (7)	C3-C4-C5	107.78 (11)
N1-Col-N1 ${ }^{\text {i }}$	92.37 (7)	C3 ${ }^{\text {i }}$ - $\mathrm{C} 4-\mathrm{C} 5$	107.78 (11)
$\mathrm{N} 1{ }^{\mathrm{i}}-\mathrm{Col}-\mathrm{N} 1^{\text {ii }}$	92.37 (7)	C3 ${ }^{\text {iii }}$ - $\mathrm{C} 4-\mathrm{C} 5$	107.78 (11)
Col-O1-H1	124.2 (19)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	111.11 (11)
C1-O1-Col	110.61 (11)	$\mathrm{C} 3{ }^{\text {ii }}-\mathrm{C} 4-\mathrm{C} 3^{\text {i }}$	111.11 (11)
C1-O1-H1	107 (2)	C 3 - $\mathrm{C} 4-\mathrm{C} 3$	111.11 (11)
C4-C5-H5	107.8 (10)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	107.19 (14)
$\mathrm{O} 2{ }^{\text {iii- }} \mathrm{N} 2-\mathrm{O} 2$	119.982 (8)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.3
$\mathrm{O} 2{ }^{\text {iv }}-\mathrm{N} 2-\mathrm{O} 2$	119.984 (8)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	110.3
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{N} 2-\mathrm{O} 2^{\text {iv }}$	119.983 (8)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	110.3
H3A-C3-H3B	107.8	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	110.3
N1-C3-H3A	109.0	$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	108.5
N1-C3-H3B	109.0	$\mathrm{O} 3{ }^{v}-\mathrm{N} 3-\mathrm{O} 3{ }^{\text {vi }}$	120.000 (3)
N1-C3-C4	112.85 (16)	O3 ${ }^{\text {vi }}$ - $\mathrm{N} 3-\mathrm{O} 3$	119.999 (4)
C4-C3-H3A	109.0	O3v-N3-O3	120.001 (9)
C4-C3-H3B	109.0		
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2{ }^{\text {i }}$	36.7 (2)	N1-C3-C4-C3 ${ }^{\text {i }}$	-71.71 (18)
$\mathrm{Co} 1-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	41.38 (17)	N1-C3-C4-C3 ${ }^{\text {ii }}$	52.55 (19)
$\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 1^{\text {ii }}$	170.77 (17)	C4-C3-N1-Col	16.05 (19)
N1-C3-C4-C5	170.42 (11)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1-\mathrm{C} 2$	-108.00 (16)

Symmetry codes: (i) $-y, x-y, z$; (ii) $-x+y,-x, z$; (iii) $-y+1, x-y, z$; (iv) $-x+y+1,-x+1, z$; (v) $-x+y,-x+1, z$; (vi) $-y+1, x-y+1, z$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\text {vii }}$	$0.86(1)$	$1.59(1)$	$2.445(2)$	$172(4)$
$\mathrm{N} 1 — \mathrm{H} 1 A \cdots \mathrm{O} 2$	0.98	2.09	$3.042(3)$	163

[^0]
[^0]: Symmetry code: (vii) $y, x,-z+1$.

