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Abstract: This paper proposes a new low complexity angle of arrival (AOA) method for signal
direction estimation in multi-element smart wireless communication systems. The new method
estimates the AOAs of the received signals directly from the received signals with significantly
reduced complexity since it does not need to construct the correlation matrix, invert the matrix
or apply eigen-decomposition, which are computationally expensive. A mathematical model of
the proposed method is illustrated and then verified using extensive computer simulations. Both
linear and circular sensors arrays are studied using various numerical examples. The method is
systematically compared with other common and recently introduced AOA methods over a wide
range of scenarios. The simulated results show that the newmethod has several advantages in terms of
reduced complexity and improved accuracy under the assumptions of correlated signals and limited
numbers of snapshots.

Keywords: direction estimation; smart antennas; wireless communication systems; direct data
acquisition (DDA); multiple input multiple output (MIMO); angles of arrival (AOAs); covariance
matrix; computational complexity

1. Introduction

The applications of wireless technology have spread into several fields, including sensor
networks, environmental monitoring and public security [1–3]. In light of these developments,
several technological policies have been created to satisfy different demands. In localization systems,
the classical problem in array signal processing is finding the direction or location of sources/emitters
that send signals. Thus, the incident signals on an antenna array are processed digitally to extract
various types of information including their angle of arrival (AOAs) [4]. Note that the term DOA
(for direction of arrival) is also used in the literature [5–7]. Since rescue and search services always
need accurate locations of the electromagnetic beacon sources, the U.S. Federal Communications
Commission (FCC) has passed a mandatory rule for location accuracy on wireless emergency calls
requiring an error of no more than 125 m [8]. Additionally, accurate AOA estimation helps mobile
communications and wireless positioning systems to improve their performance significantly.
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A useful system that has recently appeared is smart antenna technology, which seeks efficient
methods for direction finding and adaptive beam forming, integrating these algorithms with Multiple
Input Multiple Output (MIMO) technology [9]. As the performance of MIMO is critically related to the
propagation environment, it is vital to model the space-time path accurately in order to achieve good
MIMO systems [10,11]. This technology is found especially useful in mobile communication systems
through enhancing the coverage, extending the range and also increasing the capacity of systems
compared to the classic antenna array set-up [12]. The AOA technique is an essential tool in controlling
the space-time path, and requires accurate determination of direction of arrival at each measurement
point. This aids the beamforming approach to steer the array’s beams towards wanted directions while
suppressing noise and interference source signals [13]. Even small inaccuracies in estimation of angles
of arrival can increase the bit error rate (BER) or cause large errors in direction when locating and
tracking mobile stations, which explains the current research interest in this area [14,15].

During the past few decades, several AOA estimation methods have been used in smart antenna
systems for mobile, emergency tracking position applications. The Capon or minimum variance
distortion-less response (MVDR) method [16] finds the DOAs signals by estimating the power of
arriving signals from one direction and considering all other signals as interference. The performance
estimation of the Capon algorithm declines sharply if the source signals are correlated or when the
number of snapshots is less than the number of sensors. Subspace methods, based on decomposition of
the CM or observation data into signal and noise subspaces, give better estimation resolution compared
with previous types. Examples of these algorithms are Multiple Signal Classification (MUSIC), the
Minimum Norm method and Estimation of Signal Parameters via the Rotational Invariance Technique
(ESPRIT). All these algorithms require a singular value decomposition (SVD) of the received data
matrix, or an eigenvalue decomposition (EVD) of the correlation matrix. This type of algorithm
provides better resolution and performance compared with the examples discussed above. MUSIC is a
well-known method due to its high resolution advantage [17], however, it makes high computational
demands. AMinimumNorm algorithmwas proposed by Reddi [18] and then developed by Kumaresan
and Tufts [19]. This method finds an optimum array weights vector that minimizes the norm of the
array output, making the assumption that the first element in the weights vector is unity and other
elements are zero. This algorithm has lower complexity than MUSIC but it is usable only with uniform
linear arrays. The ESPRIT method supposes that the sources are narrowband signals, and also that
the number of received signals is less than the number of sensors [20]: the method exploits the
rotational invariance of the signal subspace, which is produced by two arrays with a translational
invariance structure. It is essential to separate these subarrays translationally and not rotationally. The
performances of the algorithms mentioned above deteriorate significantly when the data recorded are
few or when the received signals are highly correlated. Resorting to a larger number of snapshots or
removing the correlation between the incoming signals increases both complexity and execution time.
Additionally, the large numbers of snapshots required are not always available in wireless environments
that change rapidly.

Recent research on the DOA estimation problem has focused on Bayesian Compressed Sensing
(BCS) and Sparse Signal Reconstruction (SSR) theories [21–23], exploring whether, if specific conditions
are satisfied, it is possible to recover signals from fewer snapshots than with classical techniques [24,25].
Since the incident signals on a sensor array are intrinsically sparse in the spatial domain, the exploitation
of Compressive Sensing (CS) has been extended to include the DOA estimation problem in array
signal processing, where application of these methods improved estimation accuracy with fewer
measurements and robustness to noise as presented in CS-MUSIC [26] and subspace-augmented
(SA-) MUSIC [27]. Although these approaches offer good robustness to noise and correlated signals,
their estimation performance is degraded unless there is a prior knowledge of the number of arrival
signals [28].

The original work [24] exploited spatial sparsity while providing a method different in principle to
the `1-SVD approach for DOA estimation. Merging the SVD approach with the `1 norm minimization
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based method can provide high accuracy for both narrowband and wideband scenarios. With single
snapshot or single measurement vectors (SMV), the `1 optimisation approach is preferred to sparse
recovery because of guaranteed recovery resolution [25]. In the case of multiple snapshots, sparse
signals at all measurements provide the same support. Thus, such joint sparsity is a favourable
approach to improving the average recovery success under a similar uncorrelated matrix condition [29].
A compressive beamforming algorithm using CS techniques was proposed in [30] to solve the problem
of DOA estimation, with a Nyquist sampling rate at the sensors. However, this is sensitive to signal
correlation. Signal reconstruction from compressive measurements using an efficient technique based
on CS theory called Sparse Bayesian Learning (SBL) has been proposed recently for sparse signal
recovery [22]. With this SBL method, the signal recovery is formulated from a Bayesian perspective
whereas the sparsity information is utilized by considering previously known sparse distributions of
the incident signal at all snapshots. Note that the `1-norm regularised optimisation is considered a
special case of the SBL algorithm when prior Laplace signal of the impinging signals is adopted with a
maximum a posteriori (MAP) optimal estimate approach. Analytical and experimental results both
verify that the SBL algorithm canprovide better performance than `1-norm regularised optimisation [31].
In general, the measurement matrix in SBL is assumed to be accurately known; unfortunately, this
assumption is invalid when perturbations on the measurement matrix are considered [32,33] or when
the array manifold suffers from imperfections [34].

Although the CS-based techniques mentioned above give improved estimation resolution when
there is a limited number of snapshots, there are still difficulties in applying them in practical situations
where the correct AOAs are not located on the sampling grid. To avoid this issue and improve
the estimation resolution, an extensive sampling grid is required to minimize the gap between the
correct AOAs and its nearest grid point since an estimated AOA is constrained to lie on the grid.
However, an extensive sampling grid results in a highly correlated matrix that breaks the required
conditions for the sparse signal recovery. To overcome such issues, an off-grid sparse Bayesian inference
(OGSBI) estimation algorithm is invoked [35], combining the BCS approach and the quantization error
problem for point sources—the quantization error is taken to be uniformly distributed and real valued.
The OGSBI method offers good estimation performance at single or limited number of measured
data; however, its performance is severely degraded with low signal to noise ratio as well as when
source signals are highly correlated, and with a high burden of computation where a large number of
iterations are required to find the solution in some scenarios [36]. In [37], the authors propose a BCS
framework approach for DOA estimation problem. This approach directly utilizes the output voltages
at the sensor array to determine DOAs without need to compute the observation/sampling matrix. Two
methodologies addressed in their work are single task (ST) compressive sampling and multi-task (MT)
compressive sampling. These methodologies have been investigated based on BCS by using single and
multiple measurements. It was found that MT-BCS gives better performance than ST-BCS in both single
and multiple snapshots cases. A root-SBL method for DOA estimation problem has been proposed
recently to reduce the computation complexity of SBL in [38]. In the root-SBL algorithm, the authors
adopt a coarse grid and consider the sampled positions in the coarse grid as adaptable parameters. An
expectation–maximization (EM) method was utilized to smooth this coarse grid iteratively and clarify
that every updated grid point is achieved by the root of a certain polynomial.

