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Abstract: This paper deals with the effect of the prestress load on the free and forced dynamic
behavior and vertical vibration of the prestressed beams. The analysis applies both the analytical
frequency equation and the finite element method (FEM) using ABAQUS software to predict the fun-
damental natural frequency (FNF) of the simply supported unbonded prestressed beams. The energy
method has been employed to derive the effective prestressing load to determine the eccentricity
effect. In regard to the forced response of the prestressed beam, a moving point load with a constant
value and various velocities and excitation frequencies is applied. Extensive parametric studies
are carried out taking into account different factors including prestress load, eccentricity, concrete
ratio, span-to-depth ratio, velocity, and frequency of the moving load. The comparison of the FNFs
obtained by the formula with those obtained from FEM models indicates that the results are in a
good agreement. This convergence demonstrates that the proposed formulation can predict the FNF
of the eccentrically prestressed beams with high reliability. The time-histories curves for midspan
displacement of the unbonded prestressed beams and the dynamic magnification factors are also
evaluated. The results illustrate that the aforementioned factors have an indispensable contribution
to the beam dynamic behavior.

Keywords: prestressed large-span beam; fundamental natural frequency; dynamic behavior; vibra-
tion; eccentricity; moving load

1. Introduction

Prestressed beams have been extensively used in large-span bridges and different
types of structures over the course of recent years. An increasing span of a girder makes
a bridge heavier, which results in less sustainable conditions. In order to address this
drawback, prestressing strands are employed in the structure to bear a proportion of the
loads and structure’s weight for the sake of a reduction in the material consumption and
weight of structure as a result. The beams prestressed with high-strength cables offer major
advantages including elastic behavior under heavier loads, a higher ultimate capacity,
reduced weight, and enhanced fatigue behavior. Prestressing can be used for strengthening
an existing structure and in a new construction as well [1]. There are two conventional
pre-tensioning schemes: draped and straight tendon; the former scheme improves ductility
more than the latter. However, due to having lower construction expenses, straight tendons
are more favorable [2].

Several studies have focused on the importance of the prestress load effect on the
dynamic behaviors and more specifically on the fundamental natural frequency (FNF)
of such beams. Kerr [3] carried out a numerical and experimental investigation on the
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dynamic response of a prestressed beam. It was concluded that concentric axial prestressing
load does not change the bending deflection, and particularly the natural frequencies of the
beam. Dall’Asta and Dezi [4], using three-dimensional theory, reported that the intensity
of the force has a negligible impact on the natural frequencies of the prestressed beam.
Deák [5] believes that for uncracked units, the natural frequencies are not seriously altered.
Jain and Goel [6] inferred that the prestress force is an internal force. Therefore, they denied
the alteration in the natural frequencies due to the “compression softening” effect. Based
on mathematically derived governing equations, Hamed and Frostig [7] stated that the
natural frequencies of the beam do not change due to prestress force for either bonded and
unbonded tendons. Bonopera et al. [8–10] have done extensive experimental studies on
the free transverse vibration of a prestressed concrete beams subjected to different levels
of prestressing. They determined that the FNF of the beam remains unaffected and is
not a suitable parameter for prestress loss estimation. Moreover, it was shown that the
alteration of the concrete initial elastic modulus influences the fundamental frequency of
the uncracked beams. Noble et al. [11,12] have done an extensive experimental program
on the dynamic behavior of the rectangular hollow sections (RHS) and reinforced concrete
beams to study the relationship between natural frequency and prestressing load. They
expressed that the “compression softening” theory is invalid for the post-tensioning load,
since it differs from an axial compressive load. Thus, they concluded that the FNF does not
change after exerting prestressing load.

On the other hand, Raju and Rao [13] indicated that application of a prestress load as
an external axial force reduces the lower modes of natural frequencies. Miyamoto et al. [14]
conducted numerical and experimental studies on the dynamic characteristics of the exter-
nally prestressed bridges. Several parameters including prestress load level and eccentricity
were considered. It was concluded that prestressing affects the natural frequencies de-
pending on the tendon arrangement. In the presence of small amounts of eccentricity, the
natural frequency tends to decrease because the axial force is predominant. However, this
effect is reversed when the eccentricity is large enough. The research conducted by Law
and Lu [15] illustrates that the natural frequencies of a simply supported beam decrease in
the presence of prestress load. It was also found out that the low-order natural frequencies
are more sensitive to the “compression softening” effect. In the investigation carried out
by Jaiswal [16], the influence of prestressing force on the FNFs of beams with bonded
and unbonded tendons was studied. It was indicated that the FNFs of the beams with
unbonded tendons significantly vary with regard to the prestressing load and eccentricity
level, but they do not change for the beams with bonded tendons.

Prestressed concrete structures may develop cracks resulting from the natural environ-
ment [17]. Monitoring the natural frequency is one of the approaches used to investigate
the effect and severity of the cracks on a beam performance. A two-phase experimental
and numerical investigation by Elshamy et al. [18] illustrated that the crack location and
depth are the most influential factors, since they can reduce the stiffness and consequently
the natural frequency. Hamed and Frostig [19] implemented nonlinear material properties
for concrete and prestress strand to model the crack effect and geometric properties in
their proposed incremental formulation to investigate the natural frequencies of tendon-
bonded reinforced concrete beams. Different crack sizes were defined to calculate the
natural frequencies. It was understood that the FNF reduced drastically as a result of
cracks in the concrete and the corresponding mode shape was half-sine bending in all cases.
Saiidi et al. [20] studied the possibility of the prestress loss detection of the prestressed
members using vibration frequencies. They indicated that the existence of prestress force
brings about the closure of microcracks of the concrete and consequently increases bending
rigidity, which results in the rise in the fundamental frequency. Likewise, Gan et al. [21]
concluded that the natural frequencies of a concrete beam increase as a result of closing the
cracks inside the concrete beam. The results of an experiment on the dynamic behavior of a
prestressed concrete beam showed that the natural frequency increases following eccentric
prestressing of load [22].
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Several investigations have tried to find a solution for calculating the dynamic re-
sponse of the simply supported beam under a moving load [23–26]. Dynamic vibration
of the axially loaded beams resting on the elastic foundation along with relevant factors
including the variable elastic foundation, magnitude of vibration and axial load, and
boundary conditions were studied by Mirzabeigy and Madoliat [27]. It was shown that
the nonlinear frequency increases when the elastic foundation has a distribution close to
the fundamental eigenmode. The influence of stiffness of Winkler elastic and number of
layers on the dynamic response of the multi-layered simply supported beams subjected
to a moving mass was investigated by Hashemi and Khaniki [28]. The experimental and
numerical study on the nonlinear behavior of a slender beam subject to the various forcing
amplitude showed the reliance of the resonance on the force amplitude [29]. Law et al. [30]
have proposed an approach for identifying prestressing force based on the bridge-vehicle
system. Application of a force identification technique for a prestressed bridge has shown
that the static bending moments on a prestressed concrete beam are larger due to the soft-
ening effect [31]. Şimşek and Kocatürk [32] investigated the dynamic behavior of a simply
supported prestressed beam under a moving harmonic load. Their numerical investigation
included eccentricity and nonlinear geometry effects. It was explained that the response
of the beam increases as a result of reduced bending stiffness, which is attributed to the
“compression softening”. Kumar and Saleeb [33] have modeled a number of large-scale
examples with infinite sliding between moving load and the structure to clarify contact
interaction capabilities of finite element analysis (FEA) software. To the best of the authors’
knowledge, there are only a few papers that have dealt with the dynamic response problem
associated with a moving load using FEA software.

A few studies have been conducted to examine the relationship between prestress
force and dynamic behavior of the beams. As it evidently a controversial issue, scholars
have presented different solutions. Therefore, there is no determined conclusion on the
effect of prestress force on the natural frequency of the large-span beams. Furthermore,
there is a scarcity of practical formulas that are able to calculate the natural frequency of
eccentrically prestressed beams. For this paper, the vertical vibration behavior of unbonded
prestressed large-span beams was investigated. To begin with, a formulation to estimate
natural frequency which includes eccentricity impact was derived. Then, a thorough
simulation with the aid of ABAQUS considering several factors was conducted to discuss
the dynamic characteristics of the abovementioned beams. Concerning the span-to-depth
ratio effect, different beam lengths were selected. A number of examples are presented
here with the aim of detecting the effects of prestress reinforcement on the free and forced
vibration response of prestressed beams.

2. Natural Frequency of the Eccentrically Prestressed Beam

Natural frequencies of axially loaded beams are available in many references, see for
example [34]. However, there is a necessity for a practical solution that deals with the
natural frequencies of eccentrically prestressed beams. To investigate the effect of prestress
force on the beam’s natural frequencies, it was supposed that the behavior of the beam
follows Euler–Bernoulli’s beam theory. According to this theory, the plane sections remain,
are normal to the longitudinal axis, and the rotation of cross-sections and shear effect of
the beam are neglected. The Euler–Bernoulli theory is valid for the beams with a high
length-to-depth ratio [34]. The transverse vibration of a prestressed beam by external
tendons in absence of transverse force using the extended Hamilton’s principle can be
expressed as follows:

EIeq
∂4y
∂x4 + ρA

∂2y
∂t2 + P

∂2y
∂x2 = 0 (1)

where EIeq is the flexural stiffness of the beam with tendons, ρ is the density of the pre-
stressed beam with a tendon, A is the cross-sectional area of the beam and the tendon, and
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P is the axial compressive force. Using the method of separation of variables, a solution of
Equation (1) can be found for x and t:

y(x, t) = Y(x)(Acosωt + Bsinωt) (2)

By substituting Equation (2) into Equation (1), we found:

EIeq
d4Y
dx4 + P

d2Y
dx2 − ρAω2Y = 0 (3)

Proposed Effective Prestress Load Due to Eccentricity

The total external work of a set of point forces acting on a linear elastic structure
causing displacements is stored as the strain energy. In a system with no energy dissipation,
this external work is equivalent to the strain energy. The total strain energy over an entire
volume of a solid elastic element, can be written as:

U =
1
2

∫
V
{σ}T{ε}dV (4)

Assume a simply supported beam is subjected to an eccentric force P with length l, as
shown in Figure 1.
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Assuming constant axial force along the beam length, the total strain energy of the
beam in Figure 1 subjected to a bending moment and a compressive force is computed as:

Utot =
1
2

∫
l

(
P2

EA
+

P2e2

EIeq

)
dx (5)

where E is the Young’s modulus and e is the eccentricity of the tendon. If the total strain
energy is transformed to an equivalent axial strain energy, we obtained:

1
2

∫
l

(
Peq

2

EA

)
dx =

1
2

∫
l

(
P2

EA
+

P2e2

EIeq

)
dx (6)

where Peq is the equivalent axial force resultant of a simultaneous couple moment from
eccentricity and axial prestressing load. Simplifying the relation above yields:

Peq = P

√
1 +

e2 A
Ieq

(7)

where Ieq is the moment of inertia of the prestressed beam with a tendon.
From Equation (7), it is evident that the magnitude of Peq becomes larger when the

eccentricity size increases and it approaches P while the eccentricity diminishes. Since the
eccentricity induces a stiffening effect, it enhances bending stiffness and decreases geomet-
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ric softening resulting from the axial load, then the effective axial load is proportional to
the equivalent axial load, therefore:

Pe f f =
P√

1 + e2 A
Ieq

(8)

where Peff is the effective prestress load including the eccentricity effect, which can be
replaced in Equation (3) to derive the equation of frequency:

EIeq
d4Y
dx4 +

P√
1 + e2 A

Ieq

d2Y
dx2 − ρAω2Y = 0 (9)

It is the possible to write the solution of Y(x) in the form:

Y(x) = Aeλx (10)

where A is an arbitrary constant, substitution of Equation (10) into Equation (9) yields the
auxiliary equation:

λ4 +
P

EIeq

√
1 + e2 A

Ieq

λ2 − ρAω2

EIeq
= 0 (11)

The roots of Equation (11) are given by:

λ2
1, λ2

2 = − P

2EIeq

√
1 + e2 A

Ieq

±
√√√√ P2

4E2 Ieq2
(

1 + e2 A
Ieq

) +
ρAω2

EIeq
(12)

Hence, the general solution of Equation (11) can be written as:

Y(x) = C1coshλ1x + C2sinhλ1x + C3cosλ2x + C4sinλ2x (13)

The constants C1 to C4 can be determined according to the corresponding boundary
conditions of the beam. For simply supported beams, the boundary conditions are zero
deflections and bending moments at both ends. This gives the natural frequency equation
of a simply supported beam subjected to an eccentric axial compressive load:

ωn = (
π

l
)

2

√√√√√(EIeq

ρA

)
×

n4 − n2 Pl2

π2EIeq

√
1 + e2 A

Ieq

 (14)

where n is the mode number. It is clearly seen that by the increase of eccentricity, the
softening influence of prestressing load declines, thereby raising the natural frequencies of
prestressed beams.

3. Simulation of the Prestressed Beams

The three-dimensional finite element method using ABAQUS software [35] has been
implemented to verify the derived formula and to study the dynamic behavior of the
prestressed beam. The simply supported prestressed beams with a straight strand were
examined. In order to consider a high span-to-depth ratio effect, different beam lengths
from 3 to 15 m were selected. The dimensions of steel tubes were 300 and 200 mm in depth
and width, respectively. For the prestress tendon, a 15.7 mm in diameter wire according to
the available commercial pre-stressing strand was employed, as seen in Figure 2.
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Table 1. The mechanical properties of the material. 
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Coefficient 
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Concrete 35 0.2 2420 - 
  

Figure 2. Dimensions of unbonded prestressed beam with a straight tendon.

A number of post-tensioned beams with a straight strand were modeled, taking the
strand eccentricity and concrete height ratio into consideration. For specimens focusing
on the eccentricity, RHSs with two eccentricities, one-third and two-thirds of the distance
from centroid to the extreme fiber of the bottom surface, i.e., 50 and 100 mm were chosen.
Regarding the concrete ratio, the concrete-filled steel tubes (CFST) were classified into three
categories of h1, h2, and h3, which are one-third, half, and full proportion of inner depth
(d) of RHS, respectively. A 20 mm void was considered for categories h2 and h3 to remain
inserted strand free, the layout of the cross-sections is outlined in Figure 3. The mechanical
properties of the steel tube, concrete, and strand were defined as linear elastic, which are
shown in Table 1. The beams were pinned at both ends to simulate the simply supported
boundary conditions and all rotations were kept free.
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Figure 3. Cross-sections of simulated beams: (a) rectangular hollow sections (RHS) sections with
different eccentricities, (b) concrete-filled steel tubes (CFST) cross-sections with different concrete
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Table 1. The mechanical properties of the material.

Material Modulus of
Elasticity (GPa) Poisson Ratio Density (kg/m3) Thermal Expansion

Coefficient

Steel tube 200 0.3 7850 -
Strand 200 0.3 7850 1.0 × 10−5/◦C

Concrete 35 0.2 2420 -
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3.1. Prestressing Effect

Post-tensioning load is typically simulated via either an initial strain or temperature
load [36]. In this study, the latter was employed to take the prestressing effect due to initial
stress. From Equation (15), the exerted temperature load can be calculated:

T = − P
Et.At.α

(15)

where T is the temperature load used in the simulation, P is the prestress force, α is the
thermal expansion coefficient, and Et and At are the Young’s modulus and cross-sectional
area of the strand. Four prestress load levels: 100, 200, 300, and 400 kN were calculated to
evaluate the influence of load level. Figure 4 indicates upward deflection of the prestressed
RHS beam with 100 mm eccentricity prior to the next step.
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3.2. Free and Forced Vibration Analysis

Concerning natural frequency and corresponding mode shape extraction, the Lanczos
eigen-solver linear perturbation through which the response of analysis can only be linear
was used. The material nonlinearity and applied loads are not active over a frequency
analysis [35]. In the geometric nonlinearity terms, large displacement effects as a result of
prestressing force were involved in the linear eigenvalue extraction. No initial imperfections
were introduced to the model. The predicted first three mode shapes are shown in Figure 5.
Mode shapes of the first three natural frequencies in transverse direction are similar to
those of non-prestressed beams. The first mode shape comprises one half-sine wave, while
mode shapes of the second and third natural frequencies include two and three half-sine
waves, respectively. Regarding the forced response of post-tensioned beam subjected to a
point moving load, using the implicit time integration method, different factors including
velocity and excitation frequency of the load were considered. The problem was resolved by
a moving load displaced with a uniform velocity along the beam length. The load excitation
frequency was defined using periodic amplitude as a Fourier series. The magnitude of the
load was chosen to be 100 kN. For harmonic amplitude, the cosine function along with
different excitation frequencies was utilized. The time increment for the implicit scheme
was selected to diverge between the minimum size of 9 × 10−6 and maximum size of 0.002.
The nonlinear effects of large displacement were also considered. The sketch of the beam
including loading and boundary conditions are presented in Figure 6.
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3.3. Steady-State Dynamic Analysis

In a steady-state dynamic analysis, the linear response of a structure under harmonic
excitation was predicted. Walsh et al. [37] conducted a damage identification method
according to the alteration in the first vertical mode using frequency response functions at
a given frequency range. In this study, the linear type of spacing for frequency points with
the bias value of three was used to collect the response points near the frequency range.
Structural damping 0.05% was selected over the whole frequency range. A concentrated
nodal force was applied to the vertical displacement degree of freedom. The load was as-
sumed to change sinusoidally with time over the range of given frequencies [35]. Although
the response in this analysis was linear, nonlinear geometric effects were considered since
these effects were included in the prestressing step.

3.4. Interactions and Element Types

The anchorage system of the prestressing strand was modeled as the structural cou-
pling scheme to distribute prestress load on the cross-section effectively. A surface-based
contact was defined on the circumference of the tendon to allow the prestress strand slides
freely and not to penetrate other surfaces. For concrete-filled specimens, a surface-based
tie which is capable of quick transitions in mesh density was used to form a perfect bond
behavior between the steel tube and the concrete. Figure 7 illustrates samples with concrete
height ratios of h1 and h2, respectively. In relation to the point moving load, a frictionless
and hard pressure–overclosure node-to-surface contact with the possibility of separation
after contact was modeled between the point load and the frictionless surface of the pre-
stressed beam. The use of a proper contact formulation between the load and the beam
with large sliding is crucial [33].
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According to the elements’ characteristics, different element types for the concrete,
steel tube, and strand were used. The prestressing tendon was represented by a 2-node
linear 3D truss element so that it only transmits an axial force and can bear no moment. For
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the concrete part, an 8-node linear brick with reduced integration and hourglass control
was used. As far as the steel tube is concerned, a second-order reduced-integration brick
element was employed, since this element is quite effective in bending problems and
offers higher accuracy. Meanwhile, reduced integration decreases the running time and
gives more precise results compared to the corresponding fully integrated elements for
second-order elements [35]. The meshed cross-section view of the FEM model for the
prestressed CFST beam with concrete height ratio h3 is shown in Figure 8.
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3.5. Validation

In order to study the convergence and estimating the FNF of the prestressed beam,
three element sizes of 25, 50, and 100 mm were compared. As can be seen in Table 2, the
mean values of FNFs obtained from numerical analysis are very close to those found by the
mathematical equation. It is evident that CFST beams are more sensitive to the mesh size,
as they have more complicated geometries. Thus, the element size 50 mm was carefully
chosen for the sake of optimality and efficiency. For the moving load problem, a numerical
example from Yang and Yau [25] and the test results of a moving mass on a two-span
continuous beam from [38] were selected to verify the FEM simulation. The dynamic
responses of the midspan deflections have been plotted in Figure 9, which are within the
rational error margins with those of the reference. The small divergence is most likely
resulting from the fact that our solution is a three-dimensional modeling with the possibility
of separation and reconnection, whereas the reference model is a two-dimensional planner
beam with continuous contact.

Table 2. Comparison among the fundamental natural frequencies (FNFs)of prestressed beams.

Span to
Depth Ratio

Concrete
Height
Ratio

Prestress
Load
(kN)

Equation
(Hz)

Element Size

100 mm 50 mm 25 mm

ABAQUS
(Hz) ABAQUS/Equation ABAQUS

(Hz) ABAQUS/Equation ABAQUS
(Hz) ABAQUS/Equation

20 h3 0 17.066 16.416 0.962 16.802 0.985 16.876 0.989
20 h3 400 16.586 15.940 0.961 16.336 0.985 16.411 0.989
20 h2 0 17.552 16.807 0.958 17.156 0.977 17.203 0.980
20 h2 400 16.782 16.063 0.957 16.427 0.979 16.478 0.982
20 h1 0 19.697 18.979 0.964 19.195 0.975 19.237 0.977
20 h1 400 18.827 18.153 0.964 18.378 0.976 18.424 0.979
20 N/A 0 25.139 24.675 0.982 24.664 0.981 24.651 0.981
20 N/A 400 23.659 23.283 0.984 23.272 0.984 23.260 0.983

Mean - - 0.967 - 0.980 - 0.983
S.D. - - 0.011 - 0.004 - 0.004
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Figure 9. Validation of time-histories of the midspan displacement: (a) numerical example, (b) experimental test.

4. Parametric Analysis

The influence of the prestressing force, eccentricity, concrete ratio, velocity, and excita-
tion frequency of the moving load on the dynamic behavior of the prestressed beam were
investigated through a parametric analysis. Assuming the unbonded interaction between
the steel strand and beam, this study neglected the influence of bonded tendon on the
FNFs of the prestressed beams. Only elastic properties of the materials were considered,
and based on the tubular geometry of the cross-section, the modeling was limited to the
prestressed RHS with internal arrangement of the tendon. The natural frequencies were
lower after post-tensioning and the reduction was mainly obvious for the first mode. The
first three normalized natural frequencies of prestressed beams are given in Figure 10 in
whichωn represents the natural frequencies of prestressed beams with different levels of
prestressing load and ωn [p=0] is the natural frequencies of non-prestressed beams. The
abscissa indicates the Euler buckling load proportion, which was found using:

Pcri =
π2EI

l2 (16)

where Pcri is the lowest Euler buckling load of a simply supported beam subjected to
axial load.

Materials 2021, 14, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 9. Validation of time-histories of the midspan displacement: (a) numerical example, (b) experimental test. 

4. Parametric Analysis 
The influence of the prestressing force, eccentricity, concrete ratio, velocity, and ex-

citation frequency of the moving load on the dynamic behavior of the prestressed beam 
were investigated through a parametric analysis. Assuming the unbonded interaction be-
tween the steel strand and beam, this study neglected the influence of bonded tendon on 
the FNFs of the prestressed beams. Only elastic properties of the materials were consid-
ered, and based on the tubular geometry of the cross-section, the modeling was limited to 
the prestressed RHS with internal arrangement of the tendon. The natural frequencies 
were lower after post-tensioning and the reduction was mainly obvious for the first mode. 
The first three normalized natural frequencies of prestressed beams are given in Figure 10 
in which ωn represents the natural frequencies of prestressed beams with different levels 
of prestressing load and ωn [p=0] is the natural frequencies of non-prestressed beams. The 
abscissa indicates the Euler buckling load proportion, which was found using: 𝑃 = 𝜋 𝐸𝐼𝑙  (16) 

where Pcri is the lowest Euler buckling load of a simply supported beam subjected to axial 
load. 

 
Figure 10. Prestress force effect on the first three natural frequencies of beams with a span-to-depth ratio of 20: (a) two-
dimensional effects with an axial compressive load, (b) three-dimensional effects with a tendon. 

The results of three-dimensional modeling with prestressing strand show a minor 
deviation as prestressing load approaches the Euler buckling load in comparison with 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M
id

sp
an

 d
ef

lec
tio

n 
(m

m
)

Time (s)

(a)

ABAQUS-2D
ABAQUS-3D
Yang and Yau (1997)

0 1 2 3 4

M
id

sp
an

 d
ef

lec
tio

n 
(m

m
)

Time (s)

(b)

ABAQUS-2D
ABAQUS-3D
Valašková et al. (2020)

−3

−2.5

−2

−1.5

−1

−0.5

0

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0

1

0 20 40 60 80 100

ꞷ n
/ꞷ

n 
[p

=0
]

Euler buckling load (%)

(a)

1st Mode (equation) 2nd Mode (equation) 3rd Mode (equation)
1st Mode (FEM) 2nd Mode (FEM) 3rd Mode (FEM)

0

1

0 20 40 60 80 100

ꞷ n
/ꞷ

n 
[p

=0
]

Euler buckling load (%)

(b)

Figure 10. Prestress force effect on the first three natural frequencies of beams with a span-to-depth ratio of 20: (a) two-
dimensional effects with an axial compressive load, (b) three-dimensional effects with a tendon.
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The results of three-dimensional modeling with prestressing strand show a minor
deviation as prestressing load approaches the Euler buckling load in comparison with both
two-dimensional with an axial load and conventional mechanic’s theory. This negligible
difference in the three-dimensional simulation might be due to the local buckling of the
RHS plates as a result of considering geometric nonlinearity while the beam is prestressed.
The prestressing load has the most impact on the FNFs of the beams with different mag-
nitudes of span-to-depth ratios and prestress forces. This effect becomes less significant
for the second and third frequencies. This shows that the FNF has a higher association
with prestress load. These results indicate that the first natural frequency has the most
significance in practice, so only the FNF was obtained for each beam. To study the dynamic
response of the prestressed beam, steel RHSs with different eccentricities and span-to-depth
ratio 30 were selected.

4.1. Effect of Prestress Load

The normalized first-order natural frequencies of the prestressed beams without
eccentricity under different post-tensioning forces are given in Figure 11. In the figure,ω1
denotes the FNFs of prestressed beams andω1 [p=0] implies the FNFs of non-prestressed
beams. The results of the frequencies of the beams obtained by the mathematical equation
and simulation are in a good agreement. The FNF decreases gradually with the increase of
the prestress force and this reduction became more apparent through a rising span-to-depth
ratio. It was evident that following an increase of the span-to-depth ratio, the slenderness
ratio grew, and consequently resulted in a slenderer beam. In such a case, the impact of
prestressing load on the beam escalates and it lessens the bending stiffness of the beam. As
a result, the FNFs of the beams are reduced.

Materials 2021, 14, x FOR PEER REVIEW 12 of 20 
 

 

both two-dimensional with an axial load and conventional mechanic’s theory. This negli-
gible difference in the three-dimensional simulation might be due to the local buckling of 
the RHS plates as a result of considering geometric nonlinearity while the beam is pre-
stressed. The prestressing load has the most impact on the FNFs of the beams with differ-
ent magnitudes of span-to-depth ratios and prestress forces. This effect becomes less sig-
nificant for the second and third frequencies. This shows that the FNF has a higher asso-
ciation with prestress load. These results indicate that the first natural frequency has the 
most significance in practice, so only the FNF was obtained for each beam. To study the 
dynamic response of the prestressed beam, steel RHSs with different eccentricities and 
span-to-depth ratio 30 were selected. 

4.1. Effect of Prestress Load 
The normalized first-order natural frequencies of the prestressed beams without ec-

centricity under different post-tensioning forces are given in Figure 11. In the figure, ω1 
denotes the FNFs of prestressed beams and ω1 [p=0] implies the FNFs of non-prestressed 
beams. The results of the frequencies of the beams obtained by the mathematical equation 
and simulation are in a good agreement. The FNF decreases gradually with the increase 
of the prestress force and this reduction became more apparent through a rising span-to-
depth ratio. It was evident that following an increase of the span-to-depth ratio, the slen-
derness ratio grew, and consequently resulted in a slenderer beam. In such a case, the 
impact of prestressing load on the beam escalates and it lessens the bending stiffness of 
the beam. As a result, the FNFs of the beams are reduced. 

 
Figure 11. Influence of concentric prestressing force on the FNFs of beams with different span-to-
depth ratios: (a) RHS, (b) specimens with concrete ratio h1, (c) specimens with concrete ratio h2, 
(d) specimens with concrete ratio h3. 

The frequency response functions for the first two modes were plotted in terms of 
acceleration and frequency in Figure 12. Six different levels of prestress load from zero to 
the full proportion of the Euler buckling load were selected for the beam. The prestressing 
effect was characterized through the alteration in frequency peak. As is evident, the peak 
frequency shifts to the left as prestress force approaches the buckling load. Figure 12a also 
illustrates that this effect is more significant for the first mode so that no peak occurs for 

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

ꞷ 1
/ꞷ

1 [
p=

0]

Span-to-depth ratio

(a)

P=100 kN (equation) P=200 kN (equation) P=400 kN (equation)
P=100 kN (FEM) P=200 kN (FEM) P=400 kN (FEM)

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

ꞷ 1
/ꞷ

1 [
p=

0]

Span-to-depth ratio

(b)

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

ꞷ 1
/ꞷ

1 [
p=

0]

Span-to-depth ratio

(c)

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

ꞷ 1
/ꞷ

1 [
p=

0]

Span-to-depth ratio

(d)

Figure 11. Influence of concentric prestressing force on the FNFs of beams with different span-to-
depth ratios: (a) RHS, (b) specimens with concrete ratio h1, (c) specimens with concrete ratio h2,
(d) specimens with concrete ratio h3.

The frequency response functions for the first two modes were plotted in terms of
acceleration and frequency in Figure 12. Six different levels of prestress load from zero to
the full proportion of the Euler buckling load were selected for the beam. The prestressing
effect was characterized through the alteration in frequency peak. As is evident, the peak
frequency shifts to the left as prestress force approaches the buckling load. Figure 12a also
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illustrates that this effect is more significant for the first mode so that no peak occurs for
the beam when the prestress load is equal to the buckling load (horizontal green line). The
time-histories for the normalized midspan displacement of the beam were computed and
the results are illustrated in Figure 13. In the figure, y0 is the static midspan displacement
resulting from the point load at the midspan, y(l/2, t) is the midspan displacement at the
time t, and ∆T is the time required for the moving point load to pass through the beam. It
can be clearly seen in Figure 13 that in the presence of the prestress force, for higher values
of the axial force, the maximum response of the beam increases. This happens because of
the “compression softening” effect in which the prestress load softens the beam. It should
be noted that at a given speed of the moving load, by increasing the level of the axial load,
the maximum response occurs slightly later. For the prestress load 400 kN and velocity
200 m/s, which is unexpected and similar to an impact, the maximum response occurs
after the load leaves the beam.
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Figure 12. Influence of the concentric prestressing force on the peak frequency of the beam: (a) first
mode, (b) second mode.
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Figure 13. Influence of concentric prestressing force on the normalized midspan deflection of
the beam subjected to a moving load with different velocities: (a) v = 25 m/s, (b) v = 50 m/s,
(c) v = 100 m/s, (d) v = 200 m/s.
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Dynamic response of the simply supported prestressed beam under a moving cosine
harmonic load with a constant velocity was studied. The effect of the prestressing load
for two excitation frequencies Ω = 40 and Ω = 100 rad/s is given in Figure 14. The first
natural frequencies of the beam with prestressing loads of 0, 200, and 400 kN are 70.2,
65.5, and 60.5 rad/s, respectively. Therefore, two excitation frequencies were chosen with
about one half and three halves of the fundamental frequency of the non-prestressed beam
so that they are considerably lower and higher than that. Once the excitation frequency
was 40 rad/s, the compressive axial force noticeably augmented the dynamic midspan
deflection. The higher the prestress force is, the larger the midspan deflects (Figure 14a).
This is comparable to the case without an excitation frequency in which the compressive
force decreases the flexural stiffness. As mentioned earlier, the midspan displacement
surges incrementally with the increase of axial force. However, when the load frequency is
higher than the fundamental frequency, the sensitivity of the beam’s dynamic deflection to
the prestress force is insignificant (Figure 14b).
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Figure 14. Influence of concentric prestressing force on the normalized midspan deflection of the beam subjected to a
harmonic moving load with a constant velocity of 25 m/s: (a) Ω = 40 rad/s, (b) Ω = 100 rad/s.

4.2. Effect of Eccentricity

In order to study the effect of the eccentricity on the fundamental frequency of the
eccentrically prestressed beam, a formula was derived from the equation of motion and ef-
fective load obtained from strain energy. The precision of the natural frequency formulation
was verified by comparison with the FEM results. It is worth noting that the accuracy of
the simulation was previously verified compared to the conventional mechanical solution.
The fundamental frequency variations for different ratios of length to depth are revealed in
Figure 15. To calculate the eccentricity effect, relative differences were computed as:

Eccentricity effect (%) =
ω1 [e=i] −ω1 [e=0]

ω1 [e=0]
× 100 (17)

where i is the eccentricity values, which are 50 and 100 mm here. As shown in Figure 15,
for specimens with a 50 mm eccentric tendon, the first natural frequency increases slightly
and this effect is more obvious for beams with larger spans. Clearly, the increase of
eccentricity enlarges the increase of the fundamental frequency so that it plays a more
stiffening role. It can be realized that eccentricity improves the bending stiffness and
deteriorates the softening effect, which is a result of an axial load; however, this effect is
very slight for small eccentricities. It can be observed in Figure 15 that the FNF tends to
increase as eccentricity increases and the higher amount of prestressing force intensifies
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this phenomenon. Comparison between the values of the eccentricity effect from FEM and
the derived formula clarifies that the formula works well and it can accurately predict the
effect of eccentricity with an acceptable error margin.
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Figure 15. Increase of the FNFs of prestressed beams due to eccentricity: (a) P = 200 kN, (b) P = 400 kN.

The influence of the eccentricity of the prestressing tendon on the dynamic midspan
deflection of the beam under a moving load was examined. In the presence of eccentricity,
prestressing procedure results in upward deflection, which is clearly perceived in Figure 16.
It is noticeable that after the moving load arrival, this deflection that is above the zero
line moves to the negative zone. Regardless of the moving speed, the maximum response
gradually decreases by raising the eccentricity and this is due to the fact that the eccentricity
reduces axial force effect. It was noted that the internal stresses caused by the moving
load can be reduced by the application of the eccentricity. The eccentricity of the prestress
strand does not change the dynamic response of the beam subjected to harmonic moving
load meaningfully, so the related figures are not given herein. This was also concluded by
Şimşek and Kocatürk [32].
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Figure 16. Influence of eccentricity on the normalized midspan deflection of the prestressed beam subjected to a moving
load: (a) v = 25 m/s, (b) v = 50 m/s.
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4.3. Effect of Concrete Ratio

The CFST beam is widely used for its excellent structural performance, though the con-
crete cracks in tension zone are its weaknesses. The prestressing technique is a promising
method in order to deal with this flaw [39]. However, in this study, microcracks were not
considered and all concrete parts were perfect and uncracked. Different ratios of concrete
height were nominated to investigate the concrete effect on the fundamental frequency of
beams with various length to depth ratios. Dealing with a CFST beam, its effective flexural
stiffness can be calculated as the sum of flexural stiffness of the steel tube and the concrete:

(EI)e f f = Es Is + Ec Ic (18)

where (EI)eff is the effective bending stiffness of the CFST beam, Es, Ec, Is, and Ic are
the Young’s modules and the moment of inertia of steel and concrete, respectively. The
mentioned method is useful for the filled tube with concrete ratio h3, whereas for the
other two categories h1 and h2, this method is not useful since these sections are not
symmetric. Therefore, the method of transformed section treating the steel elastic modulus
as reference material behavior was employed. The effective properties of composite sections
are tabulated in Table 3. The natural frequencies can be determined by using the effective
EI and mass per length.

Table 3. Effective properties of all cross-sections.

Cross-Section Concrete Height
(mm)

* Moment of Inertia
(cm4)

Mass per Length
(kg/m)

Hollow tube N/A 6384 38.465
Filled tube (h1) 96.67 8448 82.913
Filled tube (h2) 145 8510 105.136
Filled tube (h3) 290 13,100 171.8

* Moment of inertia about major axis corresponding to the steel elastic modulus.

It can obviously be seen in Figure 17 that the hollow tube has the largest fundamental
frequency among all sections. By comparing the moment of inertia from Table 3, this can
mainly be seen because the RHS section is lighter in weight than filled tubes. It was also
found out that half and full concrete-filled tubes have almost similar FNFs. The section
with concrete ratio h1 has nearly the same bending stiffness as the section with concrete
ratio h2, nonetheless, it presents a higher FNF. This means that this section is lighter and
more sustainable, which can be taken into account for designing the beam profile.
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4.4. Effect of Velocity

This section studies the dynamic response of the simply supported prestressed beam
subjected to a moving point load with various velocities and excitation frequencies. The
effect of velocity on the normalized midspan deflection of a beam having the critical
velocity of 200 m/s under a moving point load is depicted in Figure 18. The critical velocity
can be calculated by vcr = Lω1/π in which ω1 is the first natural frequency of the beam.
The variation of velocity has a substantial effect on the dynamic midspan displacement.
The moving load with velocities 25, 50, 100, and 200 m/s results in the maximum midspan
vertical displacement 0.1348, 0.1520, 0.2090, and 0.2016 at load positions 0.43, 0.41, 0.65,
and 1, respectively. It is clear that as the velocity grows, the maximum deflection tends
to diverge more from the static influence line and shift to the right. Except for the critical
velocity at which its dynamic response is at maximum, the midspan deflections of all other
velocities are zero when the load exits the beam.

Materials 2021, 14, x FOR PEER REVIEW 17 of 20 
 

 

This section studies the dynamic response of the simply supported prestressed beam 
subjected to a moving point load with various velocities and excitation frequencies. The 
effect of velocity on the normalized midspan deflection of a beam having the critical ve-
locity of 200 m/s under a moving point load is depicted in Figure 18. The critical velocity 
can be calculated by vcr = Lω1/π in which ω1 is the first natural frequency of the beam. 
The variation of velocity has a substantial effect on the dynamic midspan displacement. 
The moving load with velocities 25, 50, 100, and 200 m/s results in the maximum midspan 
vertical displacement 0.1348, 0.1520, 0.2090, and 0.2016 at load positions 0.43, 0.41, 0.65, 
and 1, respectively. It is clear that as the velocity grows, the maximum deflection tends to 
diverge more from the static influence line and shift to the right. Except for the critical 
velocity at which its dynamic response is at maximum, the midspan deflections of all other 
velocities are zero when the load exits the beam. 

 
Figure 18. Time-histories for normalized midspan displacement of the non-prestressed beam sub-
jected to a moving load with various velocities. 

The maximum response ratios, henceforth called the dynamic magnification factor, 
is defined as the maximum ratio of the dynamic and static midspan displacements. The 
dynamic magnification factor relies on the velocity parameter, which is a function of load 
speed and the FNF of the beam. Table 4 lists the dynamic magnification factors for the 
prestressed beam with different post-tensioning forces and velocities. It is obvious that 
the axial force causes an increase in the dynamic magnification factor and it is also sensi-
tive to the velocity of the moving load. The implication may result from the decrease in 
the flexural stiffness of the beam as a result of the softening effect. It is noteworthy to 
mention that beyond the speed of 125 m/s, the dynamic magnification factors start to de-
crease, which are in agreement with the results obtained by Olsson [24]. 

Table 4. The dynamic magnification factor of unbonded prestressed beam for various velocities and prestress loads. 

Velocity (m/s) 
Prestress Load (kN) 

0 100 200 400 
25 1.1333 1.2236 1.3286 1.5973 
50 1.2783 1.3959 1.5286 1.9098 
75 1.6144 1.7525 1.9133 2.3450 
100 1.7571 1.8885 2.0479 2.4835 
125 1.7853 1.9165 2.0633 2.4366 
150 1.7590 1.8735 2.0125 2.3790 
200 1.6947 1.7823 1.8735 2.0511 

0 0.2 0.4 0.6 0.8 1

y(
l/2

, t
)/y

0

t/∆t

V =25 m/s
V =50 m/s
V =100 m/s
V =200 m/s
Static influence line

−2

−1.5

−1

−0.5

0

0.5

−2.5

Figure 18. Time-histories for normalized midspan displacement of the non-prestressed beam sub-
jected to a moving load with various velocities.

The maximum response ratios, henceforth called the dynamic magnification factor,
is defined as the maximum ratio of the dynamic and static midspan displacements. The
dynamic magnification factor relies on the velocity parameter, which is a function of load
speed and the FNF of the beam. Table 4 lists the dynamic magnification factors for the
prestressed beam with different post-tensioning forces and velocities. It is obvious that the
axial force causes an increase in the dynamic magnification factor and it is also sensitive
to the velocity of the moving load. The implication may result from the decrease in the
flexural stiffness of the beam as a result of the softening effect. It is noteworthy to mention
that beyond the speed of 125 m/s, the dynamic magnification factors start to decrease,
which are in agreement with the results obtained by Olsson [24].

Table 4. The dynamic magnification factor of unbonded prestressed beam for various velocities and
prestress loads.

Velocity (m/s)
Prestress Load (kN)

0 100 200 400

25 1.1333 1.2236 1.3286 1.5973
50 1.2783 1.3959 1.5286 1.9098
75 1.6144 1.7525 1.9133 2.3450

100 1.7571 1.8885 2.0479 2.4835
125 1.7853 1.9165 2.0633 2.4366
150 1.7590 1.8735 2.0125 2.3790
200 1.6947 1.7823 1.8735 2.0511
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The effect of the velocity and excitation frequency of the moving point load is discussed
here by taking two velocities with frequencies 40, 70, and 100 rad/s, as shown in Figure 19.
As mentioned earlier, the FNF of the non-prestressed beam is 70.2 rad/s. Figure 19a
illustrates that the maximum dynamic response of the beam is remarkably higher for the
frequency of 70 rad/s, which clarifies the resonance effect. However, this effect is reduced
by the increase of the velocity, as can be seen in Figure 19b. The dynamic magnification
factors for Ω = 70 rad/s and velocities 25 and 50 m/s are 7.11 and 3.576, respectively.
This shows the contribution of the velocity to the resonance, which is more important at a
slower pace.
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Figure 19. Time-histories for normalized midspan displacement of the non-prestressed beam subjected to different values
of frequencies: (a) v = 25 m/s, (b) v = 50 m/s.

5. Conclusions

In order to examine the relationship between the prestress force with the fundamental
natural frequency and dynamic characteristics of the large-span beam, two approaches
based on a conventional mechanics theory and numerical simulation were employed.
Derived from the strain energy theory and equation of motion, a formula was proposed for
calculation of the natural frequencies comprising the eccentricity effect. Theoretical and
numerical cases were then presented which discuss the difference between the first vertical
natural frequencies of the beams influenced by the eccentric prestress force. The parametric
studies were performed taking into consideration the effect of the axial compressive load,
eccentricity, concrete ratio, and velocity and excitation of the moving load on the dynamic
response of the beam.

The main conclusions are drawn as follows:

1. The fundamental frequency of the large-span beam is affected in the presence of
a prestressing load. However, it depends on the size of the load and slenderness
ratio of the beam. On the condition that either the prestress load or span-to-depth
ratio is large enough, the first natural frequency declines due to the “compression
softening” effect.

2. Relating to the CFST beams, the effective mass and moment of inertia play an im-
portant role in the weight and stiffness of the structure. The cross-sections filled by
one-third and half of the inner depth represent nearly identical bending stiffness levels
while the beam with concrete ratio h1 is lighter. Thus, this fact may be considered for
a sustainable design process.

3. The pre-tensioning force results in a greater dynamic response of the large-span beam
under a moving point load; however, this reduction tends to disappear due to an



Materials 2021, 14, 2273 19 of 20

increasing load excitation frequency. Correspondingly, the dynamic magnification
factor rises by an increment in the prestress load, which clarifies a direct connection.

4. The results indicated that the eccentricity causes more flexural stiffness and reduces
the softening effect resulting from the prestress force. Accordingly, in comparison with
the beams subjected to concentric prestressing, the fundamental frequency grows.

5. Due to the fact that eccentricity induces initial upward deflection, the dynamic verti-
cal displacement decreases; however, this effect for beams under harmonic load is
meaningless. It should be noted that the dynamic midspan displacement increases as
the velocity of the moving point load rises to about 62% of the critical velocity of the
beam, then it begins to decrease.

It is strongly recommended that for beams with large span-to-depth ratios, the appli-
cation of eccentricity is advantageous so as to reduce the softening effect caused by the
prestressing system.

It is noted that a prestressed steel RHS beam is not similar to a prestressed concrete
beam where the strands are bonded to the surrounding concrete. Further research is
needed to comprehend exactly how the bonded tendons and prestressing level alter the
FNFs of slender and stocky CFST beams since based on the above-mentioned results,
the FNFs of prestressed beams with unbonded tendons are reliant on the size of the
load and slenderness ratio of the beam to behave consistently with the “compression-
softening” theory.
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