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1  | INTRODUC TION

Metabarcoding of animal diets has fundamentally changed our in-
sights into what species are eating, expanding our understand-
ing of dietary diversity and food web complexity (Clare, 2014; 

Pompanon et al., 2012; Symondson, 2002; Valentini, Pompanon, 
& Taberlet, 2009). The factors needed to be considered for ampl-
icon analyses are extensive, including sample collection, primer 
and barcode design, tag jumping, sequencing platform, as well as 
sequence data processing and taxonomic assignment (reviewed 
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Abstract
Metabarcoding studies provide a powerful approach to estimate the diversity and 
abundance of organisms in mixed communities in nature. While strategies exist for 
optimizing sample and sequence library preparation, best practices for bioinformatic 
processing of amplicon sequence data are lacking in animal diet studies. Here we 
evaluate how decisions made in core bioinformatic processes, including sequence 
filtering, database design, and classification, can influence animal metabarcoding re-
sults. We show that denoising methods have lower error rates compared to traditional 
clustering methods, although these differences are largely mitigated by removing 
low-abundance sequence variants. We also found that available reference datasets 
from GenBank and BOLD for the animal marker gene cytochrome oxidase I (COI) can 
be complementary, and we discuss methods to improve existing databases to include 
versioned releases. Taxonomic classification methods can dramatically affect results. 
For example, the commonly used Barcode of Life Database (BOLD) Classification 
API assigned fewer names to samples from order through species levels using both a 
mock community and bat guano samples compared to all other classifiers (vsearch-
SINTAX and q2-feature-classifier's BLAST + LCA, VSEARCH + LCA, and Naive Bayes 
classifiers). The lack of consensus on bioinformatics best practices limits comparisons 
among studies and may introduce biases. Our work suggests that biological mock 
communities offer a useful standard to evaluate the myriad computational decisions 
impacting animal metabarcoding accuracy. Further, these comparisons highlight the 
need for continual evaluations as new tools are adopted to ensure that the inferences 
drawn reflect meaningful biology instead of digital artifacts.
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by Alberdi, Aizpurua, Gilbert, & Bohmann, 2018; Clare, 2014; 
Pompanon et al., 2012; Schnell, Bohmann, & Gilbert, 2015). While 
modern sequencing approaches have enabled a broad range of 
studies, this expansion has resulted in myriad customized molec-
ular and bioinformatics workflows, making comparisons among 
studies difficult. While past reviews have explored how wet-bench 
decisions and sequencing platforms influence diet interpretations 
(Alberdi et al., 2018; Alberdi et al., 2019; Palmer, Jusino, Banik, & 
Lindner, 2018), many computational decisions essential to any me-
tabarcoding analysis have yet to be thoroughly compared. This work 
sheds light on several common yet often overlooked and undocu-
mented bioinformatics steps in metabarcoding studies to illustrate 
which processes most influence interpretations of animal diets.

Molecular metabarcoding experiments typically seek to char-
acterize the composition of a community, but analytical deci-
sion-making is a complicated process. Establishing best practices 
for sequence filtering and classification are frequently determined 
using mock communities—samples with known sequence identity 
and abundance. This practice is commonplace in microbial gene 
marker research (Bokulich et al., 2016), but less common for arthro-
pod datasets (Braukmann et al., 2019). Mock communities can be 
used to assess systematic error and biases in observed sequence 
data (Gohl et al., 2016), optimize filtering parameters (Bokulich 
et al., 2013), understand tradeoffs among sequence error correction 
approaches (Nearing, Douglas, Comeau, & Langille, 2018), and evalu-
ate taxonomic classification regimes (Bokulich, Kaehler, et al., 2018). 
Systematic evaluation of animal metabarcoding studies is growing 
but remain limited in scope; synthetic mock samples have been used 
to explore the potential for alternative primer use (Beng et al., 2016), 
while biological mock samples have been used to improve quality 
filtering of spurious sequence variants (Jusino et al., 2019) and to 
evaluate the utility of PCR replicates (Galan et al., 2018). In addition, 
few studies have used real data (i.e., actual diet samples) to offer 
insights into the effects of sequencing platforms (Divoll, Brown, 
Kinne, McCracken, & O'Keefe, 2018) or abundance filtering param-
eters (Alberdi et al., 2018). We build upon these analytical consider-
ations by using real and biological mock data to illustrate how both 
software choice and subsequent filtering criteria impact the inter-
pretation of community richness and composition, a common focus 
of diet analyses.

One of the first considerations in an amplicon study is using a 
denoising approach or clustering to define the representative se-
quences in a dataset. Denoising programs like DADA2 (Callahan 
et al., 2016) or Deblur (Amir et al., 2017) generate error models 
to address potential sequence errors, while clustering programs 
group sequence variants into operational taxonomic units at some 
user-defined similarity (Rideout et al., 2014). These have been ex-
plored empirically in a microbial setting (Glassman & Martiny, 2018). 
While the observed differences were small in that study, practical 
reasons such as database independence and the potential to pre-
serve sequence diversity suggest that using amplicon sequence 
variants (ASVs, distinct biological sequences) is more advantageous 
than operational taxonomic units (OTUs) (Callahan, McMurdie, & 

Holmes, 2017). Denoising methods have yet to see wider adoption 
in diet metabarcoding studies (but see Vesterinen, Puisto, Blomberg, 
and Lilley (2018)); most studies use clustering (Bohmann et al., 2018; 
Clare, Chain, Littlefair, & Cristescu, 2016; Czenze et al., 2018; Divoll 
et al., 2018; Kaunisto, Roslin, Sääksjärvi, & Vesterinen, 2017). We 
compare these denoising and clustering-based approaches using bi-
ological mock communities and bat guano samples to highlight their 
effects on common diversity metric results.

As with sequence filtering considerations, assigning taxonomic 
information to sequence variants is fraught with decisions that can 
significantly impact animal diet interpretation. Classification accu-
racy is affected by two related issues, algorithm and reference da-
tabase selection. With respect to database construction, relatively 
few database resources are available for conventional animal diet 
metabarcoding studies. In particular, the Barcode of Life Database 
(BOLD) (Ratnasingham & Hebert, 2007) serves as the principal re-
source among arthropod-specific metabarcoding studies, while 
GenBank (Benson et al., 2013) is often used for nonchordate investi-
gations. In contrast to microbial reference databases such as UNITE 
(Nilsson et al., 2019), Greengenes (DeSantis et al., 2006) and SILVA 
(Pruesse et al., 2007), BOLD and GenBank are continuously updated 
and lack the kind of versioned history found among microbial ref-
erence databases. Thus, two studies using the same database (e.g., 
BOLD) in the same discipline conducted less than a year apart may 
differ by tens to hundreds of thousands of reference sequences. The 
effects of database composition on results are unclear and make it 
challenging to understand if differences observed between studies 
are due to meaningful biology or database curation. Thus, we exam-
ined how the effects of reference database choice and subsequent 
filtering criteria (clustering radius) on reference composition.

Taxonomic classification of representative sequences varies 
considerably among animal diet metabarcoding studies but can di-
rectly affect results. For example, one may choose to classify se-
quences using local alignment with software like BLAST (Camacho 
et al., 2009) or a global aligner-like VSEARCH (Rognes, Flouri, 
Nichols, Quince, & Mahé, 2016). Alternatively, kmer-based clas-
sifiers such as SINTAX (Edgar, 2016) or Naive Bayes classification 
(Bokulich, Dillon, et al., 2018) can be used to taxonomically assign 
sequences. The BOLD API offers its own classifier although few 
details describing the underlying algorithm are currently available 
(Ratnasingham & Hebert, 2007) and unlike most other classifiers 
no source code is publicly documented. Additionally, hybrid meth-
ods are available wherein multiple distinct classifiers converge on 
a best match (Bokulich, Kaehler, et al., 2018; Palmer et al., 2018). 
We benchmarked taxonomic classification using both a mock com-
munity and bat guano samples to evaluate relative classifier com-
pleteness and accuracy. Our selection of classifiers was not meant 
to be exhaustive; rather, we chose classifiers that represent actively 
developed software using distinct classes of commonly used meth-
odologies (alignment, kmer, and HMM-based).

