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Abstract: The aim of this study was to investigate the effects of dietary supplementation with a
nonalcoholic red wine extract (RWE), including resveratrol and polyphenols, on insulin sensitivity
and Sirt1 expression in nondiabetic humans. The present study was a single-arm, open-label
and prospective study. Twelve subjects received supplementation with RWE, including 19.2 mg
resveratrol and 136 mg polyphenols, daily for 8 weeks. After 8 weeks, metabolic parameters, including
glucose/lipid metabolism and inflammatory markers, were evaluated. mRNA expression of Sirt1
was evaluated in isolated peripheral blood mononuclear cells (PBMNCs). Additionally, Sirt1 and
phosphorylated AMP-activated kinase (p-AMPK) expression were evaluated in cultured human
monocytes (THP-1 cells). Supplementation with RWE for 8 weeks decreased the homeostasis model
assessment for insulin resistance (HOMA-IR), which indicates an increase in insulin sensitivity.
Serum low-density lipoprotein-cholesterol (LDL-C), triglyceride (TG) and interleukin-6 (IL-6)
were significantly decreased by RWE supplementation for 8 weeks. Additionally, Sirt1 mRNA
expression in isolated PBMNCs was significantly increased after 8 weeks of RWE supplementation.
Moreover, the rate of increase in Sirt1 expression was positively correlated with the rate of change in
HOMA-IR. The administration of RWE increased Sirt1 and p-AMPK expression in cultured THP-1
cells. Supplementation with RWE improved metabolism, such as insulin sensitivity, lipid profile
and inflammation, in humans. Additionally, RWE supplementation induced an increase in Sirt1
expression in PBMNCs, which may be associated with an improvement in insulin sensitivity.
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1. Introduction

Metabolic derangement, including type 2 diabetes mellitus (T2DM), hypertension and
dyslipidemia, which is based on insulin resistance, is closely related to the initiation and progression
of cardiovascular disease (CVD) [1]. Therefore, maintaining metabolic health, including improving
insulin sensitivity, is important to protect vascular tissues against metabolic-derangement-related
cellular damage. Individual lifestyles, including dietary habits, affect metabolic and cardiovascular
health. Appropriate consumption of red wine, 20–30 g/day as amount of alcohol, is thought to be part of
a healthy lifestyle [2–4]. Previous epidemiological studies have shown an inverse association between
dietary polyphenol consumption and mortality from CVD [5–8]. The components of red wine contain
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many polyphenols, which are a complex mixture of flavonoids such as anthocyanins and flavan-3-ols
and nonflavonoids such as resveratrol, cinnamates and gallic acid [9]. Red wine polyphenols possess
vasoprotective effects through anti-aggregatory platelet activity, antioxidant and anti-inflammatory
properties, the generation and release of nitric oxide (NO) and glucose/lipid-metabolism-improving
effects, which contribute to maintaining metabolic and cardiovascular health [10–12].

Aging is closely associated with metabolic derangement, including insulin resistance. Caloric
restriction (CR)/dietary restriction (DR) retards aging or extends life spans [13]. The benefits of
CR/DR for the suppression of age-related disorders, including glucose intolerance and CVD, have
also been reported in rhesus monkeys and humans by improving insulin sensitivity and oxidative
stress/inflammation [14–17]. Therefore, CR/DR mimetics may be anti-aging therapies, resulting in the
maintenance of cardiometabolic health. Sirt1, a nicotinamide adenine dinucleotide (NAD+)-dependent
deacetylase, has been identified as one of the possible molecules through which CR/DR exerts anti-aging
effects [18,19]. Resveratrol, a polyphenolic phytoalexin that occurs in red wine, has been one of the most
extensively studied Sirt1 activators, as one of the CR/DR mimetics [20] and is a critical constituent that
contributes to the health benefits of red wine. Thus, polyphenols, including resveratrol from red wine,
may be candidates to improve cardiometabolic alterations associated with aging due to their pleiotropic
properties. However, there are few reports on whether red wine polyphenols, exert beneficial effects
on glucose/lipid metabolism and Sirt1 activation in humans. In this study, we investigated the effects
of red wine polyphenols on glucose/lipid metabolism and Sirt1 expression in isolated peripheral blood
mononuclear cells (PBMNCs) using red wine extract (RWE).