Many applications call for a high resolution and low complexity AOA estimation method in
these conditions. The contribution of this present paper is to propose a simple and low complexity
method that can be used to estimate the DOAs of signals efficiently; the proposed method is called
the propagator direct data acquisition (PDDA) method. The PDDA algorithm is based on computing
the propagator vector which represents the cross correlation between the received data from the first
sensor and the other sensors. This propagator vector retains all the information about how the phasors
of signals arriving from various directions sum at each sensor, which has the effect of normalizing to
the phase of the first sensor and eliminating the dependency on the signal time series, which in turn
improves robustness to noise. Consequently, the DOA signals can be estimated efficiently with a single



Sensors 2017, 17, 2631 4 of 19

snapshot or a few snapshots even when the impinging sources are highly correlated. Furthermore,
it does not require prior knowledge of the number of arriving signals, unlike MUSIC, ESPRIT and other
techniques. The newmethod estimates the directions of the received signals directly from themeasured
data without the need to construct the covariance matrix, to invert the matrix or to use EVD/SVD
approaches. This decreases the complexity considerably. Computational complexity is investigated in
terms of the required number of computational operations and the execution time, the comparison
results demonstrating that the PDDA method is efficient computationally. The proposed method
is implemented by using linear and circular sensor arrays to perform 1D and 2D estimation; many
numerical examples are presented to show its performance. It is compared with several popular and
recent AOA methods in terms of numbers of snapshots collected, behaviour with SNR, correlation of
signals sources and execution time. An intensive Monto Carlo simulation is achieved with random
angles over different scenarios, with the identical conditions applied to all algorithms to ensure a fair
comparison. The experimental results show that the proposed algorithm performs best in the many
scenarios and is comparable in other conditions to the best alternative algorithms, moreover with
lower complexity.

The rest of the paper is organized as follows: Section 2 reviews AOA modelling in both linear and
circular arrays. The mathematical model of the proposed method and the computational complexity
between PDDA and other techniques are presented in Section 3. Simulation results, discussion and
comparisons between PDDA and other AOAmethods appear in Section 4. Finally, Section 5 summarizes
the results and sets out conclusions.

The following notation is used in the remainder of this paper: lower-case and upper-case bold
characters denote vectors and matrices, respectively, whereas the lower-case characters refers to scalar
values. E {·} represents the statistical expectation. (·)T and (·)H indicates to the transposition and
conjugate transposition of a vector or a matrix. (.̂) represents the estimated value.

2. Array Signal Model

The AOA estimation setup can be explained with reference to Figure 1. Suppose D is the number of
incoming signals, S(t), arriving from different directions and received by M sensors. The time sample
of each component, X(t), of the received signal contains AWGN, N(t), and can be defined by:

X(t) = A(θ) S(t) + N(t) (1)

where A(θ) = [ a(θ1 ) a(θ2 ) . . . a(θD )] is the arriving signal steering matrix for D signals, k = 1, 2, . . . ,
D. S(t) = [s1(t), s2(t), . . . , sD(t)]

T is the (D × N) incident signals, N(t) = [n1(t), n2(t), . . . , nM(t)]
is an array of AWGN for each channel, a(θk) =

[
1 ejβdsinθk · · · · · · ejβd(M−1)sinθk

]
is the

steering vector of a linear array, d is the separation between adjacent elements and β = 2π
λ is the

spatial frequency.
A circular array is a common geometry which can be used to increase the gain. Also, it provides

beam steering in three dimensions that is not possible with a linear array. A uniform circular array of
M elements in the x-y plane is assumed in this work. With the circular array, both elevation angle (θ)
and azimuth angle (φ) can be estimated: the total received signal is:

X(t) = A(θ, φ) S(t) + N(t) (2)

where A(θ, φ) is the M × D matrix of steering vectors:

A(θ, φ) = [ a(θ1, φ1) a(θ2, φ2) . . . . . . a(θD, φD) ] (3)
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Consider there are k sources incident on the sensor array as shown in Figure 1, then the unit
vectors that include the direction of θk and φk can be defined as follows:

uk = cos φk sin θk âx + sin φk sin θk ây + cos θk âz (4)

where âx, ây and âz are the unit vectors for Cartesian co-ordinates. With a ring array located on the
x-y plane, where r is the array radius and phase angle (ϕi), the unit vector from the original reference
point to the ith element is given as follows:

vi = ri cos ϕi âx + ri sin ϕi ây, i = 1, 2, . . . , M. (5)

ϕi =
2π

M
(i− 1) (6)

The angle (γik) can be obtained from the dot product between unit vectors vi and uk as shown below:
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γik = cos−1
(

vi.uk
‖ vi ‖ . ‖ uk ‖

)

γik = cos−1

((
cos ϕi âx + sin ϕi ây

)
·
(
cos φk sin θk âx + sin φk sin θk ây

)
‖ vi ‖ . ‖ uk ‖

)

γik = cos−1
(

cos ϕi cos φk sin θk + sin ϕi sin φk sin θk
‖ vi ‖ . ‖ uk ‖

)
γik = cos−1

(
sin θk cos(φk − ϕi)

‖ vi ‖ . ‖ uk ‖

)
γik = cos−1(sin θk cos(φk − ϕi)) (7)
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ϕ is vector with dimension (1 ×M) as given below:

ϕ = [ϕ1 ϕ2, . . . . . . , ϕ M] (8)

while γ is the matrix with dimension (M×D) given as follows:

γ =


γ11

γ21
...

γM1

γ12

γ22
...

γM2

· · ·
...
. . .
. . .

γ1D
γ2D
...

γMD

 (9)

In order to compute the phase difference, the time difference of arrival of the kth signal at each
reference element and each sample element needs to be calculated. The wavefront time delay is
calculated using the difference in distance (qik) that is given by:

qik = r cos γik = r cos
(

cos−1(sin θk cos(φk − ϕi))
)
= r sin θk cos(φk − ϕi) (10)

where r can be computed as follows:

r =
d

2 sin
( 2π

M
) (11)

The phase difference (ψik) can be expressed in the following formula:

ψik = β.qik =
2π

λ
r sin θk cos(φk − ϕi) (12)

Then, the circular array steering vector can be defined as follows:

a(θk, φk) =



e−jψ1k

e−jψ2k

...

...
e−jψMk


(13)

As arriving signals are time-varying, the calculations are based on time samples of the arriving
signal. Clearly, if the signal sources are moving from one location to another, the corresponding
received angles and the matrix of steering vectors change with time. The array covariance matrix (Rxx)
can be expressed in the following form:

Rxx = E
[
X(t) XH(t)

]
= E

[
AS(t)SH(t)AH

]
+ E

[
N(t) NH(t)

]
Rxx = ARss AH + σn

2IM (14)

where Rss is the (D × D) source signal correlation matrix Rss = E[S(t)S(t)], σn
2 is the noise variance

and IM is the M ×M identity matrix. In this case, the received signals are taken as being uncorrelated,
so that Rss is a diagonal matrix. However, if the received signals are correlated, the signal correlation
matrix will be non-diagonal, as appears in realistic environments due to multipath propagation or
unfriendly jamming signals. Complete knowledge of Rxx cannot be assumed; instead, we may use as
necessary the sample-average estimated array input autocovariance matrix given by:

R̂xx ≈
1
N

N

∑
k=1

X(t)XH(t) (15)
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After the CM is obtained, AOA estimation is performed using a suitable AOA algorithm.

3. Proposed Algorithm

The received data matrix can be used to estimate the AOA instead of using the CM. The proposed
algorithm depends on computing the propagator vector p, which represents the cross correlation
between the first row (received signal data from the first element) and the other rows. This has the
effect of normalizing to the phase of the first element and removing the dependency on the signal time
series. The propagator vector therefore retains all the information about how the phasors of signals
arriving from various directions sum at each sensor. Correlation with the steering vector thus elicits the
individual AOAs. It also reduces the computational complexity compared to calculating the entire CM.

