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Esophageal adenocarcinoma (EAC) is a lethal cancer requiring improved screening

strategies and treatment options due to poor detection methods, aggressive

progression, and therapeutic resistance. Emerging circulating tumor DNA (ctDNA)

technologies may offer a unique non-invasive strategy to better characterize the highly

heterogeneous cancer and more clearly establish the genetic modulations leading

to disease progression. The presented review describes the potential advantages of

ctDNA methodologies as compared to current clinical strategies to improve clinical

detection, enhance disease surveillance, evaluate prognosis, and personalize treatment.

Specifically, we describe the ctDNA-targetable genetic markers of prognostic significance

to stratify patients into risk of progression from benign to malignant disease and

potentially offer cost-effective screening of established cancer. We also describe the

application of ctDNA to more effectively characterize the heterogeneity and particular

mutagenic resistance mechanisms in real-time to improve prognosis and therapeutic

monitoring strategies. Lastly, we discuss the inconsistent clinical responses to currently

approved therapies for EAC and the role of ctDNA to explore the dynamic regulation

of novel targeted and immunotherapies to personalize therapy and improve patient

outcomes. Although there are clear limitations of ctDNA technologies for immediate

clinical deployment, this review presents the prospective role of such applications to

potentially overcome many of the notable hurdles to treating EAC patients. A deeper

understanding of complex EAC tumor biologymay result in the progress toward improved

clinical outcomes.

Keywords: esophageal cancer (EC), circulating tumor DNA (ctDNA), targeted therapy (TT), immunotherapy,

personalized medicine

INTRODUCTION

Esophageal cancer (EC) is currently the 7th deadliest cancer in the United States with an estimated
17,290 newly diagnosed cases and 15,850 deaths in 2018, with an overall 5-years survival rate under
20% (1). For locally advanced disease, standard of care treatment currently includes neoadjuvant
chemoradiotherapy plus surgery (2–4). However,∼40% of patients present with unresectable late-
stage disease at diagnosis, reducing their 5-years survival to <5%, and further underscoring the
urgent need for earlier detection and improved treatment strategies (5, 6).

Circulating tumor DNA (ctDNA) is fragmented tumor-derived DNA in the blood stream that
serves as a non-invasive diagnostic and prognostic tool for a number of cancer types (7, 8). Current
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standard cancer liquid protein biomarkers, such as PSA,
CA 125, CEA, CA 19-9, AFP, etc., are limited by poor
specificity and are known to be elevated in a variety of benign
conditions. In contrast, ctDNA offers increased specificity of
dysregulated genetic tumor markers, with levels of detection
correlating well with premalignant to malignant progression
(9). Moreover, ctDNA has a shorter half-life than protein
biomarkers, and the real-time information that may be gathered
from such “liquid biopsies” may provide unique insight
to improve screening methodologies, therapeutic monitoring,
and personalized therapy to improve outcomes in a cost-
effective widely accessible manner (7, 10). Recently, Park
et al. demonstrated that deep sequencing of ctDNA KRAS
mutations sensitively detects pancreatic ductal adenocarcinoma
and correlates with therapeutic response and disease progression
(11). Additionally, ctDNA has shown promise for the detection of
post-surgical recurrence of colon, breast, and lung cancers (12–
14). The Cancer Genome Atlas (TCGA) recently characterized
numerous deregulated genes in esophagogastric adenocarcinoma
such as TP53, CDKN2A, SMAD4, ARID1A, ERBB2, VEGFA,
CCNE1, GATA4, and GATA6 (15). Many of the identified
markers overlapped with significant genes in gastric cancer
pathogenesis; however, EAC DNA was consistently more hyper-
methylated (11). ctDNA technologies may differentiate these
important variances through the detection of not only point
mutations, but also copy number variations, chromosomal
rearrangements, epigenetic alterations, insertions, and deletions
(10). The purpose of this review is to describe the potential
utility of ctDNA to improve the detection, monitoring, treatment
strategies, and prognosis for EAC patients.

LITERATURE REVIEW METHODS

A thorough literature review was performed by searching the
PubMed database for all relevant articles through September 1st,
2018. The following search criteria were applied: (“circulating
tumor DNA” OR “ctDNA” OR “cell free DNA” OR “tumor DNA”)
AND (“esophageal” OR “esophageal” OR “gastrointestinal”
or “gastroesophageal”) AND (“cancer” OR “tumor” OR
“malignancy”). The search produced 165 items, and two
independent reviewers (JK and TP) screened the results.
References from relevant articles were screened as an additional
source of literature. Exclusions included articles that evaluated
GI malignancies other than esophageal cancer and articles that
were not in English. Additional specific searches of current EAC
epidemiology statistics, TCGA data, ctDNA methodologies, and
EAC therapeutics were performed to supplement background
information.

CTDNA METHODOLOGY

ctDNA detection was first established though Sanger sequencing,
however limitations such as high cost and complicated protocols
have lead to the development of various methodologies to
improve efficiency, cost-effectiveness, sensitivity, and specificity
(16). Currently, the two main methods of detection include

Digital PCR (dPCR) and Next-Generation Sequencing (NGS)
(17). dPCRmethods, such as Droplet Digital PCR and BEAMing,
carry the advantage of being relatively easy, inexpensive methods
with short turn around times, which can be a critical advantage
when treating aggressive malignancies (18, 19). Additionally,
these PCR methods offer superior precision, sensitivity, and
reproducibility (19). Specifically, BEAMing has reported up to
100% sensitivity of multiple markers in a variety of cancers
(20–22). Although dPCR methods carry higher sensitivity than
NGS, it can only detect mutations within a limited number of
loci, usually within a single gene, a disadvantage that can be
overcome with NGS (23, 24). ctDNA NGS protocols include
tagged-amplicon deep sequencing (Tam-Seq), Safe-Sequencing
System (Safe-SeqS), and capture based sequencing (CAPP-seq)
(23). CAPP-seq targets only areas of interest and is therefore
more cost effective and focused than whole exome or whole
genome sequencing (16). It also confers the lowest detection
limit and background error rate of any NGS-based method and
is therefore considered a superior NGS method for practical
implementation (16).

Application of ctDNA technologies offers potential unique
advantages to clinical care over tissue biopsy, and the
concordance of ctDNA with tissue biopsy has been validated
across a variety of cancers (25–29). Primarily, tissue DNA
collection requires invasive procedures that many frail and
elderly patients may not tolerate well (30). Less than 15%
of esophageal cancers are diagnosed before the age of 55,
so non-invasive detection and monitoring methods may
confer particular benefit to the EAC patient population (1).
Additionally, it has been well-established that many cancers,
including EAC, are very heterogenic in nature and gain additional
mutations throughout progression, treatment, and metastasis
(31). Tissue biopsy samples only a small section of primary
tumor, so obtained samples may not truly reflect all relevant and
targetable mutations (32). Comparatively, ctDNA offers a more
global perspective of the entire tumor, including metastases, that
may offer improved detection of spatial and temporal tumor
heterogeneity, which can carry great value by providing up-
to-date information on tumor evolution and mutational status
throughout disease course (10, 33). Moreover, unlike tissue DNA,
analyzing ctDNA does not require fixation of the sample, which
can fragment the DNA and cause sequence artifacts that may be
misinterpreted as cancer-associated mutations (34).

Despite the improving technologies, there are current
limitations to the clinical applications of ctDNA. First, the use
of ctDNA as a reliable mechanism to inform clinical decisions
lacks standardization due to limited early data and complex
bioinformatics processing (35). To date, the only FDA approved
tests include methylation-based test of SEPT9 for colorectal
cancer and qPCR-based test for EGFR in non-small cell lung
cancer (36, 37). Second, the yield of ctDNA material from
plasma is usually quite low, especially in early stage cancers and
precursor lesions. In such cases, whole genome amplification has
been utilized to improve sample yield, however, future studies
are needed to determine if this may compromise the clinical
characterization of the tumor (35). Third, the mechanisms and
rate of elimination of ctDNA from the bloodstream has not
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yet been fully explored. There is evidence to suggest ctDNA is
cleared through the kidney, liver, and spleen, as well as nuclease
degradation and phagocytosis; however, the rate of elimination
may be very relevant to elucidate to in the setting of therapeutic
monitoring or disease progression (38, 39).

CTDNA DETECTION OF EAC

In an at-risk patient population of over 20 million GERD
sufferers, it is estimated that only 10–15% develop Barrett’s
esophagus (BE), 0.5% of patients with BE progress to EAC
per year, and 25% of high-grade dysplasia cases progress to
EAC (40). The minimal risk of disease progression based on
GERD symptoms alone dilutes the practicality of universal
esophageal cancer screening protocols. Current testing for EAC
and precursor lesions is primarily triggered by persistent GERD
symptoms in a goal to detect early disease before development
to malignancy. Despite this strategy, ∼93% of diagnosed EAC
patients received no prior surveillance (41). Non-invasive
screening with ctDNA liquid biopsy may offer a cost-effective
non-invasive alternative to identify patients at increased risk for
early-stage disease or development of EAC.

Numerous genetic alterations have been identified in
association with the development and prognosis of EAC that
may serve as ideal ctDNA targets for improved detection.
Particularly, the tumor suppressors TP53 and CDKN2A are
mutated in ∼72 and 12% of EAC cases, respectively (42, 43).
Bettegowda et al. utilized ctDNA technology to detect multiple
early and late stage malignancies, including gastroesophageal
cancer (GEC), and were able to reliably detect ∼58% of localized
GEC (no evidence of metastasis) and 100% of metastatic disease
(44). As expected, sensitivity improved from Stage 1 through
IV progression across all malignancies (44). Additionally, a
meta-analysis by Creemers et al. suggested ctDNA detection of
HER2 and MYC may be useful for diagnosis and therapeutic
monitoring of GEC (45). In order to improve early detection of
EAC, non-invasive ctDNA testing may be strategically applied
to patients with clinical risk factors, such as recurrent GERD
symptoms, Caucasian ethnicity, obesity, smoking history, age,
and/or male sex.

Many of the described mutations that characterize EAC, such
as TP53 and CDKN2A, also occur in precursor lesions such as BE
and HGD, lowering the specificity of such testing for established
cancer (46). Still, alternative ctDNA markers may be useful in
identifying patients with BE or HGD who are at increased risk
for progression to EAC. Currently, the American College of
Gastroenterology recommends patients with established non-
dysplastic BE should receive endoscopic biopsy surveillance to
assess possible disease progression every 3–5 years; however,
90–95% of these patients have completely stable disease and
will never progress to EAC (47–50). In a recent study by
Li et al. patients with BE were stratified into 79 progressors
and 169 non-progressors to EAC, and biopsies were classified
based on genetic expression. The study demonstrated that non-
progressing BE lesions had small localized deletions at fragile
sites, such as FHIT, WWOX, CDKN2A, and 9p arm loss/copy

neutral loss of heterozygosity (LOH) (51). These samples revealed
a low level of genetic heterogeneity and remained stable over
years of surveillance. Alternatively, lesions that progressed to
EAC developed increasing chromosome instability as early as
48 months before progression to EAC with gains and losses of
whole chromosomes or chromosome arms, such as loss of 18q
(51). Progressors showed significant mutation of SMAD4 and
were universally more heterogenetic with progressive diversity
and genome doublings (51). Similarly, a high-powered meta-
analysis by Gharahkahni et al. suggests HTR3C and ABCC5
may be specific for progression of BE to EAC (52). Rumiato
et al. recently utilized circulating cell-free DNA (cfDNA) to
evaluate the neoplastic progression of BE and were able to
successfully detect notable LOH predicting progression to
dysplasia and/or EAC prior to visualization (9, 53). Moreover,
post-intervention cfDNA sampling demonstrated a return to
baseline levels of expression, further validating the potential of
the technology to aid in the evaluation of treatment efficacy (9).
Therefore, ctDNA screening for SMAD4, HTR3C, ABCC5, and
increasing genetic variability over time may stratify patients with
precancerous lesions for more appropriate endoscopic screening
or intervention recommendations.

PROGNOSTIC SIGNIFICANCE AND
THERAPEUTIC MONITORING

Various previous studies have established ctDNA as a useful tool
for the prediction of patient prognosis before and after therapy
in a variety of cancer types (54–58). In a recent study evaluating
the role of ctDNA for tumor prognosis in breast cancer patients
with multiline resistance, Hu et al. revealed unique mutation
frequency patterns in those with progression free survival (PFS)
<3 months vs. >3 months (59). Additionally, a TP53+PIK3CA
mutation pattern successfully predicted progression within 6
months (59). Similarly, in a study investigating the utility
of ctDNA to monitor non-small cell lung cancer (NSCLC)
patients, tumor and blood samples before and after surgical
resection demonstrated that the presence of ctDNA had a higher
positive predictive value than six currently utilized clinical tumor
biomarkers (60). As EAC is a notably heterozygous malignancy,
a variety of diverse studies have reported unique genomic
signatures associated with survival and prognostic response to
chemoradiotherapy (Table 1) (71). Although, the true clinical
utility of these specific genomic profiles has yet to be reliably
established, ctDNA may offer an ideal setting for future studies
to validate these prognostic indicators, as has been done for other
cancers.

Furthermore, 44–61% of patients treated according to the
current guidelines of neoadjuvant chemoradiotherapy plus
surgery will experience recurrent disease (72). Despite complete
resection with pathologically-confirmed clear margins and
negative post-therapeutic CT imaging, it is hypothesized that
many EAC recurrences are due to minimal residual disease
(MRD) or systemic micrometastases (73). Previous studies
have demonstrated that ctDNA screening may more sensitively
identify small areas of remaining or recurrent disease as

Frontiers in Oncology | www.frontiersin.org 3 December 2018 | Volume 8 | Article 610

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kosovec et al. Circulating Tumor DNA in Esophageal Adenocarcinoma

TABLE 1 | Esophageal adenocarcinoma genetic signatures associated with

prognosis.

Study Signature Results

Peters et al.

(61)

Downregulated: DCK,

PAPSS2, SIRT2

Upregulated: TRIM44

Reduction in survival from 58 to

14%

Kim et al. (62) SPARC, SPP1 Significant association with poor

survival

Goh et al. (63) EGFR, MTMR9, NEIL2, WT1 Stratification of patients in 5

survival clusters

Pennathur

et al. (64)

165-gene signature Stratification of patients into

good vs. poor survival cluster

Rao et al. (65) 59-gene signature Stratification of patients into

good vs. poor survival cluster

Rao et al. (65) Upregulated: Ephrin B3 Increased response to

chemoradiotherapy

Motoori et al.

(66)

Downregulated: PERP

Upregulated: DAD1,

PRDX6, SELPINB6, and

SRF

Decreased response to

chemoradiotherapy

Maher et al.

(67)

Downregulated: ERB41L3,

NMES1, RPNC1, STAT5B

Upregulated: RTKN

Increased response to

chemoradiotherapy in EAC and

ESCC

Tamoto et al.

(68)

Upregulated: PERP,

S100A2, SPRR3

Characterized complete

responders to

chemoradiotherapy in EAC and

ESCC

Murugasu

et al. (69)

Increased tumor

heterogeneity

Decreased response to

neoadjuvant chemotherapy

Rumiato et al.

(70)

SNPs of ABCC2, ABCC3,

CYP2A6, PPARG, SLC7A8

Decreased response to

platinum-based chemotherapy

compared to standard imaging technology (74, 75). Such
sensitive screening methodology may be ideally suited for such
an aggressively deadly disease to trigger early intervention and
reduce associated mortality. Recently, Chan et al. was able to
improve detection of nasopharyngeal carcinoma recurrence by
10 months as compared to standard screening protocols (76).
Similarly, ctDNA has also been used to detect MRD and predict
recurrence in breast cancer with a mean lead-time of 7.9 months
over clinical relapse (12). In a third study for lung cancer,
ctDNAmutations predicted recurrence with 94% sensitivity with
a median clinical lead-time of 5.2 months (14).

Unfortunately, 50–60% of EAC patients are resistant to
standard chemotherapeutic treatment options due to inherent
heterogeneity and development of escape mechanisms (69, 77).
ctDNA technology provides an additional tool to monitor
real-time therapeutic efficacy for more efficient modification
of dosing and regimen. Murugasu et al. demonstrated that
patients with EAC who had promising response to platinum
agents developed decreased C>T mutations and increased C>A
mutations through the course of treatment (69). Findlay et al.
also confirmed this finding in addition to TT>CT changes,
and acquired mutations in SF3B1, TAF1, and CCND2 (78). As
neoadjuvant chemotherapy can dramatically and rapidly change
the EAC genome profile, real-time monitoring to quickly identify
resistance and opportunities for new actionable mutations

may lead to clinical benefit. Moreover, ctDNA studies may
provide additional insight into disease progression when used
in conjunction with clinical imaging. de Figueriredo Barros
et al. described an increasing mutation burden correlating with
progression in metastatic colorectal cancer, while CT imaging
showed stable disease (79).

PERSONALIZED THERAPEUTIC
APPLICATIONS

Various targeted therapies have been explored for the treatment
of gastroesophageal cancers but have only demonstrated limited
efficacy (80, 81). Only trastuzumab has been established as
a potential first-line treatment option for advanced GEC in
HER2+ patients; however, benefits are minimal with a median
overall survival (OS) of 13.8 months vs. 11.1 months (82).
Ramucirumab (VEGFR-2) single agent or in combination with
paclitaxel are recommended options for second-line treatment
demonstrating an OS of 5.2 and 9.6 months, compared to 3.8 and
7.4 months, respectively (83, 84).

Over the last decade, success of immunotherapy across
multiple cancer types has prompted exploration of novel
immunologic targets for GECs (85). Recently, the late-line
KEYNOTE-059 study of pembrolizumab in PD-L1 positive
GEC and gastric tumors showed an objective response rate
of 13.3% with 58% of the responses lasting 6 months or
longer, leading to a third-line FDA approval (86, 87). Similarly,
nivolumab has been approved for third-line GEC treatment
in Japan after demonstrating an improved median survival of
5.26 months vs. 4.14 months, independent of PD-L1 expression
(88, 89). Disappointingly, the most recent KEYNOTE-061
second-line pembrolizumab trial did not demonstrate any
significant survival benefit in PD-L1 positive GEC patients (90).
Still, pembrolizumab has secured a tumor agnostic approval
in microsatellite instability-high or mismatch repair deficient
previously treated unresectable or metastatic solid tumors; yet,
these criteria only apply to∼3% of GECs (15, 91).

First generation immuno-oncology agents have demonstrated
modest activity and potential application for the treatment
of EAC; however, better stratification biomarkers and newer
immunotherapeutic combination strategies may be required
for enhanced durable responses. Only ∼40% of EAC patients
present with baseline PD-1 positivity, and this expression occurs
primarily at the invasive margin (92, 93). Therefore, PD-L1 may
not be the ideal predictive marker in EAC due to the inconsistent
clinical response and relatively low rate of upregulation.
There is evidence that the immune microenvironment as a
whole is highly reactive to chemoradiotherapy and significantly
increases expression of PD-L1 and other developing targets,
such as LAG3, TIM3, and OX40 (94). Therefore, ctDNA
technology may be a useful tool to explore the dynamic
immunoregulation throughout the course of treatment and to
better characterize the immunologic profile of EAC beyond the
PD-1/PD-L1 pathway. A number of novel targeted molecular
and immunotherapeutic agents are currently under investigation
for EAC to explore additional potential treatment alternatives

Frontiers in Oncology | www.frontiersin.org 4 December 2018 | Volume 8 | Article 610

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Kosovec et al. Circulating Tumor DNA in Esophageal Adenocarcinoma

(95). Due to the extreme genomic variability and instability
that classically characterize EAC, in addition to the multiple
resistance mechanisms that may emerge during treatment,
EAC may be an optimal candidate for the application of
personalized therapeutics through the use of real-time ctDNA
monitoring (96).

Moreover, in patients treated with immunotherapy,
radiological evaluation of early disease responsiveness is
especially challenging due to immune cell infiltration resulting
in pseudo-progression on imaging (97, 98). Cabel et al. showed
ctDNA is useful for early monitoring of responsiveness to anti-
PD1 immunotherapy and correlated well with PFS and OS (99).
Similarly, Xi et al. showed early changes in BRAFV600E ctDNA
as early indicator to identify responding from non-responding
patients with metastatic melanoma treated with immunotherapy
(100). In another study, Raja et al. demonstrated early reduction
in ctDNA correlation with survival in lung and bladder cancer
after treatment with durvalumab (PD-L1) (101). Lastly, Khagi
et al. demonstrated increased ctDNA detection of variants of
unknown significance correlated with statistically significant
improved PFS and OS in patients with diverse malignancies
receiving immunotherapy (102). Exploration into the use of
ctDNA technologies for non-invasive therapeutic monitoring
of immunotherapy in EAC may be warranted due to the
supporting evidence that ctDNA may be a good indicator of
immunoresponse and prognosis.

CONCLUSIONS

Esophageal adenocarcinoma is a very deadly disease due to the
high percentage of patients presenting with late-stage diagnosis

and minimally effective treatment strategies. The emergence
of non-invasive and cost-effective ctDNA technologies may
offer a unique opportunity to improve screening protocols to
more effectively monitor benign disease and detect malignancy
earlier. Moreover, many patients with EAC are resistant to
first line chemoradiotherapy, and therapeutic monitoring of
ctDNA mutations throughout the course of treatment may
allow for more efficient adjustments of personalized therapy.
Despite only minor successes with targeted therapies due to
the highly heterogenic nature of EAC, real-time information
regarding response and prognosis may allow for more informed
clinical decision-making strategies. Additionally, the integration
of ctDNAwith developing immunotherapeutic optionsmay open
the door for improved prognostic outcomes.

Limitations of ctDNA technologies are rooted in the still
early development of this new emerging technology and the lack
of strongly validated studies characterizing the precise clinical
role it may play to truly improve patient care (30). Rigorous
future clinical studies will be required to reliably describe specific
discoverable changes in ctDNA throughout disease progression
before broad implementation. Still, EAC remains an extremely
lethal disease, and further investigation into the potential benefits
of ctDNA characterization may offer significant benefits to
improve early detection, monitor progression, enhance real-
time personalization of therapeutics, and evaluate prognosis to
improve clinical care.
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