Finally, estimating the abundance of specific taxa in a diet, for 
example, proportion of the diet comprised of mosquitoes, is chal-
lenging. While creating and classifying representative sequences 
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are processes common to most animal diet metabarcoding projects, 
only recently have researchers explored diversity assessments using 
relative abundances (RA) of sequence counts instead of transform-
ing these counts into a presence–absence (PA) matrix of samples 
and observed sequence variants (reviewed by Deagle et al., 2019). 
Essential to the debate about the appropriateness of RA versus PA 
transformations is a more fundamental point: Researchers should 
have some insight into the presence and distribution of sequences 
before considering transformations. While mock communities do 
not represent the true complexity observed in actual diet samples, 
mock samples are essential for ground-truthing bioinformatic pro-
cesses such as filtering. Specifically, mock samples provide a positive 
control of known sequence identities and therefore enable evalua-
tion of the frequency at which low-abundance sequence artifacts 
are generated. Mock communities can provide an empirically de-
rived filtering strategy and assess the likelihood and relative abun-
dances of unexpected sequences (Palmer et al., 2018).

We assessed these sequence processing and classification meth-
ods using four libraries of COI data generated from an ongoing bat 
diet study that included a biological mock community sample and 
hundreds of bat guano samples for each sequencing run. While mock 
data provide a ground truth when evaluating different sequence fil-
tering and classification techniques, guano data can provide relative 
comparisons of these procedures using the more complex samples 
typically found in animal metabarcoding projects. In addition, we 
sought to understand how our interpretations of apparent diversity 
within and between samples are influenced by such count transfor-
mations, and how the count data are influenced by the specific fil-
tering program. Notably, while we tested each of these three broad 
processes separately, the entire workflow is interconnected. Our 
aim is not to present a single best pathway for all animal metabar-
coding projects, but to illustrate how these processes are affected 
by program or parameter choices. We performed each of these anal-
yses using QIIME 2 (Bolyen et al., 2019) to allow for increased meth-
ods transparency, reproducibility, and use of open-source tools for 
diet metabarcoding.

2  | MATERIAL S AND METHODS

We evaluated sequence filtering and classification regimes using 
both bat guano and biological mock community sequence data. 
Biological mock community data provide an important means to 
compare how observed outcomes deviate from expected results, 
while bat guano samples provide a more realistic evaluation of how 
certain bioinformatic decisions impact an analysis.

Complete details including scripts and data files used in this 
manuscript are available at the GitHub repo for this project: https://
github.com/devon orour ke/tidybug. We created a separate docu-
ment for each aspect of the project and also further describe the 
wet-bench work such as sample collection, primer design, PCR con-
ditions, quantitation of amplicons, pooling of libraries, and link the 

scripts used in each of the comparisons for sequence processing, 
database construction, and classification.

Supplementary tables and figures referred to within this docu-
ment are posted to this GitHub repository at the following address: 
https://github.com/devon orour ke/tidyb ug/blob/maste r/Suppl 
ement aryFi gures Table s/

2.1 | Mock samples

Mock community samples were constructed specifically for arthro-
pod diet analyses of COI gene fragments (Jusino et al., 2019). DNA 
was extracted from vouchered arthropod specimens, and a large 
(~600 bp) fragment of the COI gene was amplified and cloned into 
a plasmid for Sanger sequencing. A smaller gene fragment (~180 bp) 
of each specimen was amplified using the ANML primers described 
in Jusino et al. (2019). These PCR products were pooled in equimo-
lar ratios for use in our experiments. The mock community used in 
this experiment included 24 unique representative arthropod COI 
sequences derived from 23 distinct taxa; notably, two sequences 
are variants from the same species (Harmonia axyridis). Species-
level taxonomic identities were assigned by a trained entomologist's 
visual identification in 21 of 24 cases. For the three incompletely 
assigned specimens, we aligned Sanger COI sequences using NCBI 
BLAST, and the shorter COI sequences within that region defined 
by the ANML primers using the BOLD search engine. Two of the 
three specimens were identified in both databases as having a single 
representative species containing at least 90% coverage and 98.5% 
identity for BLAST and 100% identity for BOLD. Notably, BOLD 
translates sequence data into amino acid format, and thus, the exact 
filtering parameters are not directly comparable. The remaining 
unidentified specimen was not used in our classification analyses, 
but was retained for the section on denoising. Fasta files contain-
ing the sequence and taxonomic information for each mock sample 
are available on our GitHub repo https://github.com/devon orour ke/
tidyb ug/tree/maste r/data/mock_commu nity

2.2 | Guano samples

Individual fecal pellets were passively sampled weekly from sites 
throughout Northeastern United States (Figure  S1). Guano sam-
ples were collected using sterile forceps; pellets were collected 
on clean plastic sheets and stored in tubes filled with 1 ml stor-
age buffer (3.5 M ammonium sulfate, 16.7 mM sodium citrate, 
13.3 mM EDTA, pH 5.2) and then stored at −80°C. Ultimately 
1,648 guano samples were used in our diversity and classification 
analyses. A subset of these samples specific to a single location 
(Fox State Forest) were used as examples for the alpha beta di-
versity assessments—these included 167 samples initially, and 82 
samples following standard or extra filtering regardless of denois-
ing program.

https://github.com/devonorourke/tidybug
https://github.com/devonorourke/tidybug
https://github.com/devonorourke/tidybug/blob/master/SupplementaryFiguresTables/
https://github.com/devonorourke/tidybug/blob/master/SupplementaryFiguresTables/
https://github.com/devonorourke/tidybug/tree/master/data/mock_community
https://github.com/devonorourke/tidybug/tree/master/data/mock_community
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2.3 | Laboratory work

Individual fecal pellets were extracted using DNeasy PowerSoil Kits 
(Qiagen). Samples were eluted with 60 µl of elution buffer, with up 
to eight extraction blanks per 96-well plate. We used a dual-indexed 
primer design following Kozich, Westcott, Baxter, Highlander, and 
Schloss (2013) to amplify a 181 bp COI gene fragment. The COI-
specific primer region of this construct is identical to that used to 
generate the mock community data. Four libraries were sequenced 
using an Illumina MiSeq platform (Illumina) using v3 chemistry with 
600 cycles of 2 × 300 bp paired-end read lengths. While each guano 
sample was sequenced once, the same mock community was inde-
pendently amplified and pooled into every library. We describe the 
four sequencing runs as Libraries A–D and specify which library the 
mock sequences were derived.

2.4 | Sequence processing with QIIME 2

We used the QIIME 2 v2018.11 (Bolyen et al., 2019) environment 
to import raw reads and trimmed with Cutadapt (Martin, 2011), 
retaining all paired-end reads (not merged) with a minimum length 
of 175 bp for denoising or clustering. Representative sequences 
were identified starting with the same trimmed, unmerged input 
data, using one of three amplicon processing programs (hereafter 
termed denoising methods). Note that VSEARCH is not technically 
a denoiser, but we use the term to refer to all three programs in 
the general sense that they attempt to collapse the entirety of a 
dataset into representative sequence variants, whether they be 
OTUs or ASVs. The OTU clustering approach with VSEARCH mir-
rored the parameters outlined at the VSEARCH Wiki GitHub page 
(https://github.com/torog nes/vsear ch/wiki/VSEAR CH-pipeline), 
but were executed in a QIIME 2 environment, and included merg-
ing paired-end data, dereplicating, clustering at 98% identity, de 
novo chimera filtering, and a final clustering of remaining sequence 
variants at 97% identity. For the Deblur pipeline, we altered two 
parameters from their default: ‘--p-min-reads 2’ and ‘--p-min-size 
1’ ensuring that only singleton reads were discarded and all sin-
gleton ASVs were retained. Bat-associated COI sequences were 
identified from filtered reads and removed, and then, representa-
tive sequence (fasta-like) files and frequency tables of sequence 
counts (OTU table-like) were merged for all libraries. See https://
github.com/devon orour ke/tidyb ug/blob/maste r/docs/seque nce_
filte ring.md for complete details regarding sequence processing 
workflows for each pipeline.