Suppose that the data matrix X(t) contains N samples of data obtained from M sensors.
X(t) = AS(t) + N(t) is an M × N matrix (Xm,n ∈ C1×1 ) and can be written as follows:

X(t) =



x1(t1)

x2(t1)
...
...

xM(t1)

x1(t2)

x2(t2)
...
...

xM(t2)

· · ·
...
. . .
...

. . .

· · ·
...
...
. . .
. . .

x1(tN)

x2(tN)
...
...

xM(tN)


(16)

In order to compute the propagator vector p we divide the X matrix into two sub-matrices
as follows:

h =
[

x1(t1) x1(t2) · · · · · · x1(tN)
]

(17)

H =


x2(t1)

...

...
xM(t1)

x2(t2)
...
...

xM(t2)

· · ·
. . .
...

. . .

· · ·
...
. . .
. . .

x2(tN)
...
...

xM(tN)

 (18)

where h represents the first row of the matrix X whereas H represents the reset of X. Now, compute
vector p, as follows:

p = hHH/hhH (19)

p gives the cross-correlation of the time-series from each sensor element with that from the first
element, with size 1 × (M − 1). We now add a unit element representing the correlation of the first
row with itself. This yields:

℮ =
[

1 p
]T

(20)

where ℮ is a vector of size 1 × M. The complexity of localization systems depends on hardware,
software and operating factors. The PDDA technique presents lower computational complexity, as can
be verified by comparing the number of computational operations required to construct the CM, which
is used in most AOA methods, and that required to compute the vector (p) utilized in the PDDA
method, as shown in Table 1 and Figure 2.

After computing CM, some methods need to calculate the inverse of the CM whereas other need
to decompose it, with prior knowledge of the number of arrival signals. Table 2 gives a comparison
between PDDA and some common AOA methods based on the above-mentioned criteria.

Table 1. Computational operations required to construct the CM compared with the p vector construction.

Method Number of Multiplications Number of Additions Divisions

PDDA based on vector (p) M × N M × (N −M) M − 1
Computing CM M2 × N M2 × (N − 1) None
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Table 2. Showing the complexity comparison between the propagator direct data acquisition (PDDA)
and other angle of arrival (AOA) techniques.

Method Covariance Matrix
| Inverse Required?

Eigen-Decomposition
(EVD) Required?

Knowledge of the
Number of Arriving
Signals Required?

Capon [16] Yes No No
Maximum Entropy (ME) [39] Yes No No

MUSIC [17] No Yes, in order to
decompose (M ×M) matrix Yes

Min-Norm [19] No Yes Yes
Pisarenko [40] No Yes No

ESPRIT [27] No
Yes, for decomposition of an
(M ×M) matrix and a (D × D)

matrix
Yes

Root MUSIC [41] No Yes Yes

Propagator [42] No but it needs to compute matrix
inverse with size (D × D) No Yes

PDDA No No No
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and N = 1:1000.

Then, the spatial power spectrum can be obtained from vector (℮) as follows:

P(θ) = |a(θ) ℮|2 (21)

The complexity of the required number of multiplications and additions in the scanning angle
process stage to construct the spatial spectrum differs from one method to the other. Table 3 compares
the complexity of the PDDA and other popular AOA methods at this stage as described below.
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Table 3. Showing the computational operations required to construct the spatial spectrum for the
PDDA and popular AOA methods.

Method Number of Multiplications Number of Additions

Capon M × (M + 1) (M − 1) ×M + (M − 1)
MUSIC (M − D) × (M + 1) (M − D) × (M − 1) + (M – D − 1)

Pisarenko M M − 1
Propagator M × (M + 1) (M − 1) ×M + (M − 1)

PDDA M M − 1

To obtain narrower peaks and also tominimize side-lobe levels, we propose the following approach:
first find the maximum point in P(θ):

w = max(P(θ)) (22)

where w is a scalar value. The second step is subtracting the value of the global maximum from the
other points in Equation (21). This yields the following equation:

Ps(θ) = w− P (θ) (23)

Once this condition is achieved, wewill obtain nulls in the direction of incoming signals. The PDDA
method can be expressed in a new formula to acquire maximum peaks in the AOA as follows:

PPDDA (θ) =
1

Ps(θ) + ε
(24)

where ε is a small scalar value added in order to avoid possible singularities. Equation (24) is highly
non-linear, so it exaggerates signals close to w and suppresses side-lobes. With an appropriate choice
of ε, it is then straightforward to apply a threshold value to separate genuine peaks from side-lobes.
The simulation steps of this method are illustrated as follows:

Algorithm 1: Propagator Direct Data Acquisition (PDDA) for 1D and 2D Direction Estimation

Input: the received signals X ∈ CM×N , with M sensors, N number of snapshots, D source signals.
Output: The estimated AOAs.
Step 1: Compute the received signal and add noise with a certain SNR (X(t) = AS(t) + N(t))
Step 2: Divide the received signal matrix into two portions as given in Equations (17) and (18)
Step 3: Construct the propagator vector (p) by applying Equation (19).
Step 4: Compute the vector (℮) by using Equation (20).
Step 5: Construct the pseudospectrum of the proposed method by scanning ℮ through the whole scanning
range of the θ plane with a specific scanning Step , δ, thus:
for ii = 0:δ:θ
PPDDA(ii) = | a(θ) ℮|2

end
If this method is applied for a circular array, the vector ℮ needs to be scanned over both the θ and φ planes
with δ as follows:
for ii = 0:δ:θ
for jj = 0:δ:φ
PPDDA(ii, jj) =

∣∣a(θ, φ) H ℮
∣∣2

end
end
Step 6: Find the maximum global point in the spatial spectrum (i.e., w).
Step 7: Subtract the maximum value from the other values by applying Equation (23).
Step 8: Plot the pseudo-spectrum of the PDDA by using Equation (24) and set ε = 0.01.
Step 9: Find the locations of the peaks to detect the arrival angles.



Sensors 2017, 17, 2631 10 of 19

The overall computational cost of the mentioned above algorithms are calculated and described
below in Table 4. It is obvious fromTables 1–4 that the PDDAmethod has lower computation complexity
than the other AOA methods presented.

Table 4. Showing the overall computational complexity comparison between PDDA and popular
AOA methods.

Method Computational Complexity

Capon O(M2 N + M3 + M2(180/δ))
MUSIC O(M2 N + M3 + M2(180/δ))
ESPRIT O(M2 N + M3 + D3)

Min-norm O(M2 N + M3 + M(180/δ))
Pisarenko O(M2 N + M3 + M (180/δ))

ME O(M2 N + M3 + M (180/δ))
Propagator O(M2 N + M2 D + M2 (180/δ))
OGSBI O(max(M (180/δ)2, M N (180/δ)) per iteration
PDDA O(M N + M (180/δ))

4. Numerical Simulations and Discussion

To demonstrate and verify the theoretical claims of the proposed method, simulations with both
uniform linear arrays and uniform circular arrays are carried out.

4.1. Uniform Linear Array (ULA)

This simulation parameters are SNR = 10 dB, number of samples N is 10, and the inter-element
spacing is d = 0.5λ. The scanning step angle is 0.5◦. Figure 3 shows an example of two signals incident
on a ULA with M = 10 sensors, arriving from different directions (θ = 0◦ and 8◦). As can be seen from
Figure 3, the PDDA method estimates the angles of the arrival signal accurately, and also provides
sharp peaks in the directions of arrival, with negligible side lobes.
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4.2. Uniform Circular Array (UCA)

Some applications such as radar and tracking systems require estimation of both elevation and
azimuth angles in order accurately to track targets that are moving in three dimensions. Hence, the
proposed method is next applied to the circular array, with a range of azimuth angles [0, 360◦] and
elevation angles [0, 90◦]. The type of received signals is BPSK with carrier frequency fc = 10 GHz and
the signals are distorted with AWGN. The other simulation parameters are the number of sensors
M = 15, the number of samples is 100, SNR = 10 dB, and d = 0.5λ. Three cases are considered in this
simulation, with the directions of arrival generated randomly.

In the first scenario, two signals incident on the sensor array from different directions are
considered as shown in Table 5. Figure 4 illustrates the performance estimation of the PDDA method
for case 1. In the second scenario, there are three signals arriving from different directions as presented
in Table 5, case 2. The performance of the PDDA method and its precision in this case are illustrated in
Figure 5. The last simulation example considers signals clustered closely together as given in Table 5,
case 3, with results shown in Figure 6. It is clear from these graphs that the proposed method gives
accurate and sharp peaks in the directions of the targets.

Table 5. Directions of arrival signals.

Case Elevation Angles (θ) Azimuth Angles (φ)

1
32◦ 40◦
50◦ 200◦

2
42◦ 69◦
44◦ 163◦
46◦ 298◦

3
39◦ 115◦
36◦ 40◦
17◦ 20◦
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4.3. Comparison with Other AOA Methods

In this section, the performance of the PDDA method is compared with four commonly used
AOA methods namely: MVDR, MUSIC, Min Norm, ESPRIT; and also with two algorithms which have
been proposed recently, namely OGBSI and Root-SBL. The simulation codes of some methods are
provided by MATLAB R2016b, for example the MUSIC algorithm and the Capon algorithm [43]. Four
scenarios are considered in this comparison namely: number of snapshots taken, signal to noise ratio
(SNR), the correlation between sources of the incident signals and the execution time. For the first three
scenarios, the average root mean square error (ARMSE) is computed for each criterion. The ARMSE
can be defined as follows:

ARMSE =
1
K

K

∑
j=1

√√√√ 1
D

D

∑
k=1

[(θk − θ̂k)
2
] (25)

where D is the number of signals arriving, θk is the actual angle, θ̂k is the estimated angle and K is
the number of Monto Carlo simulation trials. For simplicity in calculating each RMSE, we proceed as
follows. We have D actual DOAs and L estimated DOAs. In the practical applications or even in the
simulation scenarios, the number of detected peaks can be fewer or more than actual DOAs. Three
scenarios are possible namely: D = L, D < L, D > L. In the case of L > D (because of false peaks), we
include only the estimates for the D loudest peaks. Then, in all cases, we calculate the L × D array of
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angle error magnitudes between each pair of actual and estimated DOAs and then take the minimum
for each of D columns and average the root mean square values.

4.3.1. Number of Snapshots

Typically, resorting to a larger number of snapshots is not always practical inwireless environments
since the sources of signals are changing rapidly. This simulation compares the estimation accuracy of
the proposed method with other AOA methods for obtaining a reliable estimation of DOAs signals
using a limited number of snapshots. A ULA with M = 8 elements with half wave spacing between
elements is selected. Two BPSK signals (D = 2) are incident on this array from different directions—these
signals are corrupted with AWGN and the SNR is 10 dB. Five different numbers of snapshots of the
received signals are collected in this experiment namely: N = 1, 2, 3, 4 and 5. A thousand trials of two
AOAs are randomly generated, each set being applied to all AOA methods. The ARMSE of every N
is calculated and plotted for all techniques as shown in Figure 7. Clearly, the PDDA method gives
the best resolution compared with other AOA methods for a single snapshot. With N = 2 and 3, the
performance estimation of PDDA and OGBSI are convergent and they are the best compared with the
other AOA methods. At N = 4, PDDA, OGBSI and MUSIC have roughly the same estimation accuracy
and are better than the other algorithms. At N = 5, the estimation resolution of each method can be
sorted in descending order as follows: MUSIC, OGSBI, PDDA, ESPRIT, Root-SBL, Min-Norm and
Capon. So, the performance of the proposed method outperforms all methods with a single snapshot
and is comparable to MUSIC and OGSBI for other numbers of snapshots. The reason for poor accuracy
for the Capon method is that when N is less than M, the Capon method suffers from singularities due
to matrix inversion operations.
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4.3.2. Array-Signal to-Noise (SNR)

In this scenario, we still assume the number of snapshots measured is limited (N = 3) but with
differing SNR. The SNR at the input to the sensor array receiver plays a crucial role in the performance
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of AOA in localization systems. Therefore, this simulation compared the variations in performance of
AOA methods with a variation of SNR. A ULA consisting of M = 8 sensors and d = 0.5λ is considered,
this array receiving two BPSK signals from different directions. 1000 Monto Carlo simulations with
D = 2 are used to generate AOAs: these angles are applied for all algorithms. The ARMSE is computed
for each SNR and plotted for all techniques in Figure 8. The effect of the SNR on the performance
estimation of each technique can be clearly seen in this graph: at low SNR (i.e., SNR less than 0 dB),
MUSIC and PDDA methods give the best accuracy compared with other AOA techniques. However, as
the SNR improves the PDDA method gives the best estimation resolution compared with all the AOA
techniques presented. The reason that MUSIC has better accuracy than the PDDAmethod at poor SNR
is because the large amount of noise diffuses the phasors of arriving signals and this in turn affects
negatively normalizing the phase of the first sensor and eliminating the dependency on the signal time
series. On the other hand, MUSIC has higher complexity than PDDA as shown in Table 4.
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4.3.3. Correlation

Correlation or similarity between the arriving signals impacts negatively on the performance
of direction estimation systems. A simulation is next run for two correlated received signals with
correlation coefficient (CC = 0.95) incident on a linear array with M = 8 elements and d = 0.5λ. The
other simulation parameters are number of samples, N = 10, and SNR = 1 dB. In order to ensure a fair
and comprehensive comparison, a thousand sets with pairs of AOAs are randomly generated, each set
being applied to all algorithms. The RMSE is computed for each trial and then plotted as a cumulative
distribution function (CDF). As can be seen from Figure 9, the PDDA presents the best accuracy among
the AOA methods and this demonstrates that the proposed method has good robustness and less
sensitivity to correlation of source signals. It has been also observed that OGSBI and Root-SBL, based
on Bayesian compressed sensing and sparse signal reconstruction principles, have high sensitivity to
correlated signals. MUSIC still gives a good performance, whereas Min Norm, ESPRIT and MVDR
algorithms perform poorly under such correlation conditions.
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4.3.4. Execution Time

The speed of computation is a crucial factor for any application, hence the time for execution
of the PDDA method is compared with state-of-the-art AOA methods in identical conditions. Since
the computation complexity shown in table 4 mainly depends on the number of the sensors (M), the
comparison of the execution time has been implemented by changingM = [10, 20, . . . , 100] and keeping
the other simulation parameters constant. A MATLAB simulation was run with one hundred iterations
(i.e., K = 100) for each method, and the average times of execution at each M recorded using tic and
toc functions. The angular range of interest is [−90◦, 90◦] with interval grid δ = 0.5◦, D = 6, SNR = 10
dB and N = 100. For the OGSBI and Root-SBL methods, the tolerance error and maximum number
of iterations are set at 0.001 and 500 respectively, while the other simulation parameters for these are
as given in [35,38] respectively. All the experiments have been carried out in MATLAB R2016-b on
a PC with a Windows 8.1 operating system, processor: Intel(R) Core (TM) i7-4790 CPU @ 3.6 GHz,
with 32 GB installed RAM. It is obvious from Figure 10 that the PDDA method is fastest. Minimum
Norm, MUSIC and Capon give reasonable speed, whereas the Root-BSL and OGBSI techniques are the
slowest. This is because their computational complexity not only depends on the number of sensors
but also on the other parameters such as tolerance error and maximum number of iterations, which
are required to find the optimum solution. The exact execution time of each method may differ from
these results according to the specifications of the computer and situations which are associated with
program running but the relative behaviour for each algorithm should be the same.
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5. Conclusions

A new and low complexity angle of arrival method, which estimates the AOAs of the received
signals directly from the received data without the need to construct the CM, is proposed in this paper.
The reduction in complexity of the proposed method has been demonstrated mathematically and
then explained in terms of the number of computational operations. The reduction of complexity has
been achieved through avoiding constructing the CM and computing the matrix inverse or applying
eigenvalue decomposition. The PDDA was implemented with two types of sensor arrays: uniform
linear sensor array and circular sensor array. Many simulation examples illustrate the performance
estimation of the new algorithm in comparison with well-assessed state-of-the-art AOA estimation
methods over a wide range of scenarios. Results show that the new method is suitable for a single or
low number of snapshots, has a lower computational cost than existing techniques, and works well
with correlated signals.
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