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Abstract

Background

Marine species can demonstrate strong genetic differentiation and population structure

despite the hypothesis of open seas and high connectivity. Some suggested drivers causing

the genetic breaks are oceanographic barriers and the species’ biology. We assessed the

relevance of seven major oceanographic fronts on species connectivity while considering

their dispersal capacity and life strategy.

Methods

We systematically reviewed the scientific articles reporting population genetic differentiation

along the Mediterranean Sea and across the Atlantic-Mediterranean transition. We retained

those considering at least one sampling locality at each side of an oceanographic front, and

at least two localities with no-front between them to correctly assess the effect of the front.

To estimate the impact of life history characteristics affecting connectivity we considered the

planktonic larval duration (PLD) and adult life strategy.

Results

Oceanographic barriers in the Mediterranean Sea seem to reduce gene flow globally; how-

ever, this effect is not homogeneous considering the life history traits of the species. The

effect of the oceanographic fronts reduces gene flow in highly mobile species with PLD

larger than 2–4 weeks. Benthic sessile species and/or with short PLD (< 2 weeks) have

more significant genetic breaks between localities than species with higher motility; how-

ever, genetic differentiation occurs independently of the presence of a front.
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Conclusion

Genetic connectivity is important for populations to recover from anthropogenic or natural

impacts. We show that species with low mobility, mostly habitat-formers, have high genetic

differentiation but low gene flow reduction mediated by the front, therefore, considering the

importance of these species, we emphasize the vulnerability of the Mediterranean ecosys-

tems and the necessity of protection strategies based on the whole ecosystem.

Introduction

The Mediterranean Sea displays one of the world’s richest diversity [1]. This basin contains

more than 20,000 species of fish, cetaceans, invertebrates, sea turtles, algae and seaweeds, with a

large proportion of endemism (ca. 20%). For this reason the Mediterranean Sea has been defined

as a biodiversity hotspot for conservation priorities. As a consequence, there is an increasing

interest to protect this unique natural heritage, and several Congress and World Summits have

called on countries to establish a system of networks of marine protected areas (MPAs) with the

aim of covering 20 to 30% of the total area [2]. Furthermore, an emphasis is laid on commercial

species, where the management structures have not been sufficiently enforced [3].

Modelling studies have indicated the great importance of spatial configurations of MPAs

and stock identification units to promote population and ecosystem persistence [4,5].

Although these configurations are clear in modelling results, efforts to assess and design MPAs

and stock identifications are hindered by the lack of knowledge of several important factors.

One of the major issues is the uncertainty about propagule dispersal which is one of the essen-

tial processes connecting areas and populations [6–8]. Currents and other oceanographic pro-

cesses, which are often not being considered in management policies, potentially influence this

dispersal capability and connectivity [9,10].

The majority of marine animals show life histories characterized by a long planktonic larval

phase potentially allowing long-distance dispersal by marine currents. Therefore, we would

expect to see low genetic structuring between localities of many marine species [11,12]. This

could be particularly true in species with high fecundity or very large population sizes that

potentially can have long-distance dispersal of eggs, larvae or adults [13]. However, a large

number of studies in the last decade have disproven the concept that the seas are ‘open’ and

well–connected and it has been shown that a number of species present a spatial genetic differ-

entiation which is higher than expected if we only consider their dispersive abilities [14–16].

Several mechanisms may cause genetic differentiation between populations such as vicariance

processes, caused by historical barriers, oceanographic currents, habitat discontinuities, local

adaptation, larval behaviour, isolation by distance and limited dispersal capabilities [17].

Therefore, the global level of genetic differentiation within species results from a complex

equilibrium between structuring factors (e.g. oceanographic fronts, isolation by distance) and

homogenising factors (e.g. long larval pelagic phase, migratory behaviour of adults) [11].

The length of the pelagic phase or planktonic larval duration (PLD) could be considered as

proxy of the species’ dispersal potential, being one of the most important homogenising factors

in the population structure [18]. In the marine environment, dispersal can be validated using

genetic markers as a measure of connectivity among localities [19]. Some studies have demon-

strated that PLD and genetic metrics typically reflect scales of dispersal [20] but see the review

of Selkoe et al.[9], whereas others have shown no clear patterns between genetic connectivity

and dispersal capabilities [21].
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In the Mediterranean Sea, oceanographic processes, such as current patterns and oceano-

graphic discontinuities are crucial factors influencing population genetic connectivity

[17,21,22]. Hence, to understand connectivity patterns on a large-scale it is important to con-

sider the physical processes possibly influencing gene flow between localities. The Mediterra-

nean Sea is an ideal study area for a survey incorporating oceanographic features and gene

flow. The circulation patterns within the Mediterranean Sea is well described [23,24]. More-

over, several oceanographic discontinuities (Fig 1), mostly on the Spanish coast, originated by

the entry of less saline Atlantic waters throughout the Gibraltar Strait have been reported to

act as barriers to gene flow for numerous species [21,25,26]. The best-studied discontinuity is

the Almeria-Oran Front (AOF), which has been proposed to be the main point of genetic

break between the Atlantic Ocean and the Mediterranean Sea [27]. Other fronts have also

shown to be strong barriers for genetic exchange in some species, such as the Balearic Front

(BF) [21] or the Ibiza channel (IC) [28]. Other oceanographic processes occurring within the

Mediterranean Sea, e.g. along the Sicily Channel, the Otranto Channel or the southern margin

of the Aegean Sea, can also act as barriers to gene flow, however, their importance is not well

studied [29–31].