Mock ASVs were aligned to the expected mock community ref-
erences. We categorized each representative sequence by alignment 
scores into one of three groups: 100% identities as “exact,” 97%–99% 
as “partial” matches, and those <97% identity as “miss” matches. 
Only those amplicons with at least 97% coverage were considered 
in the analysis. The second dataset of bat guano consisted of the 
remaining ASVs identified from guano samples that were filtered for 
host and mock COI sequences.

Mock community and bat guano samples were then further fil-
tered to remove low-abundance reads using two alternative strate-
gies. Recommendations for removing samples with overall low read 
abundances are described in the microbiome literature (Bokulich 
et al., 2013; Caporaso et al., 2011; Thompson et al., 2017). Best 
practices for data filtering have not been determined for animal diet 
metabarcoding projects despite being used with various parameters 
(Divoll et al., 2018; Mata et al., 2019). We applied two simple filters 
to the default (basic) outputs of the pipelines: First, a standard fil-
ter required (a) dropping any sequence variant observed in just one 
sample across the entire dataset and (b) retaining only samples with 
≥5,000 total filtered reads. Second, an extra filter incorporated the 
standard filters, and subtracted a single, fixed integer from each el-
ement of the feature table. The integer used in the extra filter is ob-
tained on a per-library basis and was defined as the maximum count 
value observed of “miss” sequence variant in the (library-specific) 
mock sample. This second filter removed sequence variants with 
very low read counts while scaling with library throughput, given 
that increasing number of artefacts are likely related to sequenc-
ing depth (Deagle et al., 2019). Notably, while guano samples may 
have contained as few as 5,000 reads per sample, all mock libraries 
contained at least 91,000 reads prior to applying the “standard” or 
“extra” filtering.

2.5 | Sequence diversity analyses

We compared the mean ranks of the number of mock ASVs for 
each of the filtered datasets using a Kruskal–Wallis nonparametric 
test and compared pairwise differences using a Dunn's test. These 
tests identified whether denoising programs (DADA2, Deblur, and 
VSEARCH) produced different exact, partial, or poorly aligned 
(miss) ASVs; we applied these tests separately for each of the 
three filtering parameters (basic, standard, or extra). A subset of 
guano samples derived from a single site (Fox State Forest) was 
also assessed using the same Kruskal–Wallis test to illustrate how 
denoising and filtering may alter the subsequent interpretation of 
a single experiment. This analysis contained 14–46 samples per 
month, depending on denoising and filtering parameters used. For 
bat guano data, we tested whether the distribution of read abun-
dances observed among ASVs differed between denoised data-
sets for each filtering parameter by applying a Wasserstein test. 
In addition, a linear model of richness (ASVs observed) for each of 
the three pairwise comparisons of denoising programs was gener-
ated at each filtering level.

We used Hill Numbers 0, 1, and 2 (equivalent to the diversity 
metrics observed richness, Shannon's Entropy, and Simpson's Index) 
to investigate whether denoising program and filtering platforms 
impacted abundance unweighted and weighted alpha diversity esti-
mates for mock and guano samples. Samples were rarefied to 5,000 
reads per sample prior to estimating alpha diversity. We applied a 
separate Kruskal–Wallis test to identify group differences for alpha 
diversity among denoising programs for each filtering regime and 

https://github.com/torognes/vsearch/wiki/VSEARCH-pipeline
https://github.com/devonorourke/tidybug/blob/master/docs/sequence_filtering.md
https://github.com/devonorourke/tidybug/blob/master/docs/sequence_filtering.md
https://github.com/devonorourke/tidybug/blob/master/docs/sequence_filtering.md
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Hill Number. A post hoc Dunn's test was used to identify pairwise 
differences among denoising programs.

We tested whether variation of ASV composition within selected 
bat guano samples treated with a particular denoising and filtering 
regime was less within than between groups using a PERMANOVA. 
We investigated these effects using three distance measures: an 
incidence-based measure (Dice-Sorensen), and two quantitative 
metrics (Bray–Curtis and Morisita–Horn); datasets were rarefied 
to a depth of 5,000 sequences per sample. We applied these tests 
only among samples collected at a single location (Fox State Forest, 
Hillsborough NH) from April to October 2016 and included date of 
collection in the model.

All statistical analyses were performed in R (R Core Team, 2018) 
version 3.5.1 imported with the QIIME2R package (Bisanz, 2018) 
and processed with Tidyverse (Wickham, 2017), Reshape2 
(Wickham, 2007), Phyloseq (McMurdie & Holmes, 2013), and 
Vegan (Oksanen et al., 2018) packages. We relied on additional R 
packages to create figures, including cowplot (Wilke, 2017), gg-
pubr (Kassambara, 2018), ggrepel (Slowikowski, 2018), ggridges 
(Wilke, 2018), stringi (Gagolewski, 2019), scales (Wickham, 2018), 
and viridis (Garnier, 2018).

2.6 | Database curation

We compared three databases to assess the effects of sequence 
acquisition and curation on COI profiling results. First, the AMPTK 
program (Palmer et al., 2018) contains scripts to access a precom-
piled COI database containing both arthropod and chordate records 
derived exclusively from BOLD—this dataset is herein referred to as 
“Palmer.” Second, a dataset containing Eukaryote-wide COI refer-
ences derived exclusively from GenBank (Porter & Hajibabaei, 2018a) 
was downloaded using the v3.2 reference sequences and is referred 
to as “Porter.” We restricted our comparisons across datasets to 
dereplicated arthropod records, which necessitated further filtering 
both datasets. The Palmer sequences required removing all chordate 
data, while the Porter dataset required the removal all nonarthropod 
records, applying the least common ancestor (LCA) algorithm to the 
remaining arthropod records, and then dereplicating.

A third database was curated following our own methods as de-
scribed below—this dataset is herein referred to as “tidybug.” We 
accessed arthropod records from the BOLD database using the 
bold R package (Chamberlain, 2017) on 24 February 2019. We then 
applied a custom script to retain only those records that contained 
the “COI-5P” marker code and removed all records that failed to in-
clude at least family-level taxonomic information. Prior to dereplica-
tion, we adapted methods used to format the SILVA database that 
incorporated an LCA approach to retain only taxonomic informa-
tion where redundant sequences contain disparate classifications. 
Finally, to compare how clustering databases can impact the com-
position and completeness of information of available records, we 
applied the same LCA approach to cluster our curated database at 
99%, 97%, and 95% identities.

2.7 | Taxonomic classification

We first compared the accuracy of taxonomic classifiers using the 
mock community sequence data. We assigned an expected taxon-
omy to each of the 23 mock samples from class through species level 
and compared the proportion of true-positive, false-positive, and 
false-negative classification assignments from each of the five clas-
sifiers tested. We quantified precision as Taxonomic Accuracy Rate 
(TAR) and recall as Taxonomic Discovery Rate (TDR) following the 
conventions used in a previous microbiome classifier benchmarking 
study (Bokulich, Kaehler, et al., 2018). TAR is calculated as the frac-
tion of observed taxa that were expected at a given taxonomic level 
(TAR = true positive/(true positive + false positive)), while TDR rep-
resents the fraction of expected taxa observed at a particular taxo-
nomic level (TDR = true positive/(true positive + false negative)).

We compared taxonomic classification accuracy of five different 
classification methods. Three of these methods are implemented 
in the QIIME 2 plugin q2-feature-classifier: alignment with BLAST 
(classify-consensus-blast) or VSEARCH (classify-consensus-vsearch) 
followed by least common ancestor consensus taxonomy assign-
ment; and a kmer-based Naive Bayes taxonomy classifier imple-
mented with scikit-learn (Pedregosa et al., 2011). We added a second 
kmer-based method using the implementation of the SINTAX algo-
rithm in VSEARCH (referred to as “vsearch-SINTAX” below) (Rognes 
et al., 2016). We also classified our mock community using the BOLD 
API. We altered parameters for both alignment and kmer-based 
classifiers: percent identities of 95%, 97%, and 99% were tested for 
VSEARCH + LCA (q2) and BLAST + LCA (q2) classifiers; confidence 
thresholds of 30%, 50%, 70%, 80%, and 90% were tested for Naive 
Bayes (q2) and the vsearch-SINTAX classifier. We applied a custom 
R script to the BOLD API output to mirror the parameters present 
in BLAST and VSEARCH: first, to retain only matches with greater 
than either 95%, 97%, or 99% identity, and second, to apply an LCA.

We examined consensus among classifiers by calculating the 
number of common and distinct taxonomic names applied to bat 
guano ASVs. Collectively, four classifiers (VSEARCH + LCA (q2), 
BLAST + LCA (q2), Naive Bayes (q2), and vsearch-SINTAX) shared 
the same tidybug database information. We also explored how the 
BOLD classification engine would compare to the other classifiers, 
but this comparison was limited because their classification param-
eters are not publicly documented, nor is the specific database used 
for classification defined (i.e., there is no single file to download that 
represents the BOLD database at the time in which their taxonomy 
API is queried). Our intention in comparing classifiers with actual 
guano data was to assess the instances in which classifiers agree or 
disagree with respect to a given taxonomic name at a particular level 
(from class through species). We applied a 97% identity threshold for 
the BOLD API as well as VSEARCH + LCA and BLAST + LCA q2-clas-
sifiers and applied a 70% confidence threshold for the vsearch-SIN-
TAX and Naive Bayes (q2) classifiers.

Because we ultimately observed the BOLD method to generally 
under-classify our guano data, we investigated the particular ASVs 
that BOLD failed to assign a species name, but where the non-BOLD 
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classifiers assigned a species name. We retained instances that sat-
isfied the condition in which an ASV included a species name for all 
non-BOLD classifiers, but was no species name was assigned for that 
ASV by the BOLD classifier. Among these cases, we next determined 
whether those species names that were assigned by non-BOLD 
classifiers were present in any other ASVs classified by BOLD—this 
demonstrates that the issue relates to the classifier itself and is not a 
database composition issue. Consider the following example: all non-
BOLD classifiers assign ASV1 as species X, but BOLD fails to assign 
a species name to ASV1. We were interested whether or not species 

X was assigned by BOLD for all the remaining ASVs in the dataset. 
Thus, we divided the ASVs into two bins: (a) those ASVs that BOLD 
failed to assign a species name and failed to have any other ASV with 
a species named assigned by all other non-BOLD classifiers; (b) those 
ASVs that BOLD failed to assign a species name, but did assign the 
missing species name shared by non-BOLD classifiers in other ASVs. 
We considered two measures among these ASVs when evaluating 
their biological significance: the total number of reads that ASV gen-
erated in the entire dataset (i.e., reads summed across all samples), 
and the number of samples in which an ASV was detected.

F I G U R E  1   Denoising program and parameter evaluations of mock data. The number of sequences observed that are “exact,” “partial,” 
and “miss” matches for mock community sequences are shown for each denoising pipeline (vertical facets) and filtering parameters 
(horizontal facets). Values beneath each group reflect the number of ASVs combined among all four mock replicates in that group. “Exact” 
matches reflect 100% alignment identity between ASV detected in mock community and a known mock sequence, “partial” reflects 
between 97% and 99.9% identity, and “miss” represents an ASV with <97% identity to known mock sequences



     |  9727O'ROURKE Et al.

3  | RESULTS

3.1 | Sequence diversity analyses

The choice of both denoising program and filtering can influence 
the number of mock ASVs observed in dataset (Figure ). A Kruskal–
Wallis test for differences in mean rank read abundances indicated 
significant differences between denoising groups for each filtering 
strategy: basic (H(2) = 270, p ≤ .001), standard (H(2) = 110, p ≤ .001), 
and extra (H(2) = 33, p ≤ .001) types. A post hoc Dunn's test with 
Benjamini–Hochberg correction revealed significant differences 
at p ≤ .05 for most pairwise comparisons: DADA2 and Deblur for 
basic, standard, and extra-filtered datasets; DADA2 and VSEARCH 
for basic and standard filtered data, but not for extra; Deblur and 
VSEARCH for standard and extra-filtered data, but not for basic. The 
majority of differences among observed ASVs between these de-
noising programs and filtering parameters were driven by the pres-
ence or absence of unexpected ASVs: either those partial sequences 
containing either 99%–97% sequence alignment to a known mock 
reference, or the miss ASVs containing less than 97% similarity to 
any expected mock sequence (Figure 1). DADA2 contains fewer par-
tial ASVs (9) than Deblur (146) or VSEARCH (295) for basic-filtered 
data, and fewer miss ASVs (40) than Deblur (576) or VSEARCH (753). 
The number of unexpected mock ASVs is reduced by applying either 

standard and extra filtering parameters, and however, given that 
the mock DADA2-denoised dataset had so few unexpected ASVs 
to start, these additional filtering strategies appear particularly valu-
able for pipelines incorporating either Deblur or VSEARCH.

Bat guano samples consisted predominantly of ASVs with low 
sequence abundances, yet the particular denoising method and 
filtering parameters affected the distribution of sequence abun-
dances (Figure 2). The basic-filtered DADA2 distribution was signifi-
cantly different than Deblur (W = 752.07, p ≤ .001) and VSEARCH 
(W = 734.77, p ≤ .001), but Deblur did not differ from VSEARCH 
(W = 49.05, p = .754). The same pattern was observed with the stan-
dard filtered DADA2 distribution varying significantly from both 
Deblur (W = 911.61, p ≤ .001) and VSEARCH (W = 818.87, p ≤ .001), 
but not between Deblur and VSEARCH (W = 152.74, p = .342). In the 
case of extra-filtered distributions, VSEARCH significantly differed 
from DADA2 (W = 877.06, p ≤ .001) and Deblur (W = 1,040.30, 
p ≤ .001), but not between DADA2 and Deblur (W = 316.05, 
p = .488). These differences in distributions between DADA2 and 
the alternative denoisers are attributed to the presence or absence 
of singleton and doubleton ASVs for basic or standard filtered data-
sets. For example, more than half of the ASVs detected among bat 
guano samples processed with Deblur (55.7%) or VSEARCH's (57.1%) 
basic output contained no more than 2 reads per ASV, while these 
doubleton and singleton ASVs represented just 6.5% of all DADA2 

F I G U R E  2   Read abundances per sequence variant among all bat guano samples. The frequency with which ASVs are detected are 
binned as a power of two (i.e., first bin contains singletons, second bin contains ASVs with 2–3 sequences, third bin contains 4–7 sequences). 
Distributions of ASV abundances are partitioned by denoising program (vertical facets) and filtering regime (horizontal facets). Letters inset 
for each subplot reflect statistically significant differences between each denoising group. Note that while per-sample singleton sequences 
are initially discarded during raw data processing, singleton sequences can arise in the extra-filtered dataset because a fixed number of reads 
was subtracted from every ASV on a per-sample basis
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basic detections. The proportion of singleton and doubleton ASVs 
is reduced for all extra-filtered datasets, but the reduction in these 
lowest-abundance ASVs is greater for both VSEARCH (7.19%) and 
Deblur (14.4%) than DADA2 (5%).

With only 4 mock samples sequenced, we lacked statistical 
power to evaluate if alpha diversity estimates varied among denois-
ing methods for each filtering regime. Nevertheless, we provide 
diversity estimates (Table S2) for each mock sample depending on 
these denoising and filtering treatments for Hill Numbers 0, 1, and 2 
to illustrate that nearly all estimates for all treatment combinations 
fell within 2–3 species equivalents of the expected mock member-
ship. Because the expected mock ASVs routinely generated 100-
fold greater sequence abundances compared to any unexpected 
ASV in a mock sample, diversity estimates incorporating abundance 
information had little impact.

Denoising program and filtering regime influenced the alpha 
diversity estimates observed for bat guano data whether or not 
read abundance information was incorporated (Figure S2). With the 
exception of Hill Number 0 (equivalent to observed richness) for 
basic-filtered data (H(2) = 1.823, p = .402), all other diversity esti-
mates contained significant differences among filtering parameter 
and denoising software groups (Table S3). A Dunn's test compar-
ing diversity estimates was performed for each pairwise combina-
tion of denoising method and filtering parameter per Hill Number 
(Tables S4). These same patterns were observed when fitting a linear 
model to the number of ASVs observed in a given sample, depending 
on the denoising and filtering methods applied (Figure S3). While the 
correlations of ASV richness were weakest among the basic or stan-
dard filtered data, samples clustered with VSEARCH repeatedly con-
tained 2–3x more ASVs per sample than the same samples denoised 
by either Deblur or DADA2. Deblur and VSEARCH often contained 
very similar ASV richness (r2 = .91), after applying the extra filter, yet 
the correlation was lower when comparing DADA2 to either Deblur 
(r2 = .71) or VSEARCH (r2 =  .69).

As one example illustrating whether filtering or denoising prac-
tices would change our subsequent interpretation of biological ef-
fect in a study, we compared the mean rank in richness per collection 
month for a single, well-sampled site (Figure 3). All denoising pro-
grams identified similar differences in the mean rank of ASV richness 
for basic-filtered data (H(3), p < .001), yet standard and extra-filtered 
data varied with respect to within-group differences depending on 
the denoising program used. Both the particular months and the 
number of significant pairwise differences between months varied 
depending on the filtering and denoising platform used.

We tested whether variation of ASV composition within bat 
guano samples from a single collection site treated with a particular 
denoising and filtering regime was less within than between groups 

using a PERMANOVA. No significant effects of denoising method 
or filtering parameters among either abundance-weighted distance 
estimate (Bray–Curtis and Morisita–Horn) were found, although the 
month in which guano samples were collected was significant for 
both metrics (Table S5). There were no significant group interactions 
among abundance-weighted distance estimates. For unweighted es-
timate using a Dice–Sorensen distance metric, we identified signifi-
cant effects of collection month and for filtering regime, but not for 
denoising method, nor any interaction term (Table S5).

3.2 | Database construction

We compared how the composition of arthropod COI records var-
ied among three databases: two created from BOLD records (Palmer 
and tidybug) and one from GenBank records (Porter). While the 
Porter (1,280,577 total COI records; 515,780 arthropod-specific 
COI records) and Palmer databases (1,617,885 total COI records; 
1,565,831 arthropod COI records) contained arthropod as well as 
nonarthropod COI records, the tidybug database was constructed 
exclusively with arthropod COI records yet contained the largest 
number of distinct sequences overall (1,841,956 arthropod COI re-
cords). These differences in total arthropod COI references reflect a 
series of decisions by the researchers constructing these databases 
including both the source with which sequences were obtained 
(GenBank or BOLD), and how databases were curated (i.e., requir-
ing complete taxonomic names for all references (or not), clustering 
references (or not), and the time with which records were obtained).

The quality of a database is not only a function of how many 
records it contains, but also by how complete the taxonomies are 
for the references. For instance, references may or may not contain 
a name at the family, genus, or species rank. With respect to the 
number of unique taxa and unique sequences, the tidybug database 
contained more distinct records from species through order lev-
els (Figure 4a). This difference was most pronounced between the 
Porter database and the Palmer or tidybug records and reflects the 
fact that the Porter database required all references to contain com-
plete taxonomic names (i.e., including species rank), while neither 
the Palmer nor tidybug database was created with such a stipulation. 
Nevertheless, the tidybug database including species rank contained 
over 400,000 more records than the Porter database, illustrating 
that both filtering criteria and reference sources are important fac-
tors when constructing a database.

There are considerable differences among the number of shared 
taxa (found in two or more databases) and unique taxa (found in 
only one database) (Figure 4b). While all three databases shared 
many species records in common (39,068), it was in fact the tidybug 

F I G U R E  3   Biological meaning can change depending on the particular filtering (vertical facets) and denoising (horizontal facets) 
methods applied to a dataset. This analysis examined mean rank ASV richness among guano samples collected from a single site (Fox State 
Forest, Hillsboro, NH) over four sampling months. Filtering greatly reduces the number of significantly different sampling months, whereas 
denoising platform can identify different significant pairwise comparisons depending on the particular filtering regime used, as well as the 
confidence level used to determine significance. Exact p-values indicated for significant pairwise comparisons Asterisks indicate significance 
threshold p <  .001; exact significance values indicated when p <  .1
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database that contained the most species records (49,822) among 
all sets. The Porter dataset (20,542 species records) and Palmer 
dataset (4,845 species records) contained fewer distinct records. 

Order, family, and genus names were shared most frequently among 
all three databases, though we observed that individual databases 
routinely contained sizeable fractions of unique taxa. For example, 

Kruskal−Wallis, p = 3.9e−09

*

Kruskal−Wallis, p = 3.3e−09

*

*

*

*

*
*

*

Kruskal−Wallis, p = 1.5e−07

0.061

Kruskal−Wallis, p = 0.27

0.07

0.011

Kruskal−Wallis, p = 0.08

0.016
0.016

Kruskal−Wallis, p = 0.045

0.047
Kruskal−Wallis, p = 0.15

Kruskal−Wallis, p = 0.2

0.055
Kruskal−Wallis, p = 0.19

basic standard extra
dada2

deblur
vsearch

April May Sept. Oct.

0

100

200

0

100

200

0

100

200

A
S

V
s 

ob
se

rv
ed

*
*

*
*

0.097

0.082

April May Sept. Oct.April May Sept. Oct.



9730  |     O'ROURKE Et al.

while 12,788 genera were shared among all three databases, 4,251 
unique genera were observed only in the Porter dataset, and 3,885 
genera were reported only in the tidybug dataset. The same effect 
was observed among family names, with 1,116 shared among all 
three datasets, while 362 family names were identified uniquely in 
the Porter dataset and 248 found uniquely in the tidybug database.

Database composition can be further impacted by choice of ref-
erence clustering. We clustered our tidybug database at three levels 
(99%, 97%, and 95%) to understand the effects of clustering on tax-
onomic composition (Table 1). Clustering at 99% reduced the origi-
nal number of dereplicated sequences from 1,841,946 to 407,356. 
Further clustering at 97% (265,885 records) and 95% (215,055 re-
cords) results in additional reductions in the number of representa-
tive sequences. In addition, we observed that the overall proportion 
of ambiguous genus and species names increases as clustering 
radii decrease. For example, while 5.6% of species names were 

ambiguous among the dereplicated dataset, 7.2% of species names 
were ambiguous for 99% clustered data, 11.4% were ambiguous for 
97% clustered data, and 15% of species names were ambiguous for 
95% clustered data (Table 1).

We further examined whether clustering reduced sequence di-
versity and taxonomic ambiguity equally among nine arthropod or-
ders containing some of the largest number of reference sequences 
(Figure 5). While clustering the entire dataset at 99% reduced the 
number of unique sequences to about 22.1% of its original size, 
this reduction varied among arthropod orders. The least overall 
reduction of references was observed among Trichoptera (36.4% 
of original size), Coleoptera (31.1%), and Lepidoptera (32.7%), 
while Diptera (13.2%) and Psocodea (10.5%) were among the or-
ders that had the greatest reduction of sequence diversity due to 
clustering. In addition, some arthropod orders contained many 
dereplicated references that lacked either species or genus names: 

F I G U R E  4   Porter, Palmer, and tidybug database comparisons. (a) Counts of dereplicated reference sequences containing complete 
taxonomic descriptions including the species name (top panel); lack only species name but include all others up to and including genus 
(second from top); lack species and genus but include family (third from top); or lack only up to order-level names (bottom panel). (b) Counts 
of unique taxonomic names present among distinct and overlapping sets of databases at species, genus, family, and order levels. Total 
number of unique taxa present at each level for each database indicated in bars at bottom left of each panel. Number of taxa names present 
in a given group indicated by vertical bars with dots underneath each bar indicating group membership
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Diptera (41.1%) and Hymenoptera (40.9%) were the two orders 
containing the greatest number and frequency of such incomplete 
references. However, clustering at 97% resulted in a greater in-
crease of references lacking species or genus names for Diptera 
(56.5%) than Hymenoptera (45.2%) (Figure 5, light blue bars).

3.3 | Taxonomic classification comparisons

All taxonomic classifiers were robust with respect to avoiding 
false positives: For all classifiers and all parameters, at all taxo-
nomic levels, none of the 23 mock sequences were assigned an 
incorrect name. Thus, TAR scores (the fraction of observed taxa 
that were expected (Bokulich et al., 2013) were equal to 1 for 
every classifier and parameter tested at each level of taxonomic 
classification (phylum to species). Note that the TAR metric is not 
influenced by false negatives, and hence, the perfect scores indi-
cate that none of these methods overclassified or misclassified. 
Using the TDR metric (the fraction of expected taxa that were ob-
served (Bokulich et al., 2013)), differences occurred based on the 
classifiers and parameter settings that were used (Figure 6). For 
instance, the boldAPI + LCA classifier parameterized with a 95% 
identity threshold recorded the greatest degree of underclassifi-
cation at the order, family, genus, and species levels, yet produced 
similar or better TDR scores compared to most other classifiers 

when parameterized with a 99% identity threshold. While align-
ment-based classifiers BLAST + LCA (q2) and VSEARCH + LCA 
(q2) produced similar TDR scores for the range percent identity 
values tested, kmer-based classifiers SINTAX (vsearch) and Naive 
Bayes (q2) exhibited a greater sensitivity to changes in the confi-
dence parameter; specifically, lower confidence settings increased 
classification accuracy. The highest species-level accuracy was ob-
served using the q2-feature-classifier Naive Bayes classifier with 
confidence = 0.3 (Figure 6).

Classifier performance was also compared on a relative basis 
using bat guano data: First, the frequency of ASV assignment to 
taxonomic name from class through species levels, and second, the 
degree with which one or more classifiers assigned the same tax-
onomic name to that ASV. More ASVs were assigned taxonomic 
names among order, family, and genus ranks by kmer-based clas-
sifiers than either of the alignment-based classifiers or the BOLD 
classifier (Figure 7a). While the relative proportion of ASVs assigned 
species names is reduced relative to more inclusive taxonomic ranks 
(e.x. order, family, or genus), the Naive Bayes classifier assigned the 
most species names among all classifiers. The BOLD classifier re-
ported the lowest number of named taxa at each taxonomic rank. 
Because their API uses a closed source reference database and clas-
sification parameters are undefined, it is unclear exactly what pro-
portion of these missing assignments are a function of the classifier 
algorithm itself or the database queried.

Clustering percent Level

Unique reference sequences

Present Ambiguous Missing

100% Order 1,840,258 (99.9%) 1,688 (0.01%) 0

Family 1,836,852 (99.7%) 5,094 (0.03%) 0

Genus 1,311,216 (71.2%) 46,044 (2.5%) 484,686 (26.3%)

Species 946,309 (51.4%) 103,150 (5.6%) 792,487 (43.0%)

99% Order 406,935 (99.9%) 421 (0.01%) 0

Family 405,906 (99.6%) 1,450 (0.04%) 0

Genus 291,579 (71.6%) 10,734 (2.6%) 105,043 (25.8%)

Species 230,430 (56.6%) 29,517 (7.2%) 147,409 (36.2%)

97% Order 265,571 (99.9%) 314 (0.01%) 0

Family 264,458 (99.5%) 1,427 (0.05%) 0

Genus 183,905 (69.2%) 10,873 (4.1%) 71,107 (26.7%)

Species 141,186 (53.1%) 30,339 (11.4%) 94,360 (35.5%)

95% Order 214,737 (99.9%) 318 (0.01%) 0

Family 213,176 (99.1%) 1,879 (0.09%) 0

Genus 143,075 (66.5%) 12,195 (5.7%) 59,785 (27.8%)

Species 106,370 (49.5%) 32,227 (15.0%) 76,458 (35.6%)

Note: The tidybug database was dereplicated (100%) or further clustered at one of three radii 
(99%, 97%, 95%). The resulting arthropod COI sequences either contained taxonomic information 
(Present) or lacked information (Missing) at a particular taxonomic rank (class through species). 
Ambiguous taxa information is created when identical sequences have distinct taxonomic 
descriptions (evaluated at each taxonomic rank separately). The total number of references shown 
for Present, Ambiguous, and Missing names are indicated and the relative percent of names 
contained at each clustering percent.

TA B L E  1   Clustering tidybug database 
increases taxonomic ambiguity of 
reference names and reduces the total 
number of distinct sequences
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We further investigated a particular difference among classifi-
ers: Those ASVs that failed to be assigned a species name by BOLD, 
but were nevertheless assigned a species name by all non-BOLD 
classifiers. Among these 1,641 particular ASVs, we found that the 
unassigned species name (missing in BOLD, present in all non-BOLD 
classifiers) is often present in alternative BOLD ASVs (Figure S4). In 
particular, 131 distinct species names assigned by non-BOLD clas-
sifiers but not assigned a BOLD ASV were present in an alternate 
ASV classified by BOLD. Nevertheless, a larger majority, 301 species 
in all, were completely absent from the BOLD classifier data that 
were otherwise classified by non-BOLD programs. In addition, we 
discovered several instances wherein tens or hundreds of unclassi-
fied BOLD ASVs likely represented just a single species. The most 
extreme example occurred among the Megaloptera, where we iden-
tified 283 ASVs in our bat guano samples that were not assigned 
a species name by BOLD but were assigned a species name by all 
non-BOLD classifiers. Those 283 ASVs represented just 4 distinct 
species: Chauliodes pectinicornis (249 ASVs), C. rastricornis (20 ASVs), 
Sialis vagans (1 ASV), and S. velata (13 ASVs).

We next counted the number of instances in which classifiers as-
signed a similar taxonomic name to each ASV (or disagreed or failed 
to assign an ASV) among the 31 possible “sets” (similar to a 5-way 
Venn diagram) for each taxonomic rank from order through species 
(Figure 7b). The largest proportion of ASVs with common names oc-
curred within the set that included all five classifiers: The majority of 
taxonomic order (6,472 ASVs with common names), family (4,786), 
genus (4,144), and species (2,223) names were similar across all clas-
sifiers tested. The next largest set of common names existed among 
all non-BOLD classifiers at family (2,084), genus (1,832), and species 
(1,576) levels; the kmer-based classifiers contained the next largest 
set of common ordinal names (1,834). The proportion of shared non-
BOLD names increased relative to the set including all five classifi-
ers as taxonomic levels became more exclusive: Non-BOLD shared 
names were 23.8% as large as the set including all classifiers at the 
order level (i.e., 1,545 compared to 6,472 ordinal names), yet the 
non-BOLD set was 70.9% as large as the set including all five classifi-
ers at the species level (i.e., 1,576 compared to 2,223 species names). 
Thus, while fewer ASVs are assigned names at the species level than 

F I G U R E  5   Clustering tidybug database nonuniformly reduces sequence and taxonomic diversity among selected arthropod orders. 
References may contain all taxonomic information (red), while other records are missing species name (orange), species and genus names (light 
blue), or species, genus, and family information. The fraction of sequences with various taxonomic completeness are shown for each dataset 
as a result of dereplication (100%) or further clustering (99%, 97%, or 95%). Total references for each order are shown below each group
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at the order level, a larger fraction of these names are not included 
by the BOLD classifier at the species rank than order rank. We ob-
served that both kmer-based classifiers agreed on many ASVs named 
at the order (1,834), family (1,406), and genus (1,255) ranks that were 
left unassigned by alignment-based classifiers or the BOLD classi-
fier. With the exception of ASVs with species names were shared 
between BLAST and VSEARCH that differed from an alternative 
name from at least one other classifier (1.5%), all other instances of 
these nonambiguous names represented <1% of available overlaps 
at every taxonomic level except species rank, with most instances 
occurring with <0.1% of the total ASV names in that set. In other 
words, it is exceptionally rare for at least two classifiers to assign a 
distinct name that differs from another classifier's alternative name.

4  | DISCUSSION

4.1 | Sequence filtering and diversity estimates

We sought to better understand how several common bioinformatic 
decisions involving sequence processing and database construction 
affect interpretations of diversity and subsequent classification of 
ASVs. Indeed, even in an ideal molecular workflow, the computa-
tional parameters invoked can potentially alter the number of se-
quence variants observed depending on the denoising method, and 

even more strikingly, completely ignore particular taxa depending on 
the classification strategy or database.

The first major bioinformatic decision that has yet to reach con-
sensus in animal diet metabarcoding studies relates to identifying 
unique sequence variants. As has been shown for microbial stud-
ies (for which these methods were developed), denoising methods 
appear advantageous over OTU clustering both for retaining ex-
pected sequence variants and reducing spurious sequence variants. 
With respect to recalling the expected sequence variants among 
our mock community data, both DADA2 and Deblur worked sim-
ilarly well, each detecting all 24 expected mock sequences, while 
VSEARCH failed to detect 1–4 expected mock members among the 
four sequencing runs (Table S6). The missing “exact” matches using 
VSEARCH highlights a problem inherent with a clustering approach 
to denoising: loss of information due to shared sequence similarity. 
Two of our mock sequences were variants of the same species; one 
each of the exact variants clustered together in the VSEARCH li-
brary. If these mock samples had been representative of an actual 
diet analysis, we would have been successful in identifying the spe-
cies, and however, we would have failed to detect the intraspecific 
differences of distinct ASVs within the species.

Relatively few animal diet metabarcoding studies incorporate 
read abundance information in their diversity estimates because of 
uncertainty in associating biomass with sequence counts (Alberdi 
et al., 2018; Deagle et al., 2019). This is particularly meaningful given 

F I G U R E  6   Classifier performance of mock community data as measured by Taxon Discovery Rate (TDR)—higher TDR values indicate a 
greater fraction of observed taxa that were expected at a particular taxonomic level. Values inside each box indicate the parameter tested 
for that classifier, with BLAST, VSEARCH, and BOLD values reflecting alignment percent identity, while Naive Bayes and SINTAX values 
indicate confidence thresholds. Values marked as “all” indicate all possible parameters within classifier tested (30/50/70/80/90 confidence 
thresholds), while “all else” indicate all other remaining values not specified as integers within the group. The addition of a second parameter 
that retains only the highest alignment score distinguishes the VSEARCH+LCA and "VSEARCH+LCA+top_hit" classifiers
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that our observed differences among mock samples processed by 
different denoising methods with basic and standard filtering is en-
tirely attributed to low-abundance sequences. Thus, the choice of 
denoising method and filtering parameters can dramatically change 
richness estimates for researchers using a presence–absence frame-
work. For instance, 539 of the 604 unexpected ASVs contained 10 
or fewer total sequences per ASV in just a single mock sample (libD) 
when processed with basic filtering using VSEARCH. Deblur follows 
a similar pattern, retaining many sequence variants with extremely 
low abundance: the same basic filter dataset from that same sam-
ple contains 525 total variants, yet all 364 “miss” variants contain 
11 or fewer sequences per ASV. Yet only after applying the extra 
filter were all unexpected sequences removed from each sample, 
and every denoising method required had at least some unexpected 

ASVs removed by this filter. Discarding observed sequence variants 
with low abundances on a per-sample basis or on a per variant basis 
operates with the assumption that rarity is more indicative of se-
quencing error than true biological variation. For experiments that 
do not include positive controls with their true samples, one is left 
with the challenge of arbitrarily assigning what minimum read count 
to use. Our mock data suggest that DADA2 is most effective at elim-
inating low-abundance errors and would be particularly useful in sit-
uations whereby no additional filtering threshold can be empirically 
derived.

For researchers particularly interested in evaluating richness 
only, as is often the case in COI diet work, our example guano data-
set suggests that simply removing low-abundance data are not suffi-
cient to resolve observed differences in richness between denoising 

F I G U R E  7   (a) Number of bat guano ASVs assigned taxonomic information at Order through Species rank for each classifier. A total of 
13,407 ASVs were included in the guano dataset for potential classification. (b) Taxonomic names shared among classifiers for guano data. 
Vertical bars represent the number of taxonomic names matching to a given set of classifiers; each subpanel represents the taxonomic 
level a name is evaluated at. The particular classifiers included in a set is indicated by the shaded dots in the bottom panel. For instance, the 
leftmost set (all five shaded dots shaded) represents instances in which all five classifiers agree for a particular taxonomic name. The second 
(from left) vertical set has all except the “bold” classifier shaded, indicating the number of instances in which the four nonbold classifiers 
agreed on a taxonomic name that bold either lacked. Highlighted groups represent instances where set values were at least 3% of all unique 
taxonomic names, thus all other sets possible but not shown contained relatively few overlaps
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platforms (Figure 3 and Figure S2). While VSEARCH and Deblur are 
highly similar with respect to their per-sample ASV richness esti-
mates when an extra filter was applied, both VSEARCH and Deblur 
are much more variable with respect to per-sample ASV richness 
relative to DADA2, though not unidirectionally greater or lower. We 
performed one small test with bat guano collected across 4 months 
at a single site and found that indeed our interpretation of biolog-
ical patterns could arise simply from the bioinformatic choices we 
made with respect to denoising platform and filtering (Figure 3). We 
observed more differences between monthly ASV richness in these 
select bat guano data than the filtered data with low-abundance 
reads removed. Yet even after applying these filters, the signifi-
cantly different Months varied among denoising platforms. Despite 
our findings that DADA2 are least affected by retaining spurious, 
low-abundance sequence variants, these comparisons highlight that 
a richness estimate by any of the proposed denoising approaches are 
particularly sensitive to low-abundance variants. While these may 
be of great interest in a microbial setting, they are less likely to be 
important factors in bat diets, and thus, if researchers are adamant 
in using a clustering approach over a denoising technique, modest 
filtering of low-abundance reads is advised.

Because of a dependence on transforming read abundances to 
presence–absence, diversity estimates in animal metabarcoding 
studies have historically been limited to richness for intersample sim-
ilarity and one of a few indices (e.g., Dice–Sorensen or Raup–Crick) 
for intrasample analyses. Incidence-based approaches are often jus-
tified as a more appropriate choice compared to using relative abun-
dances of sequences due to the challenges of associating counts to 
biomass (Clare, 2014; Deagle et al., 2019). Yet as Deagle et al. (2019) 
observe, “to accept the notion that relative sequence counts provide 
no meaningful information would mean that, within one sample, a 
few DNA sequences from one food taxon are equivalent to 10,000 
sequences from another.” Sequence diversity estimates among bat 
guano samples were sensitive to both denoising method and filtering 
parameters whether or not abundance information was used to es-
timate alpha diversity (Figure S2). However, it is possible that differ-
ences between denoising platforms and clustering are reduced once 
the data are classified. For instance, the additional ASVs observed 
in DADA2 may be a result of intraspecific variation. Indeed, this was 
observed in our mock community with H. axyridis (where two sep-
arate vouchered specimens of the same species had different COI 
sequences). The extent with which this phenomenon is observed 
will vary among experiments. We suggest that a practical approach 
would include first denoising with a program like DADA2 that re-
tains as much accurate sequence variation as possible, then let the 
researcher determine whether or not downstream analyses warrant 
further clustering using either sequence or taxonomic information.

In contrast, estimates of beta diversity for bat guano data were 
robust to the denoising software of filtering parameters when read 
abundances were incorporated (Table S5). Similar findings have been 
reported for microbial studies (Bokulich et al., 2013). However, fil-
tering, but not denoising software, was a significant factor for the 
unweighted Dice-Sorensen model. Our mock community suggested 

that a clustering approach generates many more low-abundance 
false-positive sequence variants, and thus, it appears that filtering 
out most low-abundance reads was sufficient to observe community 
composition variability in our dataset using actual bat diet samples.

Somewhat counterintuitively, conventional COI community 
composition analyses often reject the notion of including read abun-
dances to avoid bias; we find that the particular filtering parameters 
the researchers invoke can itself a potential source of bias. Notably, 
our work is not intended to determine whether using read abun-
dances is appropriate for a particular animal diet study, but simply 
to highlight that detections and relative abundances in diversity 
estimates remain sensitive to the denoising programs and filtering 
criteria applied.

4.2 | Database construction

Assigning taxonomic information to a set of sequence variants re-
quires a reference database, yet there is no single curated and 
versioned resource widely used in animal diet studies, making 
comparisons among studies extremely difficult. While BOLD had 
previously presented packaged versioned releases, this practice 
ended in 2015. Motivated by the fact that these same complications 
persist for users relying on NCBI resources, Porter and Hajibabaei 
(2018b) created a pipeline that makes versioned releases manage-
able. However, their database construction choices may reflect the 
needs of their experiments but not for others. For instance, their 
requirement that all records contain species-rank names prioritizes 
taxonomic information over sequence diversity and a more diverse 
database containing records lacking species or genus-rank names 
may be preferred. As shown in Figure 4b, the two major resources 
of arthropod COI records may be viewed as complementary. While 
no single database will be sufficient for all animal metabarcoding 
projects, versioned resources are essential for ensuring that unique 
properties between experiments reflect differences in biology and 
not the reference databases. The recent beta release of RESCRIPt 
(Bokulich, Robeson, & Dillon, 2020) is one such tool that may bridge 
the gap in designing versioned databases curated specific to COI diet 
analyses.

We hope future versioned databases will explore the construc-
tion criteria we examined: filtering references with taxonomic am-
biguity, dereplicating sequences, and clustering related sequences. 
Porter database consists nearly exclusively of full taxonomic iden-
tities—references that include species-rank names. The Porter data-
set was constructed initially to contain only records with named 
species, and however, by failing to dereplicate their records, there 
are over ten thousand instances where identical sequences contain 
distinct taxonomic identities. In this case, the LCA algorithm reduces 
these records to a common shared taxonomic level, eliminating spe-
cies-level information and highlights that dereplicating can reduce 
the total number of available records when a consensus LCA pro-
cess is applied. For example, our “original” BOLD arthropod records 
contained over 3.1 million sequences, while just 1.8 million of these 
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references remained in our dereplicated dataset. Dereplication is 
essential to database construction, and we opted for a consensus 
LCA approach instead of a majority method to avoid potentially 
over-classifying the reference records.

Clustering reference sequences is performed to alleviate the com-
putational burden of alignments, phylogeny-building, and classification 
by reducing the number of highly similar reference sequences. Yet a 
tradeoff occurs between computational burden and compositional 
representation: Clustering makes searching a database faster, but the 
number of potentially distinct sequences and taxonomic identities are 
fewer. An additional problem with clustering arises from the fact that 
groups of taxa may have distinct evolutionary rates and thus are dif-
ferentially impacted by applying a single value when related sequences 
are merged. For example, there is greater variation in COI sequence 
in Coleoptera than Lepidoptera (Pentinsaari, Salmela, Mutanen, & 
Roslin, 2016). Clustering reduced the number of the most abundant 
arthropod orders in a nonuniform manner. For example, while there 
are twice as many unique Diptera sequences in the tidybug database 
as Lepidoptera, yet clustering at 99% identity resulted in fewer over-
all dipteran sequences than lepidopteran. If clustering is a necessity, 
the dynamic clustering approach used by UNITE may be preferred to 
the fixed binning approach currently, but it remains unresolved exactly 
what clustering radii are appropriate for each taxonomic level.

4.3 | Taxonomic classification

Assigning taxonomic identities to sequences is a primary goal in animal 
diet studies but classification method and parameter choice can alter 
biological inference. Other fundamental decisions on how taxa are fil-
tered are equally important though often less well documented such 
as applying an LCA process (Galan et al., 2018). Some researchers fil-
ter acceptable taxa outside of expected geographic boundaries (Divoll 
et al., 2018; Vesterinen et al., 2016), although this decision may pre-
clude many undiscovered taxa. Moreover, once a classifier is chosen, 
optimizing parameters for an experiment requires ground-truthing, yet 
to our knowledge comparing various classifiers and parameters using 
biological samples with known taxonomic identities exists only for 
microbial amplicon data (Almeida, Mitchell, Tarkowska, & Finn, 2018; 
Bokulich, Kaehler, et al., 2018) and microbial (Gardner et al., 2019) and 
viral (Sczyrba et al., 2017) metagenomes. Among alignment-based clas-
sifiers, reducing the percent identity resulted in more under classified 
sequences unless a “top-hits” parameter was invoked (Figure 6). When 
a 95% or 97% identity threshold is used, multiple candidates with dis-
tinct taxonomic names occurred; because we apply an LCA process 
to these candidates where the resulting taxonomic name must be 
unique, generating a more inclusive group of matches reduces the like-
lihood that a single species name (or genus at 95% identity) is reported. 
However, invoking the “top-hit” parameter retains only the highest 
alignment score, thus the LCA process is only applied if multiple best 
scores are reported.

In evaluating the distinctions among parameter settings within a 
classifier, we also discovered that the reported under classification 

was likely inflated because of incomplete reference names per-
sisting among the top-hits of a search alongside an expected (and 
complete) reference name. For instance, when classifying with 
VSEARCH + LCA, three different mock community members (IM39, 
IM42, and IM44) each contained the expected species name and a 
reference with at least as good an alignment score but a name that 
was either “Ambiguous” or lacked any information at the species 
and/or genus rank. In each of the three cases, an investigation of 
the BOLD BIN associated with the ambiguous reference pointed to 
a group containing just one named species—the expected name. This 
problem highlights the interconnectedness between bioinformatic 
processes: A more refined database curation step that removes these 
ambiguous references will reduce the instances in which sequences 
are under classified.

Kmer-based classifiers offer an orthogonal method to classify 
samples without demanding a fixed percent identity. Kmer-based 
classifiers nearly always assigned order names to our bat guano data, 
while alignment-based approaches often returned equivalent ASVs 
as undefined (Figure 7a). Lowering the percent identity threshold 
from our conservative value of 0.97 to something less would un-
doubtedly retain more of these undefined taxa. However, because 
we apply an LCA process to all hits retained, an inherent tradeoff 
exists between precision and recall. For an alignment approach, 
lowering the percent identity may result in fewer undefined ASVs 
(increasing recall), but the proportion of ASVs with species-level in-
formation will also be reduced (decreasing precision). Thus, kmer-
based approaches offer an alternative to this problem in situations 
in which far less of a full sequence is needed to assign some degree 
of taxonomic identity.

Collectively, these results suggest that the COI marker is an 
excellent candidate for classification optimization, though given 
the breadth of possible COI targets investigated among animal 
diet metabarcoding experiments additional mock datasets are 
necessary to better understand how such optimizations may vary 
across phyla. We encourage researchers to assign taxonomy to 
their datasets using a range of classifiers. Indeed, among non-
BOLD classifiers, a kmer-based approach can be especially use-
ful at retaining class and order information that alignment-based 
classifiers would otherwise discard, but caution that preprocess-
ing of training data for amplicon length, quality, and chimera fil-
tering are important and necessary when using a kmer approach. 
Furthermore, the reduction in named taxa for VSEARCH or BLAST 
can be explained by the fact that these alignment-based classifiers 
apply an LCA process after identifying potential matches while 
kmer-based approaches do not. The consensus threshold used for 
assigning taxonomy is adjustable and may require further optimi-
zation for COI sequence classification. As with our database con-
struction investigations, there are many parameters to consider 
when classifying animal metabarcoding data. Our work provides a 
template for further investigations, and the community of animal 
diet researchers would be well served to create a more robust and 
phylogenetically diverse mock dataset to identify best practices 
for classification.
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5  | CONCLUSIONS

Our work highlights the need to perform comparisons among the 
frequently adopted bioinformatic tools used in animal diet meta-
barcoding studies. Many of these tools are capable of producing 
different results depending on the pipeline invoked. Mock commu-
nity results suggest that DADA2 is a superior tool at ensuring the 
expected community is best represented while reducing ASVs that 
are not expected. These same sensitivities apply to alpha diversity 
estimates that incorporate read abundances, although we failed to 
detect such a pattern among various beta diversity metrics in our 
bat guano dataset.

Database composition varied depending upon the reference 
source, whether taxonomic completeness requirement filters were 
applied, if an LCA was used, and whether references were clustered. 
Clustering reduced taxonomic diversity and increased the propor-
tion of ambiguous names, particularly at the species and genus 
ranks. Further, the reduction of sequence content and taxonomic 
information is not reduced uniformly among many arthropod or-
ders. We encourage researchers to consider combining reference 
databases when curating their own set of sequence and taxonomic 
records given our discoveries of the number of unique taxonomic 
records available among disparate database repositories and making 
versioned releases of these datasets.

A larger fraction of bat guano ASVs were assigned order, fam-
ily, and genus names among kmer-based classifiers, suggesting that 
classifier choice can alter the subsequent interpretations of com-
munity composition in a dataset. More expansive and phylogenet-
ically diverse mock communities and in silico tests will be useful for 
identifying which classifiers are best served to balance the desire to 
classify as many taxa at as many levels as possible without introduc-
ing false indications of certainty where taxonomic ambiguity is more 
appropriate.
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