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Abstract

Salmonella enterica serovar 4,[5],12:i:-, a monophasic variant of Salmonella Typhimurium

lacking the phase 2 flagellin, is one of the common serotypes causing Salmonellosis world-

wide. However, information on Salmonella serovar 4,[5],12:i:- from Guizhou Province has

lacked so far. This study aimed to investigate the antimicrobial resistance, the presence of

antimicrobial resistance genes and virulence genes, and characterize the MLST genotypes

of Salmonella serovar 4,[5],12:i:- isolates from Guizhou province, China. We collected 363

non-typhoid Salmonella (NTS) isolates of Guizhou from 2013 to 2018. Biochemical identifi-

cation, serogroups testing, and specific multiplex polymerase chain reaction (mPCR) assay

were conducted to identify Salmonella 4,[5],12:i:- isolates. Isolates were determined the

antimicrobial resistance by the micro broth dilution method, detected the presence of antimi-

crobial resistance genes and virulence genes by PCR, and examined the molecular geno-

typing by Multilocus sequence typing (MLST). Eighty-seven Salmonella 4,[5],12:i:- isolates

were detected, accounting for 23.9% (87/363) of the total NTS isolates. All Salmonella 4,

[5],12:i:- isolates showed highly resistant to sulfaoxazole (93.1%), streptomycin (90.8%),

ampicillin (88.5%), tetracycline (86.2%) and doxycycline (86.2%). A high proportion (94.2%)

of multi-drug resistance (MDR) isolates were found. Most (83.9%) Salmonella 4,[5],12:i:-

isolates carried four antimicrobial resistance genes, especially blaTEM-1, strA-strB, sul2, and

tetB genes. Salmonella 4,[5],12:i:- isolates showed a high rate of invA, sseL, mgtC, siiE,

sopB, gipA, gtgB, sspH1, and sspH2 (72.4%~98.9%). On the contrary, none of the isolates

were detected the spvC and pefA genes. MLST analysis revealed three sequence types

(STs), and ST34 (97.7%) was the dominant sequence type. This study is the first report of

Salmonella 4,[5],12:i:- in humans from Guizhou province, China. The data might be useful
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for rational antimicrobial usage against Salmonella 4,[5],12:i:- infections, risk management,

and public health strategies in Guizhou.

Introduction

Non-typhoid Salmonella (NTS) is one of the most common causes of human infectious diar-

rheal diseases and causes a severe disease burden [1]. In the late 1980s, a Salmonella serovar 4,

[5],12:i:-, closely linked to the antigenic structure and genetic characterization of Salmonella
Typhimurium, was first identified from poultry in Portugal [2]. Since then, this serotype has

been increasingly spread around the world and has caused more significant outbreaks in Lux-

embourg and Italy [3, 4].

Multi-drug resistance (MDR) has been increased all worldwide that is considered a public

health threat. Several recent investigations reported the emergence of multidrug-resistant bac-

terial pathogens from different origins including humans, birds, fish, and cattles that increase

the need for routine application of the antimicrobial susceptibility testing to detect the antibi-

otic of choice as well as the screening of the emerging MDR strains [5–8]. The rapid dissemi-

nation of Salmonella 4,[5],12:i:- is related to the increasing MDR, which is a significant

problem of public health, and may represent the advantage of its pathogenesis [9, 10]. Signifi-

cantly, the horizontal transfer of resistance genes mediated by mobile genetic elements such as

transposons and plasmids may enhance the survival adaptability of this serotype [11].

Salmonella infects the host by first attaching to the host tissue and then invading the host

cells through virulence factors, mainly including Salmonella pathogenicity island (SPI), plas-

mid virulence, prophage virulence and cell swelling toxins [12]. SpI-1 is necessary to invade of

host non-phagocytes, and plays an essential role in salmonella invasion of macrophages and

intestinal epithelial cells [13]. SpI-2 encodes a type III secretory system associated with sys-

temic infection. It allows Salmonella to survive inside the macrophage and it facilitates spread-

ing through the host body [13]. Salmonella plasmid virulence genes enhance the ability to

spread and proliferate in the host, and most of them are associated with extra-intestinal infec-

tion in humans and animals [12, 13]. In addition, previous investigations indicated that Salmo-
nella 4,[5],12:i:- serotype was more virulent than other serotypes [14]. The presence of

multiple virulence determinants, along with the formation of biofilm, enables Salmonella 4,

[5],12:i:- to infect humans and results in disease or death [14, 15].

Salmonella 4,[5],12:i:- is a monophasic serotype due to its lack of phase 2 flagellar antigen

expression [10]. Several distinct molecular subtyping methods, including phage typing, multi-

locus sequence typing (MLST), pulsed-field gel electrophoresis (PFGE), and whole genome

sequencing (WGS) were used to identify Salmonella 4,[5],12:i:–isolates [16–18]. Studies indi-

cated that Salmonella 4,[5],12:i:- isolates belong to multiple clonal lines, which evolved from

different Salmonella Typhimurium clonal ancestors through different genetic events [19, 20].

In Guizhou, the Southwest of China, NTS was one of the primary pathogens causing infec-

tious diarrhea, and the distribution of serotypes was diverse [21, 22]. However, information on

Salmonella serovar 4,[5],12:i:- from Guizhou is lacking. To provide a better understanding of

the characterization Salmonella 4,[5],12:i:-, we characterized the antimicrobial resistance, the

presence of antimicrobial resistance genes and virulence genes, and the genetic characteriza-

tion of Salmonella 4,[5],12:i:- isolates in Guizhou from 2013 to 2018.
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Materials and methods

Ethics statement

This study was reviewed and approved by the Ethics Review Committee of Guizhou Provincial

Center for Disease Control and Prevention. All data were analyzed anonymously.

Bacterial isolates and identification

A total of 363 Salmonella isolates were collected from nine different cities between 2013 and

2018 in Guizhou, including Anshun (n = 54), Bijie (n = 10), Guiyang (n = 76), Liupanshui

(n = 10), Qiandongnan (n = 22), Qiannan (n = 19), Qianxinan (n = 12), Tongren (n = 97), and

Zunyi (n = 63), and they were all obtained from clinical patients. Most isolates were available

from stool samples of outpatients, and the source of a few isolates was unknown. The obtained

samples were inoculated into selenite brilliant green sulfa enrichment (SBG), cultured at

36˚C ± 1˚C for 6–8 h (Youkang Biological, China). The enriched bacteria solution was inocu-

lated on the Salmonella chromogenic medium, incubated at 36˚Cfor 18–24 h (CHROMagar,

France). Pale purple or purple colonies were selected and inoculated onto krebs disaccharide

iron medium (KIA) and motility indol urea iron medium (MIU) at 36˚C for 18–24 h (Cyclo-

kay Biological, China). The isolates were systematically identified by API20E identification kits

(Biomerieux, France). According to the White- Kaufmann- Le Minor Scheme [23], the con-

firmed Salmonella isolates were serotyped by slide agglutination test for O and H antigens

(SSI, Denmark). Flagellar induction testing was performed on the isolates with antigenic for-

mula (4,[5],12:i:-). If induction testing showed negative for H2 phase, the flagellar antigen gene

(fljB) and IS200 fragment (fljB-fljA) of H2 phase were further detected by a multiple PCR as

described by Tennant et al [24]. Primers used to amplify fljB and fljB-fljA genes were listed in

S1 Table. Bacterial DNA was extracted by the boiled lysis method. The supernatant was taken

as DNA template and stored at -80˚C for use. The multiple PCR reaction conditions were as

follows: initial denaturation at 95˚C for 2 min, 30 cycles of denaturation at 95˚C for 30 s,

annealing at 58˚C for 30 s, extension at 72˚C for 90 s, and a final delay at 72˚C for 10 min.

Antimicrobial susceptibility test

Antimicrobial susceptibility was evaluated by micro broth dilution method with ten classes 16

antimicrobials (Xingbai Biological, China), including: Penicillin (Ampicillin), Phenicols

(Chloramphenicol), Aminoglycosides (Streptomycin, Gentamicin), Carbapenems (Imipe-

nem), β-lactamase inhibitor (Amoxicillin/clavulanic acid), Cephems (Cefoxitin, Ceftriaxone,

Cefepime), Sulfonamides (Sulfamethoxazole, Trimethoprim /sulfamethoxazole), Tetracyclines

(Tetracycline, Doxycycline), Quinolones and Fluoroquinolones (Nalidixic acid, Ciprofloxa-

cine), Macrolides (Azithromycin). Escherichia coli ATCC 25922 was used as a control strain.

The breakpoints for antimicrobials followed interpretive standards provided by Clinical Labo-

ratory Standards Institute guidelines [25]. The phenotypic resistance profiles were classified

into MDR, XDR, and PDR as described by Magiorakos et al [26].

Detection of antimicrobial resistance genes

Genes coding for resistance to β-lactamase (blaTEM, blaOXA-1, blaCTX-M), phenicols (floR,

cmlA1), aminoglycosides (aac (3)-IV, strA-strB, aadA2), sulfonamides (sul2), and tetracyclines

(tetB) were evaluated by PCR using primers and conditions as previously described [27–29].

The reaction volume was 20 μl. Primers used to amplify the antimicrobial resistance genes and

PCR reaction conditions in this study were listed in S2 Table. The agar gel electrophoresis was

carried out to separate the obtained PCR products using 1.0% agarose, followed by
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photographing the gel. All positive PCR products of blaTEM and blaCTX-M genes were

sequenced and aligned with the National Centre for Biotechnology Information (NCBI) data-

base sequences using the BLAST program to identify resistance gene subtypes. The correlation

between phenotypic and genotypic was performed.

Detection of virulence genes

Fourteen virulence genes were detected by PCR. These virulence genes are related to the pres-

ence of Salmonella pathogenicity island (invA, sseL, mgtC, siiE, sopB), prophages (gipA, gtgB,

sopE, sspH1, sspH2), and plasmids (spvB, spvC, spvR, pefA). The primer sequences as previously

described [13, 30, 31] were listed in S3 Table. The PCR reaction conditions were as follows: ini-

tial denaturation at 94˚C for 5 min, 28 cycles of denaturation at 94˚C for 30 s, annealing at

58˚C for 30 s, extension at 72˚C for 1min, and a final delay at 72˚C for 5 min. The PCR prod-

ucts were analyzed by electrophoresis and visualized under ultraviolet light.

Multilocus sequence typing (MLST)

MLST typing was executed for all Salmonella 4,[5],12:i:- isolates based on seven housekeeping

genes, including thrA, purE, sucA, hisD, hemD, aroC and dnaN. Primers used to amplify the

seven housekeeping genes in this study were listed in S4 Table. The amplification conditions

were as follows: initial denaturation at 94˚C for 5min, 30 cycles of denaturation at 94˚C for 30

S, annealing at 56˚C for 1 min, extension at 72˚C for 1 min, and a final delay at 72˚C for 10

min. Alleles and ST types of isolates were obtained from the Salmonella database on the

PubMLST website. The phylogenetic tree was constructed using BioNumerics 8.0 software

(Applied-Maths, Belgium).

Statistical analysis

We used Cohen’s kappa coefficient to assess the correlation between phenotypic and genotypic

resistance. The agreement, as expressed by the kappa coefficient, was interpreted as follows:

values� 0 as indicating no agreement and 0.01–0.20 as none to slight, 0.21–0.40 as fair, 0.41–

0.60 as moderate, 0.61–0.80 as substantial, and 0.81–1.00 as almost perfect agreement [32]. All

P values were two-tailed, and the level of statistical significance was specified as 0.05. Statistical

analyses were performed using version 26.0 SPSS statistical software.

Results

Phenotypic characteristics of the recovered Samonella isolates

As described in the methods section, samples were enriched using SBG. A single colony purple

or pale purple colony was observed on the Salmonella chromogenic medium. Biochemical

results for Salmonella on KIA and MIU were slant (K), butt (A), H2S (+), gas (+), dynamic (+),

indole (-), urea (-). After the multiple PCR detection, all Salmonella Typhimurium isolates pro-

duced two amplification bands (1 000 bp and 1 389 bp), specific to Salmonella Typhimurium.

However, the Salmonella 4,[5],12:i:- isolates produced only one 1 000 bp amplification band

(S1 Fig). Among the 363 NTS isolates, 23.9% (87/363) were confirmed as Salmonella 4,[5],12:

i:-. They were distributed in seven of the nine cities in Guizhou, which were Anshun (n = 10),

Guiyang (n = 14), Liupanshui (n = 2), Qiandongnan (n = 3), Qiannan (n = 2), Tongren

(n = 37), and Zunyi (n = 20), respectively. The prevalence of Salmonella 4,[5],12:i:- ranged

between 18.1% to 29.4% in 2013–2018 with the highest prevalence in 2015 (Fig 1).
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Antimicrobial resistance

Antimicrobial resistance testing showed that Salmonella 4,[5],12:i:- isolates were shown to be

the most resistant to sulfaoxazole (93.1%), followed by streptomycin (90.8%), ampicillin

(88.5%), tetracycline (86.2%), and doxycycline (86.2%). Furthermore, Salmonella 4,[5],12:i:-

isolates showed resistance to chloramphenicol (42.5%), trimethoprim /sulfamethoxazole

(35.6%), nalidixic acid (34.5%), and amoxicillin/clavulanic acid (31.0%), respectively (Table 1).

The resistance to ciprofloxacin was 13.8%. However, 35.6% of isolates showed decreased sensi-

tivity to ciprofloxacin (MIC�0.12 μg/mL). Notably, Salmonella 4,[5],12:i:- isolates showed

resistance to imipenem and azithromycin in this study. More importantly, three isolates were

Fig 1. Detection of Salmonella 4,[5],12:i:- isolates from Guizhou, 2013–2018.

https://doi.org/10.1371/journal.pone.0266443.g001

Table 1. Antimicrobial resistance of 87 Salmonella 4,[5],12:i:- isolates.

Antimicrobial classes Antimicrobial agents Resistant Intermediate Susceptible

No. % No. % No. %

Penicillin Ampicillin (AMP) 77 88.5 0 0.0 10 11.5

Phenicols Chloramphenicol (CHL) 37 42.5 16 18.4 34 39.1

Aminoglycosides Streptomycin (STR) 79 90.8 0 0.0 8 9.2

Gentamicin (GEN) 16 18.4 4 4.6 67 77.0

Carbapenems Imipenem (IMP) 1 1.1 0 0.0 86 98.9

β-lactamase inhibitor Amoxicillin/clavulanic acid (AMC) 27 31.0 11 12.6 49 56.3

Cephems Cefoxitin (FOX) 1 1.1 3 3.4 83 95.4

Ceftriaxone (CRO) 17 19.5 0 0.0 70 80.5

Cefepime (FEP) 13 14.9 3 3.4 71 81.6

Sulfonamides Sulfamethoxazole (SOX) 81 93.1 0 0.0 6 6.9

Trimethoprim /sulfamethoxazole (SXT) 31 35.6 0 0.0 56 64.4

Tetracyclines Tetracycline (TCR) 75 86.2 0 0.0 12 13.8

Doxycycline (DOX) 75 86.2 7 8.0 5 5.7

Quinolones and Fluoroquinolones Nalidixic acid (NAL) 30 34.5 0 0.0 57 65.5

Ciprofloxacine (CIP) 12 13.8 31 35.6 4 50.6

Macrolides Azithromycin (AZM) 5 5.7 0 0.0 82 94.3

CIP (ciprofloxacin), STR (streptomycin), AMP (ampicillin), CHL (chloramphenicol), SOX (sulfaisoxazole), SXT (trimethoprim sulfamethoxazole), NAL (nalidixic),

AMC (amoxicillin / clavulanate potassium), CRO (ceftriaxone), DOX (doxycycline), GEN (gentamicin), AZM (azithromycin), TCY (tetracycline), FOX (cefxitin), FEP

(cefepime), IMP (imipenem).

https://doi.org/10.1371/journal.pone.0266443.t001
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co-resistant to ciprofloxacin, the third and fourth-generation cephalosporins, and

azithromycin.

A percentage of 98.9% (86/87) isolates were resistant to at least one antimicrobial agent.

Most (62.0%) isolates were resistant to 5–7 among the 16 antimicrobial agents tested. Notably,

12 isolates (13.8%) were resistant to ten or more antimicrobial agents, among which two iso-

lates were resistant to 13 antimicrobial agents in 2016–2017. A total of 89.6% (78/87) of the iso-

lates were MDR. Four isolates (4.5%) showed XDR (Table 2). PDR isolates were not observed.

Fourty-five antimicrobial resistance profiles were observed, of which AMP+STR+SOX+TCR

+ DOX+AMC (16.1%,14/87) and AMP+STR+SOX+TCR+DOX (14.9%, 14/87) were the pre-

dominant antimicrobial resistance profiles.

Antimicrobial resistance genes distribution

A great majority (83.9%) of Salmonella 4,[5],12:i:- isolates contained at least four antimicrobial

resistance genes. As regards antimicrobial resistance genes, genes more often detected were

tetB (94.2%), strA-strB (93.1%), sul2 (91.9%) and blaTEM-1 (74.7%). The existance of other resis-

tance genes including blaOXA-1, blaCTX-M, aac (3)-IV, aadA2, cmlA1, and floR were 5.7%,

13.8%, 5.7%, 31.0%, 30.0%, and 20.2%, respectively. Among the positive isolates to β-lactamase

resistance gene, nine isolates contained two β-lactamase genes (blaTEM-1/blaCTX-M, blaTEM-1/
blaOXA-1), and one isolate contained blaTEM-1, blaCTX-M and blaOXA-1 genes. Sequencing of the

blaCTX-M genes revealed presence of various types, including blaCTX-M-55 (58.3%, 7/12),

blaCTX-M-65 (12.7%, 2/12), blaCTX-M-14 (8.3%, 1/12), blaCTX-M-15 (8.3%, 1/12), and blaCTX-M-27

(8.3%, 1/12) (S2 Fig).

The correlation between the phenotypic and genotypic MDR profiles

Our findings revealed that 12.6% (11/87) isolates were MDR to five antimicrobial classes

(AMP, STR, SOX, TCR, DOX, AMC) and harbored blaTEM-1, strA-strB, sul2, tetB. Nine

(10.3%) MDR isolates to four antimicrobial classes (AMP, STR, SOX, TCR, DOX) and har-

bored blaTEM-1, strA-strB, sul2, tetB. Besides, two (2.3%) XDR isolates to eight antimicrobial

classes (AMP, CHL, STR, GEN, SOX, TCR, DOX, NAL, CIP, AMC, AZM, CRO, FEP) and

harbored blaTEM-1, blaCTX-M-55, aac(3) -IV, strA-strB, sul2, tetB (Fig 2). The kappa correlation

between phenotypic and genotypic resistance was showed in Table 3. Cohen’s kappa was the

highest for blaCTX-M vs CRO (Kappa = 0.794) and blaCTX-M vs FEP (Kappa = 0.673), followed

by cmlA1 (Kappa = 0.509) vs CHL, strA-strB vs STR (Kappa = 0.418), and tetB vs TCY

(Kappa = 0.388) (Table 3). In general, a certain correlation was seen between the antimicrobial

phenotypes with genotypes.

Virulence genes distribution

All Salmonella 4,[5],12:i:- isolates carried invA, siiE and sopB genes. The existence of other vir-

ulence genes including sseL, mgtC, gipA, gtgB, sspH1, and sspH2 were 72.4%, 98.9%, 97.7%,

95.4%, 79.3%, and 89.7%, respectively. SopE gene was present in 33 isolates with a detection

rate of 37.9%. SpvB and spvR genes were detected in one isolate, while neither spvC nor pefA
genes were present. All isolates harbored at least six virulence genes, and 62.1% (54/87) isolates

were positive to nine or more virulence genes. A total of 20 different virulence gene profiles

(VP1~VP20) among the 87 Salmonella 4,[5],12:i:- isolates were observed, and VP1 (invA-sseL-

mgtC-siiE-sopB-gipA-gtgB-sspH1-sspH2) was the primary one, accounting for 33.3% (29/87),

as shown in Table 4 and S3 Fig.
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Table 2. Antimicrobial resistance profile of Salmonella 4,[5],12:i:- isolates.

No. of isolates % Type of resistance antimicrobial resistance profile No. of isolates %

4 4.5 R STR 1 1.1

NAL 2 2.3

TCR-DOX 1 1.1

78 89.6 MDR AMP-STR-SOX-TCR-DOX-AMC 14 16.1

AMP-STR-SOX-TCR-DOX 13 14.9

AMP-CHL-STR-SOX-NAL-SXT 5 5.7

AMP-CHL-STR-SOX-TCR-DOX-SXT 4 4.6

AMP-STR-SOX-TCR-DOX-CRO-FEP 3 3.4

AMP-CHL-STR-SOX-TCR-DOX-AMC 2 2.3

AMP-CHL-STR-SOX-TCR-DOX-SXT-AMC 2 2.3

AMP-CHL-STR-SOX-TCR-DOX-GEN-SXT 2 2.3

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-CIP-SXT-AMC 2 2.3

STR-SOX-TCR-DOX 2 2.3

AMP-CHL-STR-SOX-TCR-DOX 1 1.1

AMP-CHL-STR-SOX-TCR-DOX-CRO-FEP 1 1.1

AMP-CHL-STR-SOX-TCR-DOX-GEN-CIP-SXT-AZM 1 1.1

AMP-CHL-STR-SOX-TCR-DOX-GEN-CRO 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-CIP-SXT 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-CIP-CRO-FEP 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-CIP-SXT 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-CRO 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-CIP-SXT 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-CIP-SXT-CRO-FEP 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-SXT 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-SXT-AMC 1 1.1

AMP-CHL-SOX-NAL-AMC 1 1.1

AMP-CHL-SOX-TCR-NAL-DOX-CIP 1 1.1

AMP-STR-SOX 1 1.1

AMP-STR-SOX-TCR 1 1.1

AMP-STR-SOX-TCR-DOX-AMC-CRO-FEP 1 1.1

AMP-STR-SOX-TCR-DOX-AMC-IMP 1 1.1

AMP-STR-SOX-TCR-DOX-CRO 1 1.1

AMP-STR-SOX-TCR-DOX-SXT-AMC 1 1.1

AMP-STR-SOX-TCR-DOX-SXT-AMC-CRO-PEF 1 1.1

AMP-STR-SOX-TCR-DOX-GEN-CIP-SXT-AZM-CRO-PEF 1 1.1

AMP-STR-SOX-TCR-NAL-DOX-AMC 1 1.1

AMP-STR-SOX-TCR-NAL-DOX-CIP 1 1.1

AMP-SOX-TCR-NAL-DOX 1 1.1

AMP-TCR-DOX-CRO-FEP 1 1.1

CHL-STR-SOX-NAL-GEN-SXT 1 1.1

CHL-STR-SOX-TCY-NAL-DOX-SXT 1 1.1

STR-SOX-TCY-NAL-DOX-SXT 1 1.1

4 4.5 XDR AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-CIP-SXT-AZM-CRO-FEP 2 2.3

AMP-CHL-STR-SOX-TCR-NAL-DOX-SXT-AMC-CRO-FEP 1 1.1

AMP-CHL-STR-SOX-TCR-NAL-DOX-GEN-AMC-CRO-FOX 1 1.1

CIP (ciprofloxacin), STR (streptomycin), AMP (ampicillin), CHL (chloramphenicol), SOX (sulfaisoxazole), SXT (trimethoprim sulfamethoxazole), NAL (nalidixic),

AMC (amoxicillin / clavulanate potassium), CRO (ceftriaxone), DOX (doxycycline), GEN (gentamicin), AZM (azithromycin), TCY (tetracycline), FOX (cefxitin), FEP

(cefepime), IMP (imipenem).

https://doi.org/10.1371/journal.pone.0266443.t002
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MLST typing

All the 87 Salmonella 4,[5],12:i:- isolates were classified into three STs by MLST typing (Fig 2

and S4 Fig). ST34 was the dominant sequence type of Salmonella 4,[5],12:i:-, accounting for

97.7% (85/87). The other two STs were ST19 and ST1746, respectively. ST34 and ST1746 were

a single-locus variant of ST19, with only one allele locus difference. The dnaN allele was dis-

tinct between ST34 and ST19 (dnaN19 replaced dnaN7). The purE allele was distinct between

ST1746 and ST19 (purE6 replaced purE5).

Fig 2. MLST clustering tree of the 87 Salmonella 4,[5],12:i:- isolates in Guizhou from 2013 to 2018 with the antimicrobial

resistance profile, antimicrobial resistance genes, and virulence gene profile.

https://doi.org/10.1371/journal.pone.0266443.g002

PLOS ONE MDR, antimicrobial resistance genes, and virulence genes in Salmonella enterica serovar 4,[5],12:i:- isolates

PLOS ONE | https://doi.org/10.1371/journal.pone.0266443 May 19, 2022 8 / 16

https://doi.org/10.1371/journal.pone.0266443.g002
https://doi.org/10.1371/journal.pone.0266443


Discussion

Salmonella 4,[5],12:i:- has increased significantly in human cases of Salmonellosis within the

past two decades [10]. In Europe, Salmonella 4,[5],12:i:- was the third most common serotype

of human Salmonellosis, accounting for 7.9% of foodborne disease outbreaks [33]. In recent

years, this serotype has been increasing in China, and it has become one of the four most com-

mon serotypes causing human Salmonellosis [34]. Previous studies suggested that most Salmo-
nella 4,[5],12:i:- isolates were from pigs and pork products, while other sources were thought

to be rare [33, 35]. Here, the prevalence of Salmonella 1,4,[5],12:i:- clinical isolates in Guizhou

over six years was higher compared with other regions and countries [16, 34].

Tests of susceptibility to 16 antimicrobial agents showed that isolates exhibited high resis-

tance to sulfamethoxazole, streptomycin, ampicillin, tetracycline, and doxycycline (82.5%

~92.0%), which was similar to other studies in China [36, 37], but much higher than that

reported in Korea [16] and Japan [38]. Extended-spectrum cephalosporins and fluoroquino-

lones are the two most crucial antimicrobials for the treatment of invasive and severe infection

of Salmonella, and the third/fourth-generation cephalosporins are mainly known as "Critically

important antimicrobials" [39]. In the present study, we observed 19.5% and 14.9% isolates

were resistant to ceftriaxone and cefepime, respectively. In addition, the sensitivity of

Table 3. The correlation between the phenotypic and genotypic of Salmonella 4,[5],12:i:- isolates.

Antimicrobial resistance genes vs.antimicrobials Gene (+) Gene (-)

Phenotype (+) Phenotype (-) Phenotype (+) Phenotype (-) Kappa P
blaTEM-1 vs AMP 63 2 15 7 0.357 <0.001

blaTEM-1 vs AMC 22 43 6 16 0.042 0.568

blaTEM-1 vs CRO 12 53 5 17 -0.025 0.663

blaTEM-1 vs FOX 0 65 1 21 -0.023 0.084

blaTEM-1 vs FEP 10 55 3 19 0.010 0.842

blaOXA-1 vs AMP 5 0 72 10 0.009 0.407

blaOXA-1 vs AMC 2 3 26 56 0.026 0.700

blaOXA-1 vs CRO 2 3 15 67 0.102 0.235

blaOXA-1 vs FOX 1 4 0 82 0.320 <0.001

blaOXA-1 vs FEP 0 5 13 69 -0.091 0.334

blaCTX-M vs AMP 12 0 65 10 0.041 0.179

blaCTX-M vs AMC 2 10 26 49 -0.115 0.215

blaCTX-M vs CRO 12 0 5 70 0.794 <0.001

blaCTX-M vs FOX 0 12 1 74 -0.020 0.681

blaCTX-M vs FEP 9 3 4 71 0.673 <0.001

cmlA1 vs CHL 22 4 15 46 0.509 <0.001

floR vs CHL 15 3 22 47 0.370 <0.001

aac (3)-IV vs STR 5 0 79 3 0.005 0.631

aac (3)-IV vs GEN 3 2 11 70 0.313 0.001

aadA2 vs STR 27 0 53 7 0.076 0.064

aadA2 vs GEN 10 17 5 55 0.327 0.001

strA-strB vs STR 77 4 3 3 0.418 <0.001

strA-strB vs GEN 14 67 2 4 -0.028 0.288

sul2 vs SOX 76 4 4 3 0.321 0.003

sul2 vs STX 32 48 2 5 0.013 0.765

tetB vs TCY 74 8 1 4 0.388 <0.001

tetB vs DOX 72 10 1 4 0.336 <0.001

https://doi.org/10.1371/journal.pone.0266443.t003
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ciprofloxacin decreased significantly, which may affect the clinical treatment effect. Azithro-

mycin is a significant antibacterial drug with safety and excellent activity in treating Salmonel-
losis [40]. Notably, we found 3.4% Salmonella 4,[5],12:i:- isolates were co-resistance to

azithromycin, ciprofloxacin, third /fourth-generation cephalosporins, and azithromycin. Car-

bapenems are atypical β-lactamase antimicrobial with the broadest antimicrobial spectrum,

and it is still infrequent in the treatment of Salmonellosis [41]. Unfortunately, an imipenem-

resistant Salmonella 4,[5],12:i:- isolate, collected from a 9-month-old boy in 2015 from Tong-

ren, was found in this study. Our results indicated that the antimicrobial resistance phenome-

non of Salmonella 4,[5],12:i:- in Guizhou was not optimistic and dynamic monitoring of

antimicrobial resistance should be strengthened for this serotype.

Isolates showed a high-level MDR (89.6%) in our study, which was much higher than that

of previous studies in China [34], Switzerland [42], and Denmark [35]. Over the last two

decades, two primary MDR clones of Salmonella 4,[5],12:i:- were recognized as important for

public health [43]. One clonal line (European clone) was characterized by chromosomally

encoded resistance to ampicillin, streptomycin, sulfonamides, and tetracyclines (ASSuT), and

another clonal line (Spanish clone) was characterized by plasmid-encoded resistance to ampi-

cillin, chloramphenicol, sulfonamides, gentamicin, streptomycin, tetracycline, and trimetho-

prim (ACSuGSTTm) [10, 43]. In our study, 44.8% and 12.6% isolates displayed similar MDR

profiles with European and Spanish clones, respectively. Moreover, isolates exhibited more

comprehensive MDR profiles. In our study, isolates showed resistance to 13 of the 16 antimi-

crobial agents, further limiting the selection of antimicrobials for clinical treatment of Salmo-
nella 4,[5],12:i:- infection.

Table 4. Virulence gene profiles of the Salmonella 4,[5],12:i:- isolates.

Virulence gene profiles Salmonella pathogenicity island genes Prophage virulence genes Plasmid virulence genes No.(%)

invA sseL mgtC siiE sopB gipA gtgB sopE sspH1 sspH2 spvB spvC spvR pefA
VP1 + + + + + + + − + + − − − − 29(33.3)

VP2 + + + + + + + + + + − − − − 14(16.1)

VP3 + − + + + + + − + + − − − − 12(13.8)

VP4 + + + + + + + + − − − − − − 7(8.0)

VP5 + + + + + + + − − + − − − − 5(5.7)

VP6 + − + + + + + + + + − − − − 5(5.7)

VP7 + − + + + + + − − + − − − − 2(2.3)

VP8 + − + + + + + + − + − − − − 1(1.1)

VP9 + − + + + + − − + + − − − − 1(1.1)

VP10 + − + + + + − − − + − − − − 1(1.1)

VP11 + + + + + − + + + + − − − − 1(1.1)

VP12 + + + + + + + − − − − − − − 1(1.1)

VP13 + − + + + + + − + + − − + − 1(1.1)

VP14 + − + + + − + + + + − − − − 1(1.1)

VP15 + + + + + + + + + − − − − − 1(1.1)

VP16 + + + + + + + + + + + − − − 1(1.1)

VP17 + + + + + + + + − + − − − − 1(1.1)

VP18 + + + + + + − − + + − − − − 1(1.1)

VP19 + + + + + + − + + + − − − − 1(1.1)

VP20 + + − + + + + − + + − − − − 1(1.1)

+ indicates the existence of the gene; − indicates the nonexistence of the genes

https://doi.org/10.1371/journal.pone.0266443.t004
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Antimicrobial resistance gene detection showed that most isolates harbored blaTEM-1, strA-
strB, sul2 and tetB genes regardless of origin. These genes are present in a chromosomal resis-

tance island of Salmonella [10]. They are typically associated with the European clone [10, 15],

which suggested that the resistant clone of Salmonella 4,[5],12:i:- isolates from Guizhou might

be related to the European clone. There was a specific correlation between the antimicrobial

phenotypes of β-lactamase, phenicols, aminoglycosides, sulfonamides, and tetracyclines with

their resistance genotypes. Among the phenicols resistance genes, cmlAl and floR genes were

found to have a moderate and fair correlation with phenotypic resistance of chloramphenicol,

respectively. They can be located in large plasmids and transposons of Salmonella 4,[5],12:i:-,

enabling the transfer of resistance genes between isolates [44]. Among the aminoglycosides

resistance genes, the strA-strB gene has been found to have moderate correlation with pheno-

typic resistance of streptomycin. However, the streptomycin phenotype was mainly related to

aph(3’)-Ia, aadA1, and aadA2 genes in Huang et al [45]. Among the sulfonamides resistance

gene, sul2 gene was found to have fair correlation with phenotypic resistance of sulfaisoxazole.

Sul2 gene was dominant in most sulfonamides resistance mechanisms of Salmonella 4,[5],12:

i:- and always coexisted with sul1, sul3, and dfrA12 genes [44]. Among the tetracyclines resis-

tance gene, tetB gene has been correlated with phenotypic resistance of tetracycline and doxy-

cycline. This gene is the most common active efflux gene and ribosomal protective gene for

resistance to tetracyclines in Salmonella 4,[5],12:i:-.

Significantly, extended-Spectrum β-lactamase (ESBLs) Salmonella is considered a severe

global public health problem [10]. In this study, blaTEM-1 was the most frequent ESBLs gene

consistent with Eastern China [37] and Thailand [46]. It is known that blaCTX-M is a plasmid-

mediated ESBLs enzyme that preferentially hydrolyzes ceftriaxone or cefotaxime, becoming an

effective mechanism of Salmonella resistance to broad-spectrum cephalosporin [47]. In our

study, the blaCTX-M gene has been found to have a substantial correlation with the phenotypic

resistance of ceftriaxone and cefepime. Five different blaCTX-M genes were identified, of which

blaCTX-M-55 was the most prevalent in Guizhou. The detection rate of blaOXA-1 (5.7%) in this

study was lower than that in Eastern China (18.4%) [37], but higher than that reported in

Europe (0.21%) [48] and the United States (0.22%) [49]. It is worth noting that a proportion of

isolates contained multiple ESBLs genes, which may enhance the adaptability of Salmonella 4,

[5],12:i:- to cephalosporin drugs, thus affecting clinical treatment outcomes. Therefore, great

attention should be paid to these isolates in future resistance monitoring. In our study, several

isolates carried antimicrobial resistance genes without showing antimicrobial resistance phe-

notype. It might be because the drug resistance mechanism of Salmonella 4,[5],12:i:- was very

complex and some resistance genes were not investigated in this study [50]. A more compre-

hensive drug resistance mechanism investigation of Salmonella 4,[5],12:i:- by whole genome

sequencing needs to be performed in our future studies.

The pathogenicity of Salmonella involves different virulence genes, which contribute to the

invasionand reproduction of Salmonella in a complex environment [13]. The invA, sseL, mgtC,

siiE, and sopB genes were highly conserved and were genetic markers for the Salmonella patho-

genicity island (SPI) in Salmonella [51]. The high prevalence of these virulence genes in our

study also indicated widespread and highly conserved. The prophage virulence genes gipA,

gtgB, sspH1, and sspH2 were highly prevalent, while the sopE gene was present in a few isolates.

The sopE and gipA genes can be transferred by phages, then grow and survive in the Peyer’s

patches, which will significantly increase the toxicity of Salmonella [9]. By contraries, we found

that plasmid virulence genes had shallow detection in Salmonella 4,[5],12:i:- isolates. The plas-

mid virulence spvC and pefA genes were not detected in all Salmonella 4,[5],12:i:- isolates. Sim-

ilar observations have been recorded in previous studies [34, 52]. The pefA gene product

facilitates bacterial attachment to host epithelial cells [53]. In contrast, SpvC, a
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phosphothreonine lyase, is an effector protein involved in immune evasion in the early stages

of infection and dissemination of the pathogen at the later stages [53]. These virulence genes

were more prevalent in Salmonella Typhimurium and Salmonella Enteritidis isolates but were

rare in Salmonella 4,[5],12:i:- [34, 54], which indicated that the presence of plasmid virulence

in Salmonella might be related to specific serotypes. Generally, the plasmid virulence genes of

Salmonella play a role in systemic infection, but not in the gastrointestinal form [55]. In our

study, whether the absence of plasmid virulence genes in Salmonella 4,[5],12:i:- isolates were

related to the origin of these isolates mainly from feces remains to be further confirmed.

In the last 20 years, the prevalent ST clones of Salmonella 4,[5],12:i:- have been changed.

ST19 was the main ST clone in the US and Europe during 1991–2016, but the ST34 clone has

become increasingly common since 2014 [10, 37]. In our study, all Salmonella 4,[5],12:i:- iso-

lates were assigned to three STs and ST34 was the main clone, which was consistent with the

European epidemic clone [11, 36]. MLST clustering tree showed that the genetic distance

between ST34, ST1746 and ST19 was very close, with only one allele loci difference, indicating

that Salmonella 4,[5],12:i:- ST19 was likely to be their clonal ancestors. Microevolution

between different ST clones isolates remains determined by the Whole-genome sequencing

technology and phylogenetic analysis.

Conclusions

In summary, we characterized the antimicrobial resistance, antimicrobial resistance gene, viru-

lence profiles, and MLST of Salmonella 4,[5],12:i:- isolates from 2013 to 2018 in Guizhou,

located in the southwest of China. Here, the prevalence of this serotype was at a high level. Iso-

lates showed high rates of resistance to sulfamethoxazole, streptomycin, ampicillin, tetracy-

cline, and doxycycline. A high burden of MDR was observed. Some isolates were co-resistant

to ciprofloxacin, third and fourth-generation cephalosporins, and azithromycin had been

found. Furthermore, the emergence of carbapenem-resistant and XDR isolates in Salmonella
4,[5],12:i:-. It is of great importance to strengthen the drug resistance monitoring of this sero-

type. Virulence genes and drug resistance genes were carried more frequently. The most com-

mon antimicrobial resistance genes were blaTEM-1, strA-strB, sul2 and tetB. A certain

correlation between the antimicrobial phenotypes and genotypes was found. The examined

Salmonella 4,[5],12:i:- isolates were mainly ST34. Our findings might be helpful to preliminary

understand the characterization of this serotype in Guizhou. Further studies are needed to

assess Salmonella 4,[5],12:i:- in more detail to better understand the antimicrobial resistance,

pathogenicity, and genetic background.
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