Recently, some studies have provided interesting models defining hydrodynamic provinces,

by coupling Lagrangian simulations of particles with oceanographic currents to modelate the

transport of larvae in order to characterize marine connectivity [32,33]. The main aim of these

models was to identify natural conservation units to be used in the establishment of an MPA

network. These units would be defined as the Cells of Ecosystem Functioning (CEF), based on

both oceanographic and ecological processes, arranged in space so as to account for both pat-

terns (biodiversity distribution) and processes (ecosystem functioning) [34]. However, these

CEFs do not include data on gene flow among localities hence lacking an important factor in

connectivity processes. A review by Patarnello et al. [27] was the first attempt to summarize

Fig 1. Map of the Mediterranean Sea with the name of the sub-basins, main currents (white lines) and oceanographic fronts analysed (red lines).

The name of the fronts and the acronym used (in black) is as follows: GS (Gibraltar Strait), AOF (Almeria-Oran Front), IC (Ibiza Channel), BF (Balearic

Front), SC (Sicily Channel), ADR (Otranto Channel), AEG (southern margin of the Aegean Sea).

https://doi.org/10.1371/journal.pone.0176419.g001
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the genetic data regarding the biogeographical separation between the Mediterranean and

Atlantic biota. This review (including 20 studies) showed steep changes of allele frequencies

associated with the Almeria-Oran Front (AOF) but failed to relate biological traits with genetic

differentiation. After this review numerous genetic studies have been carried out in different

areas of the Mediterranean, most of them analysing one or more oceanographic fronts. Some

of the studies, however, do not provide data comparing localities separated by fronts and con-

trol sites to correctly evaluate the influence of the front. Other studies contain genetic differ-

ences between sampling localities that include more than one front between them making it

difficult to draw adequate conclusions on the influence of the oceanographic fronts on gene

flow. Hence, there is a lack of a comprehensive analysis on the effect of oceanographic fronts

on gene flow in the Mediterranean Sea, which can seriously compromise our knowledge on

the connectivity patterns among localities and in the establishment of MPA networks [34].

In the present review we aim to assess the effect of life history characteristics on population

differentiation considering the impact of oceanographic discontinuities. In order to correctly

evaluate whether a front is the cause for genetic differences between localities we screened all

population genetic studies based in the Mediterranean Sea considering at least one sampling

locality at each side of the oceanographic front, and at least two localities with no-front

between them. We focus our review on the seven most important Mediterranean oceano-

graphic discontinuities: Gibraltar Strait (GS), Almeria-Oran Front (AOF), Ibiza Channel (IC),

Balearic Front (BF), Sicily Channel (SC), Otranto Channel (ADR) and the southern margin of

the Aegean Sea (AEG) [23,35,36]. Our main goal is to evaluate the impact of life history char-

acteristics on connectivity reduction, in both the absence and presence of fronts, so we catego-

rized all species based on their larval dispersal capabilities and their adult behaviour. Finally,

we discuss the potential implications of life history traits and oceanographic discontinuities in

the establishment of management units and networks of MPAs.

Materials and methods

We searched the ISI Web of Knowledge database for scientific articles dated until 2016 which

evaluated population genetic differentiation along the Mediterranean Sea and across the

Atlantic-Mediterranean transition. Keywords were selected to identify these studies: “Mediter-

ranean Sea”, “gene flow”, “genetic/population structure”, “genetic differentiation”, “connectiv-

ity”, which resulted in a total of 718 studies (Fig 2). We assessed 440 papers but retained only

72 that could be used to correctly evaluate the impact of oceanographic fronts (Fig 2 and S1

Checklist). We retained only those studies meeting the following criteria: reporting the analysis

of genetic differentiation between localities situated at both sides of one front and including

genetic data from localities not separated by a front that could be used as control, and also

based on molecular marker selection see below. A comparison was also excluded whenever

more than one front was present between two localities. Control localities are necessary to cor-

rectly evaluate the effect of a front as they allow discriminating between reduced connectivity

due to the species limited dispersal capabilities or to the effect of the oceanographic front [21].

Invasive species were not included in the analyses to avoid confounding effects due to genetic

differentiation between localities driven by passive colonization, sometimes from different

native areas and highly influenced by genetic drift during arrival of colonisers [37–39].

Molecular markers selection

Different molecular markers have been suggested to be more adequate at identifying histo-

rical (e.g. mtDNA) or contemporary (e.g. microsatellites) processes [40]. We therefore classi-

fied marker types into two groups: Mitochondrial genes, including COI, 16S, cyt b were
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categorized as “MT”, and nuclear polymorphic genes including allozymes, microsatellites and

SNPs under the category “NUC”. For some species more than one study or analysis with sev-

eral different molecular markers and genetic distance measurements were available. To avoid

biases due to overrepresentation of the same species in each front, only one analysis per species

per front was considered. The following criteria were applied: (1) for studies applying nuclear

and mitochondrial markers the former were preferentially chosen; (2) when several indices

were reported we preferentially retained the data for FST values between localities against other

less frequently used indices.

Oceanographic discontinuities

Between the Atlantic Ocean and Mediterranean Sea there are 7 major fronts frequently ana-

lysed in population genetic and biogeographic studies (see Fig 1): Gibraltar Strait (GS),

Fig 2. PRISMA flow diagram for literature search.

https://doi.org/10.1371/journal.pone.0176419.g002
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Almeria-Oran (AOF), Ibiza Channel (IC), Balearic Front (BF), Sicily Channel (SC), Otranto

Channel (ADR), and the southern margin of the Aegean Sea (AEG). The inflow of the North

Atlantic Central Water (NACW) throughout the Gibraltar Strait (GS) is the most important

oceanographic process between the Atlantic Ocean and Mediterranean Sea [36,41]. The GS

discontinuity is located just before the entry of the Atlantic waters throughout the Gibraltar

Strait, when the NACW recirculates near the Strait, in front of Cape Trafalgar towards the

northwest along the coast of Cadiz [42]. Once in the Mediterranean Sea the NACW encoun-

ters the higher density Mediterranean water generating the Almeria-Oran front (AOF), a

quasi-continuous front where its northern end detaches from the Spanish coast between Alme-

ria and Cartagena and its southern end terminates around Oran on the North African coast

[43]. The NACW is modified, increasing its salinity, into a mass usually called Modified Atlan-

tic Water (MAW) that reaches the north-western Mediterranean basin and is deflected east-

ward by the cyclonic circulation around the Balearic Islands forming a well-defined second

density front, the Balearic Front (BF). Just south of this front is the Ibiza Channel (IC), 80 Km

width and 800 m depth, corresponding to the passage intersecting the Balearic topographic

ridge between Ibiza and the Iberian Peninsula at Cape La Nao (Fig 1). The MAW also flows

along the Algerian coast and crosses the Sicily Channel (SC), which divides the Western and

Eastern basins of the Mediterranean Sea [35,36]. The next front considered going eastwards is

the Otranto Channel (ADR) located at the entrance of the Adriatic Sea whose sill is 800 m

deep [44]. Finally, around the southern margin of the Aegean Sea (AEG) another oceano-

graphic discontinuity is observed formed by several cyclonic, anticyclonic gyres and eddies

interconnected by currents and jets flowing at speeds of 20–30 cm s-1 [45].

Life history data

To evaluate the impact of life history characteristics affecting connectivity we considered the

planktonic larval duration (PLD), as a proxy of larval dispersal, and adult life behaviour. Each

species was assigned to one of the following three groups according to their PLD: 1–15 days

(S), 16–30 days (M),�31 days (L). Another categorical variable was constructed according to

adult life strategy (LIFE): species were considered to be benthic sessile or with limited motility

(BS), benthic vagile (BM), or pelagic (PEL). Finally, we also categorized the species according

to major taxonomic groups: Angiosperm, Porifera, Cnidaria, Echinodermata, Mollusca, Crus-

tacea, Tunicata and Pisces and grouped into a phylogenetic tree [46]. Biological information

was obtained from the literature for angiosperm [47], porifera [48], cnidaria [49], echinoder-

mata [50], mollusca [51–53], crustacea [54], tunicata [55] and pisces [56,57] (see also refer-

ences cited in these articles).

Statistical analyses

Pairwise genetic population distances (preferentially FST), comparing localities separated by

fronts and one control pairwise comparison representative of no-fronts, were extracted from

the selected scientific articles. Geographic distances between locations were approximated fol-

lowing the coastline with Google Earth.

For different life history categories (PLD and LIFE strategy) we tested differences in fre-

quency of significant genetic distances between localities, separated by fronts or control sites,

by chi-square tests [58].

In order to avoid differences in significance due to isolation by distance, for each selected

article all pairwise genetic distances (FST) were also standardized by geographic distance in

Km as in Galarza et al.[21]. We considered the existence of connectivity reduction to be medi-

ated by the front when the standardized FST between localities separated by front was larger
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than between control sites. We compared the two standardized pairwise FST (with front and

no-front) with a Wilcoxon matched pairs test for each variable (FRONT, PLD, LIFE strategy

and MARKER) using the programme STATISTICA V 8 [59].

To analyse the interaction between the front effect and the other variables, we created a

continuous variable ranging between 0 and 1 called NDIF. This variable was calculated as (x-

xmin) / (xmax-xmin) were x represents the difference between front and no-front standard-

ized FST values, xmax is the highest difference value and xmin the smallest one. We performed

permutational multivariate analysis of variance (PERMANOVA) using the statistical package

PRIMER-E v6 [60]. We used NDIF as dependent variable and PLD (S, M, L), LIFE strategy

(BS, BM, PEL), MARKER (MT, NUC) and FRONT (Gibraltar Strait (GS), Almeria-Oran

(AOF), Ibiza Channel (IC), Balearic Front (BF), Sicily Channel (SC), Otranto Channel (ADR),

and the southern margin of the Aegean Sea (AEG)) as fix factors. PLD and LIFE strategy were

not analysed together because not all levels were represented in both predictive variables. The

assayed interactions included FRONT×PLD, FRONT×LIFE, and FRONT×MARKER. For

each analysis 999 permutations were carried out.

Results

In total 72 scientific papers passed our requirements to assess the effect of the fronts along the

Mediterranean Sea and across the Atlantic-Mediterranean transition. These papers measured

genetic differentiation between localities influenced by a front as well as a control comparison

between localities without no-front (S1 Table). The mean geographic distance (±SE) between

the selected control locations was 305 Km (± 13.3 Km). Fronts were evaluated selecting two

localities on each side of the front with a mean distance of 492 Km ± 25.2 Km. Overall, we had

information of 176 datasets of 70 species analysing different fronts (S2 Table). Fishes were the

most represented taxonomic group (41.1%), followed by crustaceans (21.0%) and molluscs

(13.6%). The mean (±SE) number of fronts correctly analysed per species in each reference

was 2.12 ± 0.13.

Genetic data and life history traits

We observed that 66% of comparisons involving species with short PLD (S) had significant dif-

ferences between localities, while only 41% and 28% were significant for species with medium

(M) and long (L) PLD, respectively (Fig 3A). This difference was observed in sites separated by

a front (Chi: 16.53, p = 0.0003) and also in control sites not separated by any known front

(Chi: 18.66, p = 0.0001). A similar trend was observed considering the LIFE strategy variable,

where the percentage of significant comparisons reduced with increased mobility (Fig 4A).

The percentage of benthic sessile (BS) species showing significant genetic differences was

always higher than in species with higher motility capacity (BM and PEL). However, no signifi-

cant differences between categories were observed for locations separated by a front (Chi: 4.33,

p = 0.1146) or without front (Chi: 2.78, p = 0.2490).

Effects of oceanographic fronts

We compared the standardized FST distances between localities separated by the front (F)

and those without front (NF) and considered gene flow reduction when the former distance

was larger. The frequency of comparisons with reduction increased with PLD (Fig 3B), being

49% for species with small PLD and 66% for species with large PLD. The same tendency was

observed for adult LIFE strategy (Fig 4B), with benthic sessile or limited motility species show-

ing the lowest number of comparisons with front reduction (47%) and pelagic species the larg-

est (82%).
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We also evaluated the impact of life history traits (PLD, LIFE strategy and the two of

them combined to integrate the whole life-history) on the connectivity reduction mediated

by fronts using Wilcoxon matched pairs tests (Table 1). Interestingly, oceanographic disconti-

nuities significantly reduced gene flow in species with L PLD, with PEL LIFE strategy, as well

as in species with BMM and PELL categories combining both adult and larval mobility capaci-

ties (Table 1). No significant reduction mediated by the front was observed with Wilcoxon

matched pairs test for different types of markers (Table 1). Thus, although presenting higher

genetic differentiation between localities (Figs 3A and 4A), species with low dispersal capabili-

ties seemed less affected by the fronts (Figs 3B and 4B). On the contrary, the connectivity of

species with larger motility capacity would be more affected by oceanographic discontinuities.

We detected gene flow reduction for species with long PLDs (more than two weeks) in most

Mediterranean fronts (Fig 5 and S3 Table). Furthermore, higher frequency of significant

genetic differentiation in short PLD species and reduced adult mobility across discontinuities

was observed across most Mediterranean oceanographic fronts (Fig 5 and S3 Table).

Fig 3. Influence of Planktonic larval duration (PLD) categories on genetic connectivity. (A) Frequency

of significant genetic differences (P<0.05) between localities separated by a front and without a front. (B)

Frequency of comparisons showing genetic reduction mediated by the front. PLD categories are identified as

S = 1–15 days, M = 16–30 days and L� 31 days.

https://doi.org/10.1371/journal.pone.0176419.g003

Fig 4. Influence of adult LIFE strategy categories on genetic connectivity. (A) Frequency of significant

genetic differences (P<0.05) between localities separated by a front and without a front. (B) Frequency of

comparisons showing genetic reduction mediated by the front. LIFE strategy categories are identified as

BS = Benthic sessile or limited motility, BM = benthic vagile and PEL = pelagic.

https://doi.org/10.1371/journal.pone.0176419.g004
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Life history traits such as the length of PLD or the adult habitat show similar patterns across

different taxa that seem to relate with genetic differentiation independent of phylogenetic rela-

tionships (Fig 6). For instance, species with low dispersal capabilities, in all taxa, frequently

present significant differentiation between populations separated by fronts but not related to

the front reducing connectivity (Fig 6).

For each dataset we also compared with a Wilcoxon matched pairs test the standardized

FST distances between localities separated by the front (F) and those without front (NF). No

significant differences were observed for each front analysed separately or all together, despite

having more species with higher standardized differentiation between populations when sepa-

rated by a front (Table 2). The effect of different factors and their interactions (FRONT, PLD,

LIFE and MARKER) on gene flow reduction was assessed with PERMANOVA using the stan-

dardized NDIF as dependent continuous variable. Only PLD showed a significant effect

(Table 3). The differentiation between localities was not dependent on the front assayed nor

the marker used (Table 3). Unfortunately, the variable LIFE_PLD combined could not be com-

pared for each front since increasing the number of categories drastically reduces the number

of comparisons to be assessed. More population genetic studies in a wider number of species

with different dispersal capabilities are needed to statistically analyse this variable.

Discussion

The results of the present study demonstrate that the oceanographic discontinuities in the

Mediterranean Sea, in general, affect gene flow among localities. However, this effect is not

homogeneous considering the life history trait of species (Fig 7), not restricted to phylogenetic

groups. Species with short dispersal capabilities showed significant genetic differentiation

between most locations, but the gene flow reduction was not mediated by the presence of a

Table 1. Wilcoxon matched pairs test comparing the standardized FST distances between localities separated by fronts (F) and those without

front (NF) for different larval and adult stage categories, and type of molecular marker.

Variable Categories n NF>F NF<F Z p

S 47 24 23 1.25 0.212

PLD M 61 26 35 1.46 0.144

L 68 23 45 2.54 0.011

BS 53 28 25 1.00 0.315

LIFE strategy BM 101 40 60 1.89 0.058

PEL 22 4 18 2.52 0.012

LIFE-PLD COMBINED BSS 29 17 12 1.72 0.086

BSM 17 9 8 0.02 0.981

BSL 7 2 5 1.35 0.176

BMS 18 7 11 0.11 0.913

BMM 41 15 26 2.22 0.026

BML 42 19 23 0.64 0.521

PELM 3 2 1 0.53 0.593

PELL 19 2 17 3.54 0.000

MARKER MT 75 30 45 1.09 0.275

NUC 101 43 58 0.73 0.465

PLD (1–15 days (S), 16–30 days (M),�31 days (L)), LIFE strategy (Benthic sessile or limited motility (BS), benthic vagile (BM), pelagic (PEL)), LIFE-PLD

COMBINED (integrating adult strategy, LIFE, and larval mobility, PLD, in one variable), and MARKER (nuclear (NUC) and mitochondrial, (MT) DNA). NF>F

indicates that the gene flow is larger between localities not separated by a front and NF<F indicates the contrary. n = number of comparisons. Significant p

values in bold.

https://doi.org/10.1371/journal.pone.0176419.t001
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front. However, significant connectivity reduction due to an oceanographic front was detected

in species with PLD longer than 2–4 weeks and adult mobility. The variability in this effect can

have important consequences in the analysis of the effective connectivity processes in the Med-

iterranean Sea [32,33] and in the identification of natural conservation units for the establish-

ment of an MPA network or in conservation strategies [8,34].

Life history traits and gene flow reduction

It is now more widely accepted that marine species can have strong genetic population struc-

turing even on very small scales dismissing the previous hypothesis of open, homogeneous

and interconnected seas. This strong population structure can be caused by oceanographic

barriers such as the Almeria-Oran Front [21,27,61], or life history traits such as larval behav-

iour [62] and Isolation By Distance [63]. We show that genetic differences among localities are

highly dependent on life history traits of species. The highest significant differences occur in

sessile benthic species with short planktonic larval durations (PLD < two weeks) indepen-

dently of the presence of a front.

PLD has a strong influence on the genetic structure but also on the geographical distribu-

tion of species [64] with adult traits being determinant as well [65]. The larvae of species with a

short PLD in the Mediterranean Sea usually remain close to the coastline [57,66] and disperse

Fig 5. Genetic differentiation patterns between localities separated by oceanographic fronts.

Frequency of species, for each PLD category (A) and LIFE strategy (B), showing significant genetic

distances (black) and gene flow reduction (blue) between localities separated by oceanographic fronts.

Each oceanographic front (red lines) is analysed separately: Gibraltar Strait (GS), Almeria-Oran Front (AOF),

Ibiza Channel (IC), Balearic Front (BF), Sicily Channel (SC), Otranto Channel (ADR), and the southern

margin of the Aegean Sea (AEG).

https://doi.org/10.1371/journal.pone.0176419.g005
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only a few meters/kilometres from the parents, as seen for example in sponges or gorgonians

[62,67]. Therefore, the population differentiation in these species seems mostly caused by the

reduced dispersal capabilities of the larvae since their adults are sessile. For the sponge Crambe
crambe the estimated mean dispersal distances per generation were only about 35 cm, suggest-

ing that the observed fine-scale genetic structure may be common in invertebrates with lecito-

trophic larvae [14]. A similar result was observed in the coral Astroides calycularis [68], where

the low connectivity is explained by the negative buoyancy and demersal behaviour of the lar-

vae. In the gorgonian Paramuricea clavata high levels of self-recruitment and parentage rela-

tionships were detected at a small scale [69] with genetic drift having a strong impact in

Fig 6. Phylogenetic tree of analysed taxa representing life history traits and genetic differentiation

patterns. In the Life History column the number of species is given for each taxon, with the inner circle

representing PLD categories (S = Orange, M = Brown, L = Blue) and the outer circle representing LIFE

strategy categories (BS = Orange, BM = Brown, PEL = Blue). In the Genetic Differentiation column the

number of front comparisons is given for each taxon, with the inner circle representing the frequency of

comparisons showing genetic reduction patterns (YES = dark grey, NO = light grey), and the outer circle

representing the frequency of significant genetic differences between localities separated by a front

(YES = dark grey, NO = light grey).

https://doi.org/10.1371/journal.pone.0176419.g006

Table 2. Wilcoxon matched pairs test for each oceanographic front comparing the standardized FST

values between localities separated by the front (F) and those without front (NF).

Front n NF>F NF<F Z p

GS 24 8 16 1.06 0.290

AOF 28 12 16 1.02 0.305

IC 36 17 19 0.16 0.875

BF 23 9 14 0.73 0.465

SC 28 14 14 0.48 0.631

ADR 17 6 11 0.17 0.868

AEG 20 7 13 1.08 0.279

Total 176 73 103 1.57 0.117

NF>F indicates that gene flow is larger between localities not separated by a front. NF<F indicates the

contrary. The fronts are GS (Gibraltar Strait), AOF (Almeria-Oran Front), IC (Ibiza Channel), BF (Balearic

Front), SC (Sicily Channel), ADR (Adriatic Sea), AEG (Aegean Sea). n = number of species compared in

each front. Total combines all comparisons including the possibility of multiple fronts for the same species.

https://doi.org/10.1371/journal.pone.0176419.t002
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populations [70]. No isolation by distance and high genetic differentiation between localities

separated by dozens to hundreds of kilometres was detected in the seagrass Zostera noltei,
where genetic and physical connectivity assessment also indicated that rare long distance dis-

persal was possible [71]. These characteristics can generate strong genetic differentiation

among geographically closed localities and similarities between widely separated localities,

independently of the presence or absence of an oceanographic discontinuity.

For most species with longer PLDs (> two weeks) larvae move along the continental shelf

and slope [66]. The distribution of their larvae are strongly affected by currents [72,73], eddies

[74] and oceanographic fronts [75]. In these species, genetic differentiation between control

locations (no-front, NF) was generally smaller than between localities separated by oceano-

graphic discontinuities. This difference indicates that the front has an additional effect reduc-

ing gene flow among localities, although genetic differentiation between localities was seldom

significant. Therefore, most fish and crustacean species living on the shelf and slope (e.g. Diplo-
dus vulgaris, Mullus spp., Serranus cabrilla, Liocarcinus depurator) present a genetic structure

generated by the presence of fronts [17,21,25,28]. However, as several authors have pointed

out, limited larval dispersal can also be observed in species with long PLD (>2 weeks)

[6,76,77]. Habitat suitability may have important implication; in the fish Tripterygion delaisi
the presence of continuous rocky habitat between localities prevents genetic differentiation,

while large discontinuities of sand or deep-water channels seem to reduce gene flow [78]. The

largest distance between recruitment locations in this species measured through kinship analy-

sis was ca. 11.5 km [79]. These direct measurements on population connectivity can provide

compelling evidence to estimate the size and distance among areas in order to link them into

an ecologically coherent MPAs network.

Gene flow reduction by oceanographic front

The oceanographic discontinuities in the Mediterranean Sea restrict gene flow in numerous

species. However, the dynamic behaviour of these fronts shows significant intra- and inter-

annual variability [80,81]. When all fronts were analysed simultaneously, we observed gene

flow reduction in 58.8% of the comparisons. This tendency seems to apply to all fronts with

the smallest reduction observed in the Sicily Channel (SC) and the largest in the Gibraltar

Strait (GS). Differences between fronts could be due to the species studied and to fluctuations

in the front strength. The AOF has been described as the main oceanographic barrier causing

genetic differentiation along the Atlantic-Mediterranean transition area [27,82]. However, this

front presents inter-annual variability allowing some degree of homogenization between

Table 3. PERMANOVA analyses considering the effect of different variables and their interaction on gene flow reduction.

df Pseudo-F p (perms)

FRONT 6 0.64 0.67

PLD 2 8.47 0.00

FRONT × PLD 12 0.57 0.86

FRONT 6 0.11 0.99

LIFE 2 2.28 0.12

FRONT × LIFE 12 0.80 0.57

FRONT 6 0.34 0.91

MARKER 1 0.79 0.38

FRONT × MARKER 6 0.49 0.82

Significant p values in bold.

https://doi.org/10.1371/journal.pone.0176419.t003
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Fig 7. Effect of life history traits on population genetic differentiation and their impact on connectivity reduction

mediated by oceanographic discontinuities. These effects influence the capacity of population recovery and species

vulnerability.

https://doi.org/10.1371/journal.pone.0176419.g007
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localities of the same species at certain years [22]. Therefore, although most fronts caused a

clear restriction in gene flow, the effect of oceanographic barriers might be temporarily relaxed

and different results obtained regarding the year of dispersal of the analysed samples [22,83].

The reproductive period of species may also determine whether fronts are the cause of the

genetic structuring. Across the Ibiza Channel, localities will be genetically differentiated if the

reproduction coincides with the largest intensity of the front, as shown for Serranus cabrilla
[17], and not differentiated if the reproduction period coincides with the lowest intensity of

the front, as observed in Epinephelus marginatus [84].

Potential effect in the establishment of a MPA network and stock

identifications in the Mediterranean Sea

The identification of population units and the definition of population boundaries are one of

the highest priorities in the management of marine ecosystems [85,86]. Studies on the connec-

tivity assessment between MPA networks, with an integrated multispecies approach encom-

passing oceanography, dispersal capabilities and genetics, are strongly needed [34,87]. In order

to implement functional networks of conservation a number of umbrella species representa-

tives of the ecosystem should be selected and analysed with genetic tools [88]. Therefore, we

recommend that species with different life histories to be selected within the umbrella species

group as they provide different, but complementary information on connectivity of the whole

ecosystem. The role of oceanographic fronts in the restriction of gene flow in numerous spe-

cies supports the eco-regionalization of the Mediterranean Sea proposed by different studies

[32,33]. This regionalization based on dispersal patterns and connectivity mostly affect species

with longer PLDs, a common characteristic of most commercial species (e.g. fishes and crusta-

ceans), and any protection measures, including the establishment of MPAs networks or man-

agement plans, should consider them.

However, the establishment of MPA networks must contemplate the whole ecosystem, with

special caution to those species with low dispersal capabilities. Oceanographic discontinuities

did not generally affect the connectivity patterns in species with low dispersal larval capabilities

(PLD < 2 weeks). These species include numerous sponges, gorgonians, angiosperms that are

habitat formers [47,89] and essential in providing refuges or food for settlers of fishes [90]. The

so-called “ecosystem engineers”, i.e. species that generate new habitat for other species, need

an adequate protection since their elimination will be hard to recover given their low dispersal

potential capabilities [91]. In the Mediterranean Sea destructive fishing practices, eutrophica-

tion and coastal development are among the major impacts responsible for habitat change [92]

and in numerous ecosystems the “engineers species” have disappeared [93,94]. Furthermore,

reducing cumulative local human impacts cannot reverse the loss of natural capital and the

recovery of these species only occurs by transplanting propagules or juvenile stages [95] since

most algae, sponges and other “engineers species” disperse only few meters and, in general,

less than 1 km [91]. Moreover, local adaptation processes should also be considered in restora-

tion actions given the importance of genetic adaptation to environmental pressures [96,97].

An optimal MPA network should protect areas of adequate size, including different home

ranges, to help engineer species survive and flourish, thus providing habitat and food for larger

species such as commercial fish species. Our results confirm the study of Shanks et al.[18] that

suggested for marine reserve networks to be designed large enough (ca. 4–6 km in diameter)

to contain short-distance dispersing larvae and be spaced far enough (ca. 10–20 km) for long-

distance dispersing propagules released from one reserve to be able to settle in adjacent

reserves [8]. These protected areas should be further interconnected providing suitable settle-

ment habitat for far travelling larvae [98]. Finally, these networks need be created on either
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side of oceanographic fronts, since they generally are barriers to gene flow and often determine

boundaries between hydrodynamic provinces [33], ensuring resilience of the whole ecosystem.

Conclusions

Genetic connectivity is important for recovery from anthropogenic of natural impacts. We

show that both larval and adult life characteristics impact connectivity among localities and

across oceanographic discontinuities. We observed that species with lower mobility potential

have higher frequency of pairwise localities showing significant genetic differentiation than

species with higher motility capacity, but independent of the existence of fronts and more sub-

ject to genetic drift. Moreover, oceanographic discontinuities reduce gene flow in species with

medium to high dispersal abilities (Fig 7). We encourage, for the resilience of the whole ecosys-

tem, to consider oceanographic discontinuities and umbrella species with different life charac-

teristics when identifying management units and for designing networks of Marine Protected

Areas.
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genetics with oceanography: Directional gene flow in a Mediterranean fish species. Mol Ecol. 2011; 20:

5167–5181. https://doi.org/10.1111/j.1365-294X.2011.05355.x PMID: 22097887

Impact of life history traits on gene flow

PLOS ONE | https://doi.org/10.1371/journal.pone.0176419 May 10, 2017 16 / 20

https://doi.org/10.1371/journal.pone.0011842
http://www.ncbi.nlm.nih.gov/pubmed/20689844
https://doi.org/10.1016/j.cub.2013.03.006
https://doi.org/10.1016/j.cub.2013.03.006
http://www.ncbi.nlm.nih.gov/pubmed/23541728
https://doi.org/10.1111/mec.12804
https://doi.org/10.1111/mec.12804
http://www.ncbi.nlm.nih.gov/pubmed/24866831
https://doi.org/10.1098/rspb.2009.2214
http://www.ncbi.nlm.nih.gov/pubmed/20133354
https://doi.org/10.1016/j.ympev.2005.08.002
http://www.ncbi.nlm.nih.gov/pubmed/16309924
https://doi.org/10.1016/j.ympev.2013.11.003
http://www.ncbi.nlm.nih.gov/pubmed/24269315
https://doi.org/10.1111/j.1365-294X.2007.03276.x
http://www.ncbi.nlm.nih.gov/pubmed/17444893
https://doi.org/10.1016/j.ympev.2008.04.022
http://www.ncbi.nlm.nih.gov/pubmed/18515152
https://doi.org/10.1111/j.1365-294X.2011.05355.x
http://www.ncbi.nlm.nih.gov/pubmed/22097887
https://doi.org/10.1371/journal.pone.0176419


18. Shanks AL, Grantham BA, Carr MH. Propagule dispersal distance and the size and spacing of marine

reserves. Ecol Appl. Ecological Society of America; 2003; 13: 159–169.

19. Selkoe KA, D’Aloia CC, Crandall ED, Iacchei M, Liggins L, Puritz JB, et al. A decade of seascape genet-

ics: Contributions to basic and applied marine connectivity. Marine Ecology Progress Series. 2016. pp.

1–19.

20. Selkoe KA, Toonen RJ. Marine connectivity: A new look at pelagic larval duration and genetic metrics of

dispersal. Mar Ecol Prog Ser. 2011; 436: 291–305.

21. Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF, et al. The influ-

ence of oceanographic fronts and early-life-history traits on connectivity among littoral fish species.

Proc Natl Acad Sci U S A. 2009; 106: 1473–1478. https://doi.org/10.1073/pnas.0806804106 PMID:

19164518

22. Pascual M, Palero F, Garcı́a-Merchán VH, Macpherson E, Robainas-Barcia A, Mestres F, et al. Tempo-

ral and spatial genetic differentiation in the crab Liocarcinus depurator across the Atlantic-Mediterra-

nean transition. Sci Rep. Nature Publishing Group; 2016; 6: 29892. https://doi.org/10.1038/srep29892

PMID: 27431989
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50. López S, Turon X, Montero E, Palacı́n C, Duarte C, Tarjuelo I. Larval abundance, recruitment and early

mortality in Paracentrotus lividus (Echinoidea). Interannual variability and plankton-benthos coupling.

Mar Ecol Prog Ser. 1998; 172: 239–251.
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variability of the early summer circulation around the Balearic Islands: Driving factors and potential

effects on the marine ecosystem. J Mar Syst. 2014; 138: 70–81.

81. Renault L, Oguz T, Pascual A, Vizoso G, Tintore J. Surface circulation in the Alborn Sea (western Medi-

terranean) inferred from remotely sensed data. J Geophys Res Ocean. 2012; 117: 1–12.

Impact of life history traits on gene flow

PLOS ONE | https://doi.org/10.1371/journal.pone.0176419 May 10, 2017 19 / 20

https://doi.org/10.1016/j.ympev.2010.05.014
http://www.ncbi.nlm.nih.gov/pubmed/20510378
https://doi.org/10.1073/pnas.1304074110
http://www.ncbi.nlm.nih.gov/pubmed/24065830
https://doi.org/10.1111/j.1365-294X.2011.05176.x
https://doi.org/10.1111/j.1365-294X.2011.05176.x
http://www.ncbi.nlm.nih.gov/pubmed/21762434
https://doi.org/10.1111/j.1365-294X.2012.05655.x
https://doi.org/10.1111/j.1365-294X.2012.05655.x
http://www.ncbi.nlm.nih.gov/pubmed/22646530
https://doi.org/10.1002/ece3.588
http://www.ncbi.nlm.nih.gov/pubmed/23789084
https://doi.org/10.1371/journal.pone.0119585
http://www.ncbi.nlm.nih.gov/pubmed/25774522
https://doi.org/10.1016/j.marenvres.2016.04.004
https://doi.org/10.1016/j.marenvres.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27085058
https://doi.org/10.1086/BBLv216n3p373
http://www.ncbi.nlm.nih.gov/pubmed/19556601
https://doi.org/10.1016/j.cub.2012.04.008
http://www.ncbi.nlm.nih.gov/pubmed/22633811
https://doi.org/10.1111/j.1365-294X.2006.03003.x
http://www.ncbi.nlm.nih.gov/pubmed/17032255
https://doi.org/10.1098/rspb.2014.0556
https://doi.org/10.1098/rspb.2014.0556
http://www.ncbi.nlm.nih.gov/pubmed/24812064
https://doi.org/10.1371/journal.pone.0176419


82. Reuschel S, Cuesta JA, Schubart CD. Marine biogeographic boundaries and human introduction along

the European coast revealed by phylogeography of the prawn Palaemon elegans. Mol Phylogenet Evol.

2010; 55: 765–775. https://doi.org/10.1016/j.ympev.2010.03.021 PMID: 20307676

83. Calderón I, Pita L, Brusciotti S, Palacı́n C, Turon X. Time and space: genetic structure of the cohorts of

the common sea urchin Paracentrotus lividus in Western Mediterranean. Mar Biol. 2012; 159: 187–197.

84. Schunter C, Carreras-Carbonell J, Planes S, Sala E, Ballesteros E, Zabala M, et al. Genetic connectivity

patterns in an endangered species: The dusky grouper (Epinephelus marginatus). J Exp Mar Bio Ecol.

2011; 401: 126–133.

85. Hauser L, Carvalho GR. Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful

facts. Fish Fish. 2008; 9: 333–362.

86. Sahyoun R, Guidetti P, Di Franco A, Planes S. Patterns of fish connectivity between a marine protected

area and surrounding fished areas. PLoS One. Public Library of Science; 2016; 11: e0167441. https://

doi.org/10.1371/journal.pone.0167441 PMID: 27907100

87. Garcı́a-Rubies A, Cebrian E, Schembri PJ, Evans J, Macpherson E. Ecological Effects and Benefits of

Mediterranean Marine Protected Areas: Management Implications. In: Goriup PD, editor. Management

of Marine Protected Areas: A Network Perspective. John Wiley & Sons Ltd.; 2017.

88. Baguette M, Blanchet S, Legrand D, Stevens VM, Turlure C. Individual dispersal, landscape connectiv-

ity and ecological networks. Biol Rev. 2013; 88: 310–326. https://doi.org/10.1111/brv.12000 PMID:

23176626

89. Cerrano C, Danovaro R, Gambi C, Pusceddu A, Riva A, Schiaparelli S. Gold coral (Savalia savaglia)

and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone.

Biodivers Conserv. 2009; 19: 153–167.

90. Garcı́a-Rubies A, Macpherson E. Substrate use and temporal pattern of recruitment in juvenile fishes of

the Mediterranean littoral. Mar Biol. 1995; 124: 35–42.

91. Thibaut T, Bottin L, Aurelle D, Boudouresque C-F, Blanfuné A, Verlaque M, et al. Connectivity of Popu-
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