2. Materials and Methods

2.1. Composition of RWE

The alcohol-free RWE was obtained from NATURE Supplement (Osaka, Japan). This RWE is
derived from red wine produced in the Rhone valley regions of southern France. The polyphenol
contents in the RWE were assessed by high-performance liquid chromatography (HPLC) analysis
(Figure S1) and revealed that 166 mg of wine solids contained 9.6 mg of resveratrol and 68 mg of
polyphenols: catechin 1.16 mg, epicatechin 0.83 mg, tannin 29.3 mg, quercetin glycoside 0.33 mg,
malvidin glycoside 1.99 mg, total anthocyanin 5.15 mg, anthocyanin monomer 4.15 mg, anthocyanin
polymer 1.00 mg per 1 capsule.

2.2. Subjects and Study Design

Participants were recruited through advertisements on local posters. Males or females who were
20–70 years old were eligible. The exclusion criteria included diabetes (HbA1c ≥ 6.5%); pre-existing
endocrine, kidney, liver, heart and malignant disease; anemia (male: hemoglobin (Hb) < 10.0 g/dL,
female: Hb < 9.0 g/dL); alcohol abuse; smoking; the use of medicines/supplements; and planned
lifestyle changes. We enrolled 12 participants, including 8 males and 4 females, in this study.

This study is a single-arm, open-label, prospective study and conducted at Kanazawa Medical
University Hospital. Subjects were treated for 8 weeks with 2 capsules of RWE (containing 9.6 mg
resveratrol and 68 mg polyphenols per capsule) twice daily for a total of 19.2 mg resveratrol and
136 mg polyphenols per day. During the study period, participants were instructed to abstain from
supplements and foods suspected to contain polyphenols in significant amounts and the adherence for
them was confirmed every visit. Moreover, the importance of maintaining their normal way of life
was underscored. Compliance, defined as the proportion of capsules ingested relative to the intended
number, was calculated when participants returned the remaining capsules during the final visit.

2.3. Overall Visits and Interventions

Examinations were performed at baseline and 4 and 8 weeks after supplementation with RWE,
with the same equipment and by the same physicians. When completing the physical examination,
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including routine clinical biochemistry data at baseline, capsules were provided and participants were
instructed to initiate capsule consumption from the evening and twice daily. At week 4, potential
adverse events were recorded and fasting blood samples were taken for safety purposes. In addition,
participants visited the hospital on the examination day in the morning after overnight fasting at week
8 and then blood samples were collected.

2.4. Ethical Approval

Participants were given detailed explanations of the study protocol. Informed consent was
obtained from each participant. The study protocol was approved by the Regional Committee on
Health Research Ethics and the Ethical Committee of Kanazawa Medical University (IRB No. M229,
Uchinada, Ishikawa, Japan) and conformed to the ethical principles set forth in the Declaration
of Helsinki.

2.5. General Measurements

Body weight (BW) and body composition were measured using In Body® (Biospace Japan,
Inc., Tokyo, Japan) with the participants being lightly clothed; the participants urinated during the
30 min prior to the In Body® assessment [21]. In addition, blood pressure (BP) and heart rate (HR)
were measured in a sitting position after resting for 5 min [21]. Routine biochemistry and physical
examinations were performed at screening to investigate the presence of exclusion criteria.

2.6. Blood Sample Analysis

Routine biochemistry (creatinine (Cr), uric acid (UA), aspartate aminotransferase (AST), alanine
transaminase (ALT) and γ-glutamyl transpeptidase (γ-GTP)) parameters were analyzed continuously
throughout the study at the Department of Clinical Biochemistry of Kanazawa Medical University
Hospital using standard methods [21]. HbA1c and glycated albumin were measured using an
automated analyzer, HLC-723® G11 (TOSHO CO., LTD., Tokyo, Japan) [21]. Serum low-density
lipoprotein-cholesterol (LDL-C) and high-density lipoprotein-cholesterol (HDL-C) levels were
measured using enzymatic methods (QUALIGENT® HDL-C and QUALIGENT® LDL-C, SEKISUI
MEDICAL. CO., LTD., Tokyo, Japan) [21]. Serum triglyceride (TG) levels were measured using
enzymatic assays (Kyowa Medex, Co., Ltd., Tokyo, Japan) [21]. Free fatty acids (FFAs) were measured
by a commercially available kit (Wako Chemicals, Neuss, Germany). Plasma glucose was measured in
duplicate immediately after sampling on a YSI 2300 Stat Plus (YSI, Inc., Yellow Springs, OH, USA) [21].
Insulin was analyzed using a time-resolved immunofluorometric assay (AutoDELFIA Insulin kit, catalog
no. B080–101, PerkinElmer, Turku, Finland) [21]. Homeostasis model assessment–insulin resistance
(HOMA-IR) was calculated by the formula—fasting serum insulin (µU/mL)/fasting plasma glucose
(mg/dL)/405. Serum interleukin-6 (IL-6) was measured by Human IL-6 CLEIA (Chemiluminescent
Enzyme Immuno Assay) Fujirebio (Tokyo, Japan) and high-sensitivity C-reactive protein (hsCRP) was
measured by a nephelometry method using N-Latex CRPII (Siemens Healthineers, Tokyo, Japan) [21].

2.7. Sirt1 mRNA Expression in Isolated Peripheral Blood Mononuclear Cells (PBMNCs)

PBMNCs were collected from 20 mL of heparinized blood at the beginning and after 8 weeks of
the study and isolated using Histopaque-1077 (Sigma-Aldrich, St. Louis, MO, USA), as previously
described [22]. PBMNCs were washed three times with phosphate-buffered saline (PBS) (−) and
suspended in TRIzol reagent (Thermo Fisher Scientific, Waltham, MA, USA) for quantitative real-time
PCR. Total RNA was isolated from isolated PBMNCs, cDNA synthesis and quantitative real-time PCR
were performed as previously described [22]. TaqMan probes for Sirt1 were purchased from Thermo
Fisher Scientific (Waltham, MA, USA). The analytical data were adjusted to the level of 18S mRNA
expression as an internal control.
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2.8. THP-1 Cell Culture

Human monocytes (THP-1 cells) obtained from ATCC were cultured in RPMI medium with 10%
fetal calf serum [23]. After 16 h of serum starvation, THP-1 cells were treated with RWE 166, 332 and
3320 ng/mL (including 68, 136 or 1360 ng/mL polyphenols and 9.6, 19.2 and 192 ng/mL resveratrol,
respectively) or Dimethyl sulfoxide (DEMSO) as a control for 24 h. Western blotting was performed
using antibodies against Sirt1 (1:1000), phosphor(p)-AMPKα (Thr 172) (1:1000), AMPKα (1:1000) and
β-actin (1:1000), as previously described [23]. The anti-rabbit polyclonal p62 antibody (PM045) was
obtained from Medical & Biological Laboratories (Nagoya, Japan). Anti-phospho (p)-AMPKα (Thr 172),
AMPKα and β-actin antibodies were obtained from Cell Signaling Technology Inc. (Danvers, MA,
USA) and anti-Sirt1 antibodies were obtained from Millipore (Bedford, MA, USA).

2.9. Statistical Analysis

Data are presented as the means ± the standard deviation (SD) unless otherwise indicated.
The results obtained at baseline and after 8 weeks of RWE supplementation, as well as changes
within a group, were compared using a paired t-test. One-way ANOVA followed by Tukey’s multiple
comparison test was used to determine the significance of pairwise differences among three or more
groups. The correlation of two variables was analyzed by a single linear regression analysis as a
Pearson correlation coefficient. Statistical significance was defined as p < 0.05 and statistical analyses
were performed using StatMate5.

3. Results

3.1. Characteristics at Baseline and after Supplementation with RWE for 8 Weeks

The physical characteristics of the participants are shown in Table 1. BW and body mass index
(BMI) were not significantly different between the baseline and the end of supplementation with RWE.
Body composition, including fat mass, %fat and skeletal fat, showed no significant change between
baseline and at 8 weeks of RWE supplementation. Systolic and diastolic BP and HR also showed no
change between baseline and after supplementation with RWE. Fasting plasma glucose and serum
insulin levels showed no significant change between baseline and the end of RWE supplementation
(Table 2). However, HOMA-IR was significantly decreased after supplementation with RWE compared
to the baseline. Additionally, the levels of serum TG and LDL-C were significantly decreased and
serum HDL-C and FFA levels showed no differences after supplementation with RWE compared to
those at baseline. Among the inflammatory markers, serum hsCRP levels were not changed; however,
serum IL-6 levels showed significant decreases after 8 weeks of supplementation with RWE from
baseline (Table 2). Liver function tests, such as AST, ALT and γ-GTP and kidney function tests, such as
serum creatinine and uric acid, exhibited no significant change between baseline and the end of
supplementation with RWE.

Table 1. Characteristics of participants at baseline and after supplementation with red wine extract.

0 Week 8 Weeks p Value

Age 47.5 ± 11.3
Male:female 8:4

Body weight (kg) 66.6 ± 16.4 66.0 ± 16.1 0.282
Body mass index (kg/m2) 23.3 ± 3.8 23.1 ± 3.7 0.278

Systolic blood pressure (mmHg) 118.8 ± 13.5 119.7 ± 13.3 0.658
Diastolic blood pressure (mmHg) 71.5 ± 10.4 73.3 ± 13.0 0.580

Heart rate (/min) 71 ± 8.7 71.4 ± 5.2 0.860
Fat mass (kg) 18.8 ± 8.8 17.8 ± 8.4 0.067

%fat 25.7 ± 9.3 24.1 ± 7.0 0.255
Skeletal muscle mass (kg) 26.1 ± 6.4 26.5 ± 6.8 0.369



Nutrients 2020, 12, 3108 5 of 11

Table 2. Laboratory data of participants at baseline and after supplementation with red wine extract.

0 Week 8 Weeks p Value

Fasting plasma glucose (mg/dL) 95.6 ± 8.2 89.6 ± 9.3 0.100
Fasting serum insulin (µU/mL) 7.06 ± 5.49 4.88 ± 3.88 0.063

HOMA-IR 1.71 ± 1.38 1.13 ± 1.03 0.046
HbA1c (%) 5.2 ± 0.5 5.2 ± 0.4 0.135

Glycated albumin (%) 13.8 ± 1.2 13.8 ± 1.1 0.431
LDL-C (mg/dL) 119.7 ± 21.0 114.7 ± 19.6 0.013
HDL-C (mg/dL) 56.0 ± 19.0 58.0 ± 11.3 0.097

TG (mg/dL) 246.9 ± 285.6 182.2 ± 220.5 0.032
log-TG 2.12 ± 0.48 2.02 ± 0.40 0.034

Free fatty acid 515.0 ± 309.8 549.5 ± 177.6 0.688
log free fatty acid 2.62 ± 0.30 2.72 ± 0.16 0.305

IL-6 (ng/mL) 1.8 ± 0.8 1.4 ± 0.6 0.019
hsCRP (mg/dL) 1049.7 ± 1620.2 1158.3 ± 1638.6 0.400

log-hsCRP 2.70 ± 0.52 2.73 ± 0.58 0.666
AST (IU/mL) 21.3 ± 7.3 21.3 ± 7.4 0.352
ALT (IU/mL) 17.0 ± 18.7 20.0 ± 20.8 1.000
γ-GTP (IU/mL) 22.3 ± 71.1 24.0 ± 59.2 0.435

Cr (mg/dL) 0.72 ± 0.16 0.69 ± 0.15 0.054
Uric acid (mg/dL) 6.1 ± 2.2 6.1 ± 2.0 0.574

HOMA-IR: homeostasis model assessment–insulin resistance, LDL-C: low-density lipoprotein-cholesterol, HDL-C:
high-density lipoprotein-cholesterol, TG: triglyceride, IL-6: interleukin-6, hsCRP: high-sensitivity C-reactive protein,
AST: aspartate aminotransferase, ALT: alanine transaminase, γ-GTP: γ-glutamyl transpeptidase, Cr: creatinine, UA:
uric acid.

3.2. Change in Sirt1 Expression in Isolated PBMNCs after Supplementation with RWE and the Relationship
with the Change in HOMA-IR

Supplementation with RWE for 8 weeks significantly increased Sirt1 mRNA expression in isolated
PBMNCs compared to baseline (Figure 1A). Additionally, the relationship between the rate of change in
Sirt1 expression in isolated PBMNCs (∆%Sirt1 mRNA expression) and the rate of change in HOMA-IR
(∆%HOMA-IR) from Pearson’s correlation coefficient analysis showed a positive correlation (r = 0.6518,
p = 0.0216) between baseline and the end of RWE supplementation (Figure 1B).
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Figure 1. Change in mRNA expression of Sirt1 in PBMNCs after supplementation with red wine
extract and the relationship between the change in Sirt1 expression and insulin sensitivity. (A) mRNA
expression of Sirt1 normalized to 18S levels in isolated PBMNCs (n = 12). The data shown are the
means ± the standard deviations. * p < 0.05 vs. the indicated groups. (B) The relationship between the
rate of change in Sirt1 expression in isolated PBMNCs (∆%Sirt1 mRNA expression) and the rate of
change in HOMA-IR (∆%HOMA-IR) from Pearson’s correlation coefficient analysis (n = 12). PBMNCs:
peripheral blood mononuclear cells, HOMA-IR: homeostasis model assessment–insulin resistance.
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3.3. RWE Increased Sirt1 and p-AMPK Expression in Cultured THP-1 Cells

We evaluated whether RWE induced Sirt1 and p-AMPK expression in cultured human THP-1 cells.
The administration of RWE at 166, 332 and 3320 ng/mL (including 68, 136 or 1360 ng/mL polyphenols
and 9.6, 19.2 and 192 ng/mL resveratrol) in cultured THP-1 cells for 24 h significantly increased both
Sirt1 and p-AMPK expression (Figure 2A–C). In addition, we confirmed that those RWE concentrations
were non-toxic to cultured THP-1 cells by (data not shown).
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THP-1 cells. (A) Representative western blots of Sirt1, p-AMPK, AMPK and β-actin in cultured THP-1
cells (n = 4). (B) Quantitative ratios of Sirt1 to β-actin (n = 4). (C) Quantitative ratios of p-AMPK to
AMPK (n = 4). The data shown are the means ± the standard deviations. * p < 0.05, ** p < 0.01 vs. the
indicated groups. AMPK: AMP-activated kinase, RWE: red wine extract.

4. Discussion

In this study, we demonstrated that supplementation with RWE for 8 weeks significantly increased
insulin sensitivity, which was evaluated by HOMA-IR in humans. Additionally, after supplementation
with RWE, serum IL-6 concentration was significantly reduced and showed a decrease in the levels
of LDL-C and TG. Moreover, RWE supplementation enhanced Sirt1 expression in isolated PBMNCs,
which was associated with an increase in insulin sensitivity.

Previous clinical evidence suggests that red wine consumption exerts beneficial effects on glucose
metabolism, including insulin sensitivity. Da Luz et al. showed that regular red wine drinkers (at least
one glass of red wine 4–5 days/week for 5 years) have lower glucose levels and a lower occurrence of
diabetes than abstainers [24]. Additionally, Napoli et al. demonstrated that red wine consumption
(360 mL/day) for 2 weeks markedly improved insulin resistance in patients with T2DM compared to
the control group [25]. Chiva-Blanch et al. also compared the effect of moderate consumption of red
wine (30 g alcohol/day), dealcoholized red wine and gin on glucose metabolism in 67 men with high
cardiovascular disease for 4 weeks [26]. Red wine and dealcoholized red wine but not gin exhibited
decreases in plasma insulin levels and HOMA-IR [26]. In this study, we also demonstrated that the
values of HOMA-IR were significantly reduced after the administration of RWE containing 136 mg
polyphenols per day for 8 weeks in nondiabetic humans.

Since red wine is rich in polyphenolic compounds, including flavonoids (anthocyanins, tannins and
catechin) and nonflavonoids (stilbenes such as resveratrol, tyrosol and hydroxytyrosol) [9], the beneficial
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effects of red wine are thought to be exerted through polyphenols. Among the polyphenols, resveratrol
has been one of the most extensively studied as a critical constituent that contributes to the health
benefits of red wine. Previous studies demonstrated that resveratrol might play potential therapeutic
roles in cardiometabolic health through multiple mechanisms, such as anti-inflammatory, antioxidant
and anti-diabetic effects, which are mediated by the activation of Sirt1, estrogen receptor (ER) signaling,
nuclear factor-erythroid-derived 2-related factor-2 (Nrf2) or AMPK [20,27–29]. Several reports showed
that catechin, epicatechin, quercetin and anthocyanin also can activate Sirt1 or AMPK [30–33], however,
the number of reports is so few, compared to those of resveratrol. In this study, we focused on
Sirt1, which is an important regulator of a wide variety of cellular processes, including glucose/lipid
metabolism and anti-inflammation, via the deacetylation of many substrates [34,35]. Our data showed
the increased expression of Sirt1 in PBMNCs after supplementation with RWE including 19.2 mg
resveratrol. Additionally, the levels of Sirt1 expression in PBMNCs had a positive relationship with
insulin sensitivity, which was evaluated by HOMA-IR. Additionally, serum IL-6 was reduced after the
administration of RWE including resveratrol. A previous report showed that decreased Sirt1 expression
levels in circulating monocytes are correlated with insulin resistance in humans [36]. Moreover, Gillum
et al. reported that Sirt1 expression was reduced in adipose tissues of obese males with insulin resistance
and mRNA expression of CD14, a macrophage marker, in adipose tissue is negatively correlated with
Sirt1 expression [37]. Chronic low-grade tissue inflammation is an important etiological component of
insulin resistance [38]. Elevated levels of proinflammatory cytokines, such as IL-6, in the blood have
been detected in individuals with insulin resistance. The activation of monocytes/macrophages in the
circulation and adipose tissue has been demonstrated to lead to the release of various inflammatory
mediators. Sirt1 may contribute to the negative regulation of inflammation in several tissues or
cells, including monocytes/macrophages, through the deacetylation of NF-κB (p65 subunit) [39–41].
Therefore, the effect of RWE including resveratrol on insulin resistance and inflammation may be
associated with increased Sirt1 expression in PBMNCs. However, we could not show the levels of
acetylated NF-κB (p65) in mononuclear cells or the relationship between Sirt1 expression and serum
IL-6 values.

In addition to reducing inflammation, previous reports showed that Sirt1 may positively
regulate insulin signaling by interacting with tyrosine phosphatase 1B, insulin receptor substrate or
phosphoinositide 3-kinase in insulin-sensitive tissues such as skeletal muscle [42–44]. Timmers et al.
also reported that resveratrol supplementation (150 mg/day) for 30 days in obese humans increased
insulin sensitivity, improved muscle mitochondrial respiration and activated Sirt1 and AMPK in
skeletal muscle [45]. Additionally, Liu et al. reported that resveratrol inhibited inflammation and
ameliorated insulin-resistant endothelial dysfunction through AMPK and Sirt1 [46]. In this study,
we demonstrated that the administration of RWE including resveratrol increased the expression of
Sirt1 and p-AMPK in cultured THP-1 cells. However, we could not evaluate Sirt1 expression levels or
inflammation in other tissues/cells, such as skeletal muscle, adipose tissue or endothelial cells.

On the other hand, other reports indicate that resveratrol has no effects on insulin sensitivity.
Yoshino et al. demonstrated that oral resveratrol (75 mg/day) supplementation in nonobese and
postmenopausal women with normal glucose tolerance did not improve metabolic function, including
insulin sensitivity [47]. Moreover, Poulsen et al. reported that resveratrol (500 mg/day) supplementation
in obese men had no effect on insulin sensitivity [48]. Thus, the efficacy of resveratrol for insulin
sensitivity is controversial in humans. Therefore, the beneficial effects of RWE may be attributed to the
overall mix of all of its components and not to a specific action of one, such as resveratrol.

Sirt1 regulates lipid metabolism through the modulation of sterol regulatory element-binding
protein (SREBP)-1C activity, liver X-receptor (LXR) and farnesoid X receptor (FXR) via deacetylation
of those molecules [49–51]. Therefore, in this study, RWE including resveratrol might contribute to
deceased levels of LDL-C and TG through Sirt1 activation, in addition to increased insulin sensitivity.

There are several limitations in this study. First, this study is a single-arm, open-label study
with small sample size and occurred over a short time period. Second, participants in this study are
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individuals who are interested in health and the supplements. Therefore, the bias on the results in
this study cannot be eliminated. However, the results from in vitro experiments showing that RWE
increases Sirt1 expression can support the results in PBMNCs of this study. Third, we could not
measure the concentration of polyphenols, including resveratrol, in circulation. Fourth, we evaluated
Sirt1 expression in only PBMNCs, not in other tissues/cells. Lastly, we evaluated insulin resistance
only by the calculation of HOMA-IR, although the gold standard method for assessment of insulin
sensitivity is a hyperinsulinemic-euglycemic clamp study.

5. Conclusions

Supplementation with RWE improved metabolism, such as insulin sensitivity, lipid profile and
inflammation, in nondiabetic humans. Additionally, RWE supplementation induced an increase in
Sirt1 expression in PBMNCs, which may be associated with an improvement in insulin sensitivity.
However, further study including a randomized control trial or a cross over trial will be required to
confirm these results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6643/12/10/3108/s1,
Figure S1: Analysis of red wine extract by HPLC.
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