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ABSTRACT
The continuous increase in the production of synthetic plastics for decades and the
inadequate disposal of plastic waste have resulted in a considerable increase of
these materials in aquatic environments, which has developed into a major
environmental concern. In addition to conventional parameters, the relevance of the
environmental monitoring of microplastics (MPs) and nanoplastics (NPs) has been
highlighted by the scientific community due to the potential adverse effects these
materials pose to the ecosystem as well as to human health. The literature has
registered an increasing interest in understanding the mechanisms, at the molecular
level, of the interaction between NPs and other compounds using molecular
simulation techniques. The present review aims to: (i) summarize the force fields
conventionally used to describe NPs by molecular simulations; (ii) discuss the effects
of NPs in the structural and dynamical properties of biological membranes;
(iii) evaluate how NPs affect the folding of proteins; (iv) discuss the mechanisms by
which NPs adsorb contaminants from the environment. NPs can affect the secondary
structure of proteins and change the lateral organization and diffusion of lipid
membranes. As a result, they may alter the lipid digestion in the gastrointestinal
system representing a risk to the assimilation of the nutrients by humans.
The adsorption of contaminants onMPs and NPs can potentiate their harmful effects
on human health, due to a possible synergism. Therefore, understanding the
mechanisms involved in these interactions is crucial to predict dangerous
combinations and outline action strategies that reduce negative impacts on
ecosystems and human health. Depending on the chemical properties of
contaminants and NPs, electrostatic and/or van der Waals interactions can be more
relevant in explaining the adsorption process. Finally, we conclude by highlighting
gaps in the literature and the critical aspects for future investigations.
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INTRODUCTION
Plastic materials are decisive in several aspects of human life because their physical and
chemical properties result in high durability and strength, low production cost, and
weight. Nonetheless, its high durability is not without negative effects; even with its great
potential to be recycled, tons of plastics become polluting agents in the environment in the
course of time. In 2019, approximately 368 million tons of plastics were produced
worldwide (Plastics Europe, 2020), but only 6% to 26% were recycled (Alimi et al., 2018;
Li et al., 2021a) and around 10% eventually ended up in the ocean (Collard et al., 2017;
Wang et al., 2019a). As a result of these plastics being exposed to chemical, physical
and biological agents, they begin to degrade into microplastics (size < 5 mm) and
nanoplastics (size < 100 nm) (Toussaint et al., 2019). Moreover, some plastics have already
been designed to be microplastics (MPs).

The COVID-19 pandemic has been an aggravating factor in this regard, and, since
its beginning, the use of disposable plastics in the health sector has greatly increased. A
recent study estimated that in 2020, 1.56 million masks might have ended up in the ocean
(Phelps Bondaroff & Cooke, 2020; Peng et al., 2021). Among all the plastic disposals related
to COVID-19, it was estimated that, from the beginning of the pandemic until August
2021, a total of approximately 25.9 tons had reached the oceans, including 12.3 tons of
micro and nanoplastics (Peng et al., 2021).

Several studies prove the bioaccumulation of these particles in living marine life,
indicating a direct route for contact with humans through the food chain as shown in
the literature review conducted by Toussaint et al. (2019). Other access routes would
be ingestion or contact with contaminated water, exposure to aerosols containing
nanoplastics (NPs) and contaminated air (associated mainly with textile industry), as
well as contact with skincare products and cleaning products that have NPs in their
composition (Hüffer et al., 2017; Lehner et al., 2019). It is already known that these NPs
and MPs have a high surface/volume ratio and, consequently, great tendency to adsorb
other substances. It is important to highlight that, depending on the polymer’s glass
transition temperature, the absorption of compounds can also occur. So, in addition to the
presence of NPs andMPs, it is necessary to know how to deal with other types of pollutants
adsorbed on its surface (Li et al., 2021b). Many experimental studies which have been
conducted in recent years proved the sorption of antibiotics (Guo, Liu &Wang, 2019; Chen
et al., 2021; Li, Zhang & Zhang, 2018), heavy metals (Guo, Liu & Wang, 2020; Almeida,
Manjate & Ramos, 2020), pesticides (Li et al., 2021a), polycyclic aromatic hydrocarbons
(PAH) (Tan et al., 2019; Sørensen et al., 2020), and other organic pollutants (Wang &
Wang, 2018) in NP; these studies also showed how NPs may act as transport vehicles for
these contaminants. Figure 1 represents a possible transport scheme of pollutants adsorbed
on NPs through the food chain.

MPs and NPs with or without adsorbed pollutants, cause adverse effects to several
species. Reichert et al. (2018), Okubo, Takahashi & Nakano (2018) and Okubo,
Tamura-Nakano & Watanabe (2020) demonstrated the negative effects in different corals
when exposed to MPs. Some studies show that the combined exposure of MPs/NPs with
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adsorbed metals can heighten toxic effects in aquatic test organisms (Lee et al., 2019; Qiao
et al., 2019). Similar evidence were observed in other experimental studies carried out with
organic pollutants such as phthalates, PAH, pharmaceuticals, and flame retardants
accumulated on the MP surface (Li et al., 2020; Nobre et al., 2020; Pittura et al., 2018). It is
important to highlight that most experiments are carried out under laboratory conditions
and employ high concentrations of MPs/NPs and pollutants, which are unrealistic
conditions when compared to aquatic environments. Few studies indicate that the
presence of pollutants adhered to the surface of MPs can lead to synergistic, antagonistic,
and additive effects under real conditions (Bhagat, Nishimura & Shimada, 2021; Rodrigues
et al., 2019). Regarding human exposure to MPs and NPs, there is a great concern in
determining, first, effectively how sizeable the contamination is, and, second, the main
contact mechanisms (Lehner et al., 2019; Wright & Kelly, 2017). However, the possible
effects on human health tend to be estimated, as studies that prove the problems with
exposure to nanoplastics have been materializing (Gopinath et al., 2019; Domenech et al.,
2021).

The use of molecular simulation techniques, such as molecular dynamics and Monte
Carlo simulations, is an alternative strategy to understand the possible health harms due to
human exposure to NPs (Hollóczki, 2021). Molecular simulation is a powerful tool for
studying phenomena at the nanometric scale and has been remarkably successful in
predicting macroscopic thermodynamic and dynamic observables for various systems. It is
continually growing as an option for describing system properties under conditions that
experimental determinations are difficult to acquire (Tuckerman, 2010). It can also be
applied together with experimental results to investigate the mechanisms behind a
phenomenon of interest. Among these approaches, Monte Carlo and molecular dynamics
simulations can describe particles by pairwise interaction potentials.

Molecular dynamics (MD) is a numerical simulation technique to calculate the
thermodynamic and transport properties of many-body systems. The temporal evolution
of a set of interacting particles is accompanied by the integration of classical equations
of motion. The temporal averages of the trajectories and their fluctuations can be

Figure 1 A possible transport scheme of pollutants adsorbed on NPs through the food chain.
Full-size DOI: 10.7717/peerj.13618/fig-1

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 3/24

http://dx.doi.org/10.7717/peerj.13618/fig-1
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


correlated with the macroscopic properties of the studied system (Tuckerman, 2010).
Another approach is called Monte Carlo (MC), which is a method that relies on randomly
finding the lowest energy state. Simplistically, this is accomplished by changing the
system by one move for each Monte Carlo step, calculating the system’s free energy,
and accepting or not the move based on that (Frenkel & Smit, 2001). Thus, MC is a
simulation method that seeks to reduce the energy of the system in a stochastic way, while
MD uses integration algorithms to solve the equations of motion of each particle following
the system’s dynamics.

Both MD and MC can be applied in understanding the adsorption of pollutants to NPs
and studying the interaction mechanism between NPs and biomolecules, such as
phospholipids, proteins, deoxyribonucleic acid (DNA), and ribonucleic acid (RNA).
Knowing the mechanism involved in these interactions is crucial to predicting dangerous
combinations and outlining action strategies that reduce negative impacts on the
ecosystems.

Despite the potential of molecular simulation to describe the mechanism of interaction
between molecules and predict system equilibrium and dynamic properties, it has only
been used to analyze systems with NPs and MPs in recent years. Therefore, this review
aims to examine how research is being conducted in this area, identify how nanoplastics
are being characterized within the molecular dynamics methodology, and to identify and
analyze gaps in knowledge. These discussions become important to point out the paths
to be followed and the difficulties that need to be addressed more urgently, as well as to
guide those who are starting to simulate NPs and MPs while providing an overview for
those already working in the area. This review focuses on four points: (i) summarize
the force fields conventionally used to describe NP by molecular simulations; (ii) discuss
the effects of NPs in the structural and dynamical properties of biological membranes;
(iii) evaluate how nanoplastics affect the folding of proteins; (iv) and discuss mechanisms
by which NPs and MPs adsorb contaminants from the environment.

SURVEY METHODOLOGY
The combinations of keywords used in this research were: “nanoplastics molecular
dynamics”, “microplastics molecular dynamics”, “nanoplastics Monte Carlo”, and
“microplastics Monte Carlo”. To guarantee a thorough assessment of the literature, the
keywords were searched in five different repositories: acs.org, Science.gov, sciencedirect.
com, scopus.com, webofknowledge.com, and scienceresearch.com. In total, 706 results
were found. Most of the articles were present in more than one of the repositories,
thus guaranteeing an unbiased search. After analyzing the documents and excluding
duplicates, 28 articles were considered with data that could be used in this review -
basically, those that used molecular dynamics and/or Monte Carlo to study nanoplastics.
It is interesting to highlight that, due to computational limitations, NPs are generally
simulated rather than MPs. However, in many cases, the observations can be extrapolated
to systems containing MPs. Meanwhile, there are situations in which the focus of interest is
the NP itself.
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GENERAL REMARKS OF THE SIMULATIONS AND FORCE
FIELD ANALYSIS
The number of scientific articles using the molecular dynamics approach has been growing
since 2011, with five published papers from 2011 to 2017 and 23 published papers
from 2018 to 2022. Only one paper briefly reported Monte Carlo simulations. Before
discussing each point proposed in the study, it is necessary to comment on how research is
being conducted in this area, and on important differences between said studies. Initially, it
is possible to identify two groups of studies, the first focused exclusively on molecular
dynamics, and the second focused on molecular dynamics as a complement to an
experimental study or with other models. Within the first group, one can see the time scale
used is mainly in the nanosecond range, reaching the microsecond range when using
coarse-grained force fields (Bochicchio et al., 2017; Rossi, Barnoud & Monticelli, 2014).
Within the second group, there are studies that simulate systems at the nanosecond
scale, but also other studies that simulate at the picosecond scale, the latter mostly
following an experimental study (Chen et al., 2021; Li et al., 2021b; Guo, Liu & Wang,
2020; Guo, Liu &Wang, 2019; Zhang, Zhao & Na, 2020; Qin et al., 2022). Considering that
all studies work with the same type of system, i.e., a simulation box containing NP, a
disparity between simulation times is noted, making a discussion about it worth having.
This concern applies not only to studies of NPs through molecular dynamics, but also to
any study that use this methodology. Braun et al. (2019), in their practice guide for
molecular dynamics methodology, highlight that for condensed systems, depending on the
type of information desired, there may be a dependence of the properties with the
fluctuations and correlations of movement between the molecules. It is even mentioned
that systems with polymers and proteins have relevant scales in the range of nanoseconds
to microseconds, depending on what information one wants to obtain.

As mentioned previously, Monte Carlo and molecular dynamics can describe particles
by pairwise interaction potentials. These interaction potentials are associated with the
positions of the particles but also with parameters related to the substance, the particle size,
bonds, dihedrals, among others. This information is computed into force fields that can be
defined as the functional forms used to describe the intramolecular and intermolecular
potential energies of the system. Many are the force fields available in the literature and
their modifications, such as OPLS-AA (Optimized Potentials for Liquid Simulations,
All-Atom) (Jorgensen, Maxwell & Tirado-Rives, 1996; Jorgensen & Tirado-Rives, 1988);
AMBER (Assisted Model Building and Energy Refinement) (Ponder & Case, 2003);
CHARMM (Chemistry at Harvard Macromolecular Mechanics) (Brooks et al., 2009);
GAFF (General AMBER Force Field) (Wang et al., 2004); and TraPPE (Transferable
Potentials for Phase Equilibria) (Martin & Siepmann, 1998). They were developed based
on quantum mechanical calculations or experimental data. When working with molecular
simulation, one of the main concerns must be the selection of the force field. In this
section, we discuss the main force fields used in the parameterization of nanoplastics, the
software used, and the chosen water models.
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We noticed that five studies used some version of the Material Studio program (BIOVIA
Dassault Systèmes, 2021) with the COMPASS force field (Sun, 1998), which is already
available in the simulator program. Among all the software mentioned, this is the only one
that is paid and has a friendlier interface; however, the software used must not interfere
with the result. These studies have both MD and experimental sections, and deal with
the sorption of contaminants on NP. All the experiments, but one, use between 100
and 500 ps of simulation time before analyzing the results. As already mentioned, relevant
time scales for these systems should be higher in magnitude. An interesting fact is that
none of them considered the presence of water, even if implicit, neglecting the fact that the
phenomenon of interest occurs in an aqueous medium.

The most used molecular dynamics simulator to study NP was Gromacs (Lindahl et al.,
2021), with 13 studies using its versions. The force fields were more varied in this case, but
seven of those studies chose to use the GROMOS (GROningen MOlecular Simulation)
(Scott et al., 1999) in one of its versions, which is the force field from the same developer
as for the Gromacs. Five investigations used the LAMMPS simulator (Large-scale
Atomic/MolecularMassively Parallel Simulator) (Plimpton, 1995), while one used the Gabedit
program (along with the AMBER force field) (Allouche, 2011) and another used the Amber
molecular dynamic package (Case et al., 2005). Of the works that used LAMMPS, two
used OPLS-AA (Optimized Potentials for Liquid Simulations—All Atom) with SPC/E
(extended simple point charge model) water model (Berendsen, Grigera & Straatsma, 1987).

Regarding the force field only, two publications combined GAFF (Wang et al., 2004)
and TIP3P water model (MacKerell et al., 1998). One publication used GAFF (Wang et al.,
2004) for both NP and water-the studies that used GAFF obtained the partial charges
from different methods of quantum calculations. One publication combined TIP3P to
water and a version of GROMOS to the NP. Three publications used OPLS-UA (Jorgensen
& Tirado-Rives, 1988).

A force field development was carried out for polystyrene and polypropylene. It was
specially designed for the interaction between these plastics with lipids. In other words, this
force field (MARTINI coarse-grained (CG)) (Panizon et al., 2015) is compatible with the
popular MARTINI force field for lipids (Marrink et al., 2007), and it was used in four
different publications for experiments with simulation time from at least 100 to 20,000 ns.
Tables 1 and 2 summarize the number of published studies on nanoplastic simulations
via molecular dynamics and the force fields used to model NP and water in each of
them. Hollóczki & Gehrke (2020) used the Automated Topology Builder and Repository
(ATB) version 3.0, a website that provides classical molecular force fields for novel
compounds (Malde et al., 2011). This investigation of Hollóczki & Gehrke (2020) together
with the studies from Table 1 are the 28 referred articles in this literature review.

THE EFFECTS OF NANOPLASTICS IN THE STRUCTURAL
AND DYNAMIC PROPERTIES OF BIOLOGICAL
MEMBRANES
Biological membranes are complex structures composed basically of proteins and lipids
stabilized by dynamic cooperative non-covalent interactions (Bogdanov & Dowhan, 2021).
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They are permeable protective barrier of the cells involved in relevant functions,
namely sensing, transport, adhesion, and recognition processes. They consist of a bilayer of
lipid molecules, and have functions such as the control of substances (e.g., ions, nutrients,
waste) into and/or out of cells, keeping toxic substances outside the cells as well as
separating vital, and often incompatible processes inside the cells (Watson, 2015).
Biological membranes are very complex and, in addition to the lipid layers that allow or
prevent the diffusion of smaller molecules, some proteins form channels that can allow free
diffusion into and out of the cell and channels that only allow specific passage of some
compound (Nelson & Cox, 2021). The imbalance of these processes may be linked to
diseases such as cancer, neurodegeneration, and muscular dystrophies (Dias & Nylandsted,
2021). The manipulation of membrane dynamics has also been associated with anesthetic
effects (Fábián et al., 2015). Thus, understanding, at the molecular level, how the
interaction mechanisms of membranes with the environment works can influence our
comprehension in more than one field of knowledge. In this section, we discuss recent
advances in studies to understand how lipid membranes behave in the presence of NP
contaminants through molecular simulations techniques.

The simulations made by Hollóczki & Gehrke (2020) show that a membrane composed
by 2 × 300 molecules of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) (i.e.,

Table 1 Scientific publications applied to simulate nanoplastic viamolecular dynamics or Monte Carlo and the force fields used to model the
NP in each of them, identified by authors.

Force
field

Number of
articles

References

AMBER 1 Cortés-Arriagada (2021)

Compass 5 Chen et al. (2021), Li et al. (2021b), Guo, Liu & Wang (2019), Guo, Liu & Wang (2020), Yang et al. (2021)

GAFF 3 Wang et al. (2019b), Sarcletti et al. (2021), Ramalho, Dordio & Carvalho (2022)

GROMOS 7 Feng et al. (2022), Xue et al. (2011), Tan et al. (2020), Li et al. (2021a),Qin et al. (2022), Zhang, Zhao & Na (2020), Lameh,
Baseer & Ashiru (2022)

MARTINI 5 Dettmann, Kühn & Ahmed (2021), Bochicchio et al. (2017), Li et al. (2021c), Panizon et al. (2015), Rossi & Monticelli
(2014)

OPLS-AA 3 Hollóczki & Gehrke (2019), Hollóczki (2021), Rossi & Monticelli (2014)

OPLS-UA 3 Bochicchio et al. (2017), Bochicchio et al. (2022), Panizon et al. (2015)

Table 2 Scientific publications applied to simulate nanoplastic via molecular dynamics or Monte
Carlo and the force fields used to model the water in each of them, identified by authors.

Water
model

Number
of articles

References

GAFF 1 Sarcletti et al. (2021)

MARTINI 1 Li et al. (2021c)

SPC 1 Xue et al. (2011)

SPC/E 2 Hollóczki & Gehrke (2019), Hollóczki (2021)

TIP3P 3 Wang et al. (2019b), Ramalho, Dordio & Carvalho (2022), Qin et al. (2022)

TIP4P 1 Toh et al. (2020)
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phospholipid commonly found in cell membranes) readjusts itself in the presence of
nanoparticles of polyethylene with about 5 nm in diameter. The membrane rearranges to
cover more of the NP, and the NP surface can rearrange itself to almost double in size
in the presence of the membrane. The conformational changes gradually cause the
membrane thickness to increase and the average area of each lipid to decrease during
the 200 ns course of simulation time. In addition to structural changes, the results show
that there are changes in dynamics as well since the presence of NP facilitates lipid
movement within the membrane. Thus, it is suggested that the presence of NP has a
significant effect on biological membranes (Hollóczki & Gehrke, 2020).

Bochicchio et al. (2017) conducted a study using coarse-grained simulations of
polyethylene (PE), polystyrene (PS), and polypropylene (PP) with diameters around 7 nm
interacting with lipid membranes of POPC. All NPs quickly entered the membrane and
changed their behavior from solid to liquid at room temperature. Depending on the type of
NPs and on their degrees of polymerization, one can observe different situations:
polyethylene chains tend to aggregate when in a high polymerization degree, unlike the
other two NPs whose chains tend to separate from each other, as shown in Fig. 2.
An interesting topic of this work is the study of heterogeneous membrane systems
(those composed of ternary lipid mixture exhibiting liquid-ordered/liquid-disordered
phase separation). These membranes are formed by more than one type of lipid, so it is
possible to observe the dynamics of a more complex system. Once again, the result was
related to the type of polymer: the separation of the lipid phase is disadvantaged by PP,
while PS stabilizes the lipid phase, and PE modifies the boundary topology and causes
cholesterol depletion from the liquid-ordered phase. The authors emphasize the need
for further studies to better understand the toxicity of NPs that humans have come more
and more in contact with recently. This study follows up a previous one (Rossi, Barnoud &
Monticelli, 2014) which is simpler in the variety of compounds and deals with different

Figure 2 Typical distributions of the polymers inside pure POPC membranes (lipid:polymer mass
ratio of 6.6%). Two views of the membrane (only head beads, in orange) are shown for each
configuration: from the top and from the side. Left: long PP chains (in blue). Middle: short PE chains
(in gray). Right: long PE chains (in gray). Reproduced from Bochicchio et al. (2017) - License CC BY 4.0
(http://creativecommons.org/licenses/by/4.0/). Full-size DOI: 10.7717/peerj.13618/fig-2
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sizes of sets of polystyrene chains and a POPC membrane. Initially, they carried out an
extensive study of the coarse-grained force field and, only after good agreement with the
OPLS-UA force field, they performed the simulations with PS chains formed by 10,
20, and 100 monomers. In equilibrium, the set of shorter chains (with less than
100 monomers) were dispersed in the membrane, not aggregating, whereas the one
with 100 monomers preferred to be concentrated in the center of the membrane.
The results show that PS alters the properties of the membrane, significantly increasing its
compressibility modulus and decreasing its bending modulus, which indicates a structural
change in the membrane in addition to affecting its lateral organization.

In the wake of these last two investigations, a recent publication presented experimental
and molecular dynamics results, introducing small chains (with 25 styrene monomers) in
dipalmitoyl-phosphatidylcholine (DPPC) lipid bilayers (Bochicchio et al., 2022).
The authors carried out the equilibration for 50 ns of three systems composed of the
DPPC membrane and different mass ratios of PS. Because they use the OPLS-UA force
field (i.e., coarse grained-force field), it was possible to simulate up to 2 microseconds in
the production stage. The experimental and molecular dynamics results complement
each other and lead the authors to believe there is a critical concentration in partial
segregation of PS chains within the membrane. Similarly to Hollóczki & Gehrke (2020),
Bochicchio et al. (2022) showed changes in membrane thickness. The authors reported a
nonlinear increase in diffusion coefficients with the PS mass ratio (Bochicchio et al.,
2022). For the bending modulus values, the behavior was inverse in the presence of PS.
There was a substantial decrease in bending modulus compared to the total absence of PS.
The results confirm that the effects of NPs on human health cannot be underestimated,
and that concentration is a factor to be analyzed.

The last study to be covered by this section brings an exciting view of how treating water
with chlorine can affect the MPs to the point of increasing the toxicity of these MPs (Qin
et al., 2022). The authors conducted experiments, and, using MD in accordance to the
methodology of Bochicchio et al. (2022), they compared the system of pristine polystyrene
MPs and chlorinated pristine polystyrene MPs (with chlorine- and oxygen-containing
functional groups) in contact with bilayer membranes of phosphatidylcholine. Simulations
showed that MPs interact differently with membranes and the authors speculate that the
increased cell membrane permeability caused by chlorinated PS might be due to the
presence of C-Cl bonds. Consequently, the presence of chlorinated pristine polystyrene
MPs can cause even more damage at the cellular level (Qin et al., 2022).

All studies showed changes in lipid membranes when in contact with NPs or MPs.
Considering the biological functions of membranes, it is plausible to conclude that these
NPs/MPs somehow affect the cellular environment. All investigations suggested that
further investments in this field are needed for proper assessment and control of the
potential negative effects of NPs/MPs on environment and human health.

NANOPLASTICS AFFECTING THE FOLDING OF PROTEINS
Proteins play a substantial role in human health. They are critical for tissue growth and
maintenance (Yeung et al., 2017), and for various biochemical reactions when proteins
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take the form of enzymes, with functions such as digestion, blood clotting, energy
production, and muscle contraction (Hatzimanikatis et al., 2004). Equally important,
proteins can also act as hormones that are chemical messengers responsible by the
communication between cells, tissues, and organs (Nussey & Whitehead, 2001).
Additionally, they are responsible for regulating the pH of body fluids (Hamm, Nakhoul &
Hering-Smith, 2015), such as blood and stomach acid, and acting in the body’s defense
(Li et al., 2007). In recent years, studies that associate the presence of NPs in the human
body with changes in protein structures began to emerge. The molecular dynamics
methodology is currently used to understand the dimension of these changes and their
possible effects on human health. It is proven that NPs tend to interact with proteins to the
point of modifying their secondary structures, with the result being protein denaturation
(Hollóczki & Gehrke, 2019).

Hollóczki & Gehrke (2019) studied four types of NPs interacting with a series of
proteins, namely PE, PP, nylon-6,6, and polyethylene terephthalate (PET). They showed,
for instance, that the amino acids polarity is a relevant factor in their adsorption on NPs.
Non-polar amino acids such as phenylalanine and tryptophan tend to have such a high
interaction with NPs that basically all amino acids in solution adsorb to NPs. They can
form a micelle around NP, showing that the hydrophobicity of NPs can be masked by
proteins, affecting their solubility and ability to aggregate (Hollóczki & Gehrke, 2019).
It is interesting to highlight that the interaction between NPs and tryptophan zipper
induced no significant changes in its overall structure, regardless of the adsorption of
the peptide on the surface of the NP. However, the lack of structural rearrangement at the
end of the simulation does not mean that the NP does not affect the protein structure
because the time scale for this to happen could be greater than that available for the
simulation. Moreover, a a-helix composed of 12 alanine adsorbed on hydrophobic
surfaces of NP, and mainly for PE and PP, the nanoparticle rearranged to incorporate the
peptide, affecting the conformation of the protein, as shown in Fig. 3. Another relevant
point is that the results differ greatly depending on the NP, i.e., the problems caused by
exposure to NPs are different depending on their type. This was the first article that had

Figure 3 Three-dimensional structure of the helical peptide (composed of 12 alanine units) on
thesurface of a PE nanoparticle (yellow) from two views. Reproduced from Hollóczki & Gehrke
(2019) - License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/).

Full-size DOI: 10.7717/peerj.13618/fig-3
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Hollóczi, notably the author of the most publications regarding the study of NPs with
molecular simulations, published in said field.

Later, Hollóczki (2021) single-handedly published an article on the same topic.
The study used, in addition to MD, the quantum chemistry theory. In order to overcome
the limitations of MD regarding the time scale and the energetic barriers of the
restructuring of compounds as proteins, which were pointed out even in the previous work
(Hollóczki & Gehrke, 2019), Hollóczki (2021) discussed the use of simulated annealing
(SA) strategy. In this methodology, one runs a simulation with the system at high
temperatures allowing several conformations to be accessed, and then, the system is
gradually cooled to, ideally, the minimum free energy level. Hollóczki (2021) used this
methodology to find the best conformations for polyethylene and nylon-6,6, reaching the
conclusion that the temperature range for carrying out the SA must be approximately
between the condensation and freezing temperatures of the compound. This methodology
proved to be quite efficient in revealing important structural information. Peptides’
structures were, thus, optimized through quantum chemistry and then submitted to SA.
The next step was to run SA for the peptide-nanoplastic pair. About 150 simulations were
performed for each one of them. Further optimizations were performed using MD and
quantum chemistry at the end of the simulations, and then the adsorption, interaction, and
reorganization energies were defined and calculated. In this study, the two plastics
influenced the stability of the secondary structure of the simulated peptide, corroborating
previous results. The need for further studies to understand the consequences of these
changes is also highlighted.

In a more recent study, Li et al. (2021a) performed an experimental investigation
coupled with a simulation study of insulin fibrillation in the presence of nanoplastics and
various contaminants. They chose insulin to represent the protein, because it is a
model already widely used in the literature in the study of protein fibrillation and
conformational changes. The research aimed to examine whether common organic
contaminants (pyrene, bisphenol A (BPA), 2,2, 4,4-tetrabromodiphenyl ether (BDE47),
4,4-dihydroxydiphenylmethane (BPF), and 4-nonylphenol (4-NP)) enhance the abilities
of NPs to accelerate insulin fibrillation as well as carry out a molecular study of the
mechanism of action. By MD, the insulin, pyrene insulin and polystyrene insulin systems
were studied. Although one of the goals was to examine the three dynamics together,
the simulations were done in pairs. The presence of polystyrene had a more significant
effect on the conformational transition of insulin than that which was observed with the
presence of pyrene, which is consistent with the trends in the experimental results. It is
possible to conclude that van der Waals forces predominate in insulin binding with PS or
pyrene. These results complemented previous studies of the mechanism by which NPs
promote insulin fibrillation.

Another study involving NPs and proteins deal with the effect of using PEG spacer on
small peptides in a process commonly called PEGylation (Xue et al., 2011). This process is
used to stabilize, immobilize or modify biomolecule properties. The authors sought to
understand, at the molecular level, the structural effects caused on the peptides due to
the PEGylation. The peptides were simulated under three conditions: free in solution,
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attached to a PEG spacer, and attached to PEG spacer constrained to a two-dimensional
lattice to mimic the display of a peptide on the surface of a microsphere. The results
suggested that the no charged peptides in a PEGylation situation do not undergo a
noticeable conformational change. However, peptides with high charges, both negative
and positive, suffered conformational changes. These results show the need for specific
studies and significant investment in this research field. Since we were unable to find
additional reports focusing on this specific subject, it was not possible to compare results.
This fact alone justifies the relevance of more investment to further develop the field.
The mentioned study is presented here distinctly from the other works in this section due
to its author discussing a process in which peptides are artificially changed through a PEG
spacer while acting as a single unit, instead of examining the interaction between the
protein and the microplastics separately.

In general, the study of interactions between NPs and proteins shows that a single type
of nanoplastic cannot be used to understand the possible effects of contacting all types of
nanoplastics with proteins. More than one of these studies discussed that polarity is
fundamental in how NPs and proteins interact. It is also possible to conclude that this type
of study is necessary to indicate new research routes in the subject. Different pairs,
peptides, and NPs should be analyzed to understand the problem to a greater. The present
number of investigations in this area is still insufficient to provide a general dimension of
what must be approached.

SORPTION OF CONTAMINANTS ON NANOPLASTICS
Research has been conducted to investigate the effects of microplastic as a vector for
POP (persistent organic pollutants) contamination in the aquatic environment (Bhagat,
Nishimura & Shimada, 2021; Rodrigues et al., 2019; Koelmans et al., 2016). MPs and NPs
present physicochemical properties, such as surface area, shape, chemical composition,
functional groups, and surface charge, that promote their interactions with different
organic and inorganic pollutants in the environment (Zhang et al., 2020; González-Pleiter
et al., 2021; Bhagat, Nishimura & Shimada, 2021; Wright, Thompson & Galloway, 2013).
Although some studies emphasize that the ingestion of microplastic contaminated with
POP does not increase the risk for the marine animals when compared to the flux of
POPs bioaccumulated from natural prey (Koelmans et al., 2016), others have focused on
the potential harm of this combination, highlighting a possible existence of synergistic
effects between MPs and POPs (Bhagat, Nishimura & Shimada, 2021; Rodrigues et al.,
2019). However, it remains unclear whether this relationship actually exists under
environmentally relevant conditions. More studies are needed to determine the actual
capacity of NPs/MPs to transport associated pollutants that result in trophic transfer and
bioaccumulation in the food chain. Experimental studies should be more widely developed
based on actual conditions, mainly, concentration and nature of both MPs/NPs and
contaminants commonly found in aquatic environments, combined with ecotoxicity
assays with organisms of different trophic levels. While the experimental development
continues to grow, simulation studies help indicate the paths to follow. In this field, in
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terms of MPs, the most studied polymer types consist of PE, PP, PS, polyamide (PA), and
polyvinyl chloride (PVC) (Bakir, Rowland & Thompson, 2012; Fries et al., 2013).

Organochlorine pesticides (OCP), polychlorinated biphenyls (PCB), polybrominated
diphenyl ethers (PBDE), and PAH are some chemicals that can accumulate on MPs
(Bakir, Rowland & Thompson, 2012; Fries et al., 2013; Rodrigues et al., 2019). In addition,
MPs and NPs can release chemical monomers and additives with proven toxicity that
are incorporated into materials during their manufacture, such as plasticizers, flame
retardants, antimicrobial agents, and pigments (Fries et al., 2013). The sorption depends on
the system properties (e.g., temperature and pH) and the physical-chemical characteristics
of the polymer and the contaminant.

The main sorption mechanisms between chemical compounds and MPs/NPs are
hydrophobic interaction, electrostatic interaction, pore filling, van der Waals forces,
hydrogen bonding, and p−p interaction (Tourinho et al., 2019). Experimental
investigations can provide evidence of the most likely type and mechanism of interaction;
however, computer simulations are a valuable tool to predict and understand these
processes. Moreover, the simulations can guide the experimental assays to look to the
compounds with chemical characteristics that are harmful or interact more with a specific
polymer.

Guo, Liu & Wang (2019) analyzed the sorption of sulfamethazine on PE, PS, PP, PA,
PET, and PVC. To build the simulation box, only one polymer chain and one molecule of
sulfamethazine were added in the vacuum for each system. The number of monomers
varies from 100 to 300 depending on the polymer type. Besides, the simulation was
performed in NVT ensemble at 298 K for 500 ps. The results suggested a dominance of
electrostatic interactions in the sorption on PA, PS, PVC, and PP. In contrast, van der
Waals interactions were dominant in the sorption on PE and PET. The computed
adsorption energies decreased in the order PA > PET > PE > PVC > PS > PP.

Another antibiotic that was investigated was the tetracycline hydrochloride and its
derivatives (chlortetracycline hydrochloride and oxytetracycline hydrochloride) (Chen
et al., 2021). The simulation box consists of a PE chain with 300 monomers degree of
polymerization, and one antibiotic molecule. The simulation was performed in NVT
ensemble at 298 K. The interaction energy reveals that the adsorption capacity of
tetracycline hydrochloride on PE is the weakest, whereas the chlortetracycline
hydrochloride presents the highest adsorption capacity. Chen et al. (2021) also analyzed
the radial distribution functions, which indicated a preference for the non-bond
interaction between the carbon atoms of PE and the oxygens in the tetracycline molecules.

The adsorption of three pesticides (difenoconazole, buprofezin, and imidacloprid) on
the PE molecular chain with polymerization degree equal to 160 was also evaluated,
and interaction energies were found to be statistically the same among them (Li et al.,
2021b). Besides, the MD simulation used the Grand Canonical Monte Carlo method
without giving more details about the properties analyzed with this method (Li et al.,
2021b).

Regarding PAH, Yang et al. (2021) analyzed the sorption of pyrene, 1-methylpyrene,
1-hydroxypyrene, 1-aminopyrene, and 1-pyrenecarboxylic acid on PS with polymerization
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degree equal to 100, and found that said interaction had higher levels of energy when
compared to sulfamethazine (Guo, Liu &Wang, 2019); however, the values for pyrene and
its derivative were very close one another. Following the experimental evidence and the
computational results, the pore-filling and the hydrophobic and p−p interactions played
an essential role in these adsorptions (Yang et al., 2021).

The sorption of SrCl2 on PA, PS, and PP was also investigated, and the electrostatic
interactions were the dominant mechanism (Guo, Liu &Wang, 2020). The simulation box
was built following the methodology described by Guo, Liu & Wang (2019). For SrCl2, the
adsorption energies followed the order PP > PS > PA, smaller than NPs and organic
pollutants.

It is important to highlight that the simulations reported by Guo, Liu & Wang, 2019,
Guo, Liu & Wang (2020), Li et al. (2021b), Chen et al. (2021), and Yang et al. (2021)
were conducted in the absence of water, even if implicit. The simulation boxes were
composed of one polymer chain, one molecule of the pollutant and a vacuum layer.
Although this kind of simulation requires less computational time, the validation is
questionable when compared to experimental results in an aqueous medium, since the
simulations were conducted in a vacuum.

Cortés-Arriagada (2021) studied the co-transport of BPA with PET using density
functional theory (DFT) with B3LYP functional at def2-SVP basis sets. The solvent
was considered implicitly, i.e., a continuum medium characterized by the dielectric
constant. To obtain an initial configuration of the PET nanoplastic, MD was performed by
folding a single polymer chain described by AMBER force field using NVT ensemble,
followed by energy minimization steps. The final nanoPET model was optimized a
posteriori at the DFT level. Due to the nucleophilic nature of the outer surface of nanoPET
and the hydrophobic characteristic of BPA, mass transfer and intraparticle diffusion of the
pollutant into the nanoplastic were observed. An interplay between dispersion and
electrostatics intermolecular interactions occurred, with the former dominating the inner
surface adsorption, whereas the latter dominated the outer surface adsorption.

Feng et al. (2022) aimed to understand the process of aggregation of humic acid
molecules (HA) with the contaminant benzo[a]pyrene (BaP) and heavy metal ions (Cu2+)
in an aqueous solution, as well as the influence of PS, PP, PVC, PET, and PE in these
systems. Simulations with NP, HA, BaP, and Cu2 + show a competition between HA and
BaP to adsorb on NP. When HA wins the competition and adsorbs on NP, it exposes
carboxyl groups that offer interesting binding sites for Cu2 + adsorption. The results
indicate that PS has the highest capacity of adsorbing BaPs. The motivation to study this
system comes from the fact that environmental factors (such as dissolved organic matter -
in the article represented by HA) can influence the interactions of NPs and contaminants.
Hence the necessity to consider these factors in more detailed studies.

There are infinite combinations of pollutants and NPs that humans can contact, and
each one can result in different consequences. However, the more studies in this field,
the more it is possible to extrapolate behavioral trends. Thus, the investment of resources
in this area becomes essential.
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STUDIES THAT USED MOLECULAR SIMULATION AND DO
NOT FIT INTO THE ABOVE SECTIONS
Although most MP/NP studies via molecular simulation can be fitted into the sections
above, some address more specific issues. Zhang, Zhao & Na (2020) conducted combined
research with molecular dynamics, ratio normalization, and molecular docking methods to
understand biodegradation of phthalic acid esters (PAE) derivatives in marine and
fresh-water environments. PAE are commonly present in plastics and confers their
characteristics of malleability and plasticity; thus, they were chosen to serve as a model for
the study of the biodegradability of plastics in marine environments. As we have already
discussed, marine environment ends up being the final destination for tons of plastics
every year, which is why the study is so important. As a result, five PAE derivatives were
designed with excellent biodegradability as a goal, as well as functionality in mind.

Following the same train of thought, molecular dynamics and molecular docking
appeared in Lameh, Baseer & Ashiru (2022) study about mutating existing enzymes to
facilitate the biodegradation of PET and PP. The authors modified certain amino acids
of the enzyme Archaeoglobus fulgidus (AFEST) and compared the changes in binding
energy with plastics. They claimed that modifying an existing enzyme is the best approach,
from the biotechnology viewpoint, to solve our plastic waste problem.

Moreover, Wang et al. (2019b) shared some exciting findings using molecular
mechanics Poisson-Boltzmann surface area method and molecular dynamics simulations.
Through prior knowledge that the hydrolase enzyme RPA1511 (obtainable from
Rhodopseudomonas palustris bacterium) can efficiently depolymerize polylactic acid (PLA)
plastic, they sought to understand which amino acids are responsible for this action.
The binding affinity data showed that the RPA1511 could also degrade other polyester
plastics. These results open doors for the study of more biodegradable plastics.

Another interesting research was that of Ramalho, Dordio & Carvalho (2022). They
carried out extensive molecular dynamic simulations of PE, nylon 6 and PET in an
aqueous environment to achieve compression, mainly from their conformational behavior,
of polymer chains after exposure to water. Over 200 ns of simulation, the three plastics had
different responses, and, in the end, their chains equilibrated in the following ways:
compacted and ordered, almost like a crystal, for PE, globular chains for nylon 6, and, for
PET, tangled chains with the aromatic rings preferably oriented in parallel. Understanding
how these plastics organize themselves when they are in such small particle form
demonstrates how other contaminants can adsorb onto their surfaces and cause even more
damage.

Since the presence of NPs in water is a reality, and, with research showing their
potentially harmful effects, a line of study arises naturally: the search for methodologies for
the removal of NPs from aqueous environments. Sarcletti et al. (2021) came up with
the idea of removing NPs from water by applying an external magnetic field. They
developed superparamagnetic iron oxide nanoparticles (SPION) that attract NP; they
worked with both structural analysis, and molecular dynamics which supported the
experimental results.
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As far as we could track, the work by Dettmann, Kühn & Ahmed (2021) is the only one
that applied MD to NPs found in soils. The authors used carbon nanotubes (with and
without functional grouping) as a model for hydrophobic cavities and surfaces to represent
an existing structure in organic soil particles. They carried out up to 500 ns of
coarse-grained molecular dynamics simulations of hydrophilic and hydrophobic NP,
carbon nanotubes, and water. NPs behave as expected concerning the hydrophobic carbon
nanotubes according to their hydrophobicity. Regardless, the study stand out for being the
first step in understanding processes in environments such as soils.

The work by Li et al. (2021c) about the impact of NP inhalation on the lungs is
extremely interesting and pertinent. They investigated five types of NPs varying their sizes,
surface charges, and molecular weights, and exposed them to interaction with lung
surfactant (LS) film, both in the alveolar fluid and at the air-water interface. The authors
pointed out that although the study does not yet represent an authentic environment in
its complexity, the type of NP, its size, surface charge, and molecular weight were
factors that modified the results in the interaction with LS. A study along the same lines
(except that, rather than the concern about inhaling MPs and NPs, it deals with impacts on
the human intestinal tract) is that of Tan et al. (2020), which shows results on how five
different types of MPs reduce lipid digestion when ingested with food. This work presents
molecular dynamics and experimental results, with the former corroborating the latter’s
findings and going further in understanding interactions between NPs and lipids.
The authors conclude that the interaction between lipid droplets and MP is expected to
play an influential role in reducing lipid digestion.

Although we initially sectioned this review to manage the study in a more organized
way, several other kinds of research were found that do not fit into any of our sections.
We can highlight the studies that follow the line of seeking alternatives for removing
NPs and MPs from the environment with which humans come into contact, mainly water.
It is clear there are numerous ways to approach the problem of NPs and MPs.

CONCLUSIONS
The present literature review focus on molecular simulation methodologies to study MPs
and NPs interactions with proteins, biological membranes, and other contaminants, the
force fields used, and the main findings.

Most scientific publications are very recent, which strongly indicates that the subject
is growing in importance. That is mainly because MPs/NPs released in very high quantities
by human activities end up, mostly, in aquatic and marine environments. However, the
interactions with and potential impacts on living organisms are largely unknown.
All studies regarding the consequences of human contact with MPs/NPs have been
hypothetical, while showing that MPs/NPs interact with their surroundings,
fundamentally modifying their characteristics.

The MD simulation was the most used model out of the methodologies applied,
and, based on the results, it fulfilled its objective in showing the interactions at the
molecular level. An obstacle, however, is the level of simplification that is necessary during
simulation, since natural systems, given their concrete complexities are still outside the
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reality of investigations on a molecular level. Despite this, simulations can help a great deal
to understand experimental data. The use of both experimental and computational
approaches is in many scientific reports, and, in their conclusions, the authors have
pointed out that they complement each other. As this is a fairly new field of study, there is
no good methodology protocol to date on how to simulate NPs. Therefore, the steps in the
methodological approaches vary considerably from study to study. Among these
differences, one can highlight the simulation time, the force fields applied, the presence or
absence of water models, and how the polymer chains are built to be considered NP
particles. It is necessary to discuss the validity of certain practices within the molecular
simulation to create a more mature protocol based on the information accumulated.
In addition to MD, another promising option is the MC methodology. Although many
publications presented equilibrium properties that can be accessed through both MC and
MD, only one investigation reported the use of MC methodology. Due to how the system
reaches equilibrium, MC could be an alternative to achieve simulations with shorter
computational times. Between the results obtained, it is interesting to highlight that the
interactions between all NPs and the environment cannot be understood through a single
nanoplastic model. Depending on the NP type, the interactions, whether with proteins,
lipids, or contaminants, are expected to differ significantly. Thus, each NP may cause a
different impact when in contact with humans and other living organisms, which makes
further studies even more pressing.

In future perspectives, it would be also interesting to investigate the effect of NPs in
DNA and RNA, and to include the effects of plastic additives on the molecular interactions
of MPs and NPs with contaminants and biomolecules.

ACKNOWLEDGEMENTS
We are grateful for the computational resources provided by the São Paulo National
Center for High Performance Processing (CENAPAD-SP).

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Carlos Chagas Filho Research Support Foundation
(N�010.002523/2019, N�010.002251/2019, and N�SEI-260003/015556/2021), the National
Council for Scientific and Technological Development (N�435883/2018-6), and the
Coordination of Improvement of Higher Education Personnel. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Carlos Chagas Filho Research Support Foundation: N�010.002523/2019,
N�010.002251/2019, and N�SEI-260003/015556/2021.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 17/24

http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


National Council for Scientific and Technological Development: N�435883/2018-6.
Coordination of Improvement of Higher Education Personnel.

Author Contributions
� Yamara Matos Oliveira conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

� Nathalia Salles Vernin conceived and designed the experiments, performed the
experiments, analyzed the data, authored or reviewed drafts of the article, and approved
the final draft.

� Daniele Maia Bila conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the article, and approved the final draft.

� Marcia Marques conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.

� Frederico Tavares conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

This is a literature review.

REFERENCES
Alimi OS, Farner Budarz J, Hernandez LM, Tufenkji N. 2018.Microplastics and nanoplastics in

aquatic environments: aggregation, deposition, and enhanced contaminant transport.
Environmental Science and Technology 52(4):1704–1724 DOI 10.1021/acs.est.7b05559.

Allouche A-R. 2011. Software news and updates gabedit–a graphical user interface for
computational chemistry softwares. Journal of Computational Chemistry 32(1):174–182
DOI 10.1002/jcc.21600.

Almeida CMR, Manjate E, Ramos S. 2020. Adsorption of Cd and Cu to different types of
microplastics in estuarine salt marsh medium. Marine Pollution Bulletin 151:110797
DOI 10.1016/j.marpolbul.2019.110797.

Bakir A, Rowland SJ, Thompson RC. 2012. Competitive sorption of persistent organic pollutants
onto microplastics in the marine environment. Marine Pollution Bulletin 64(12):2782–2789
DOI 10.1016/j.marpolbul.2012.09.010.

Berendsen HJC, Grigera JR, Straatsma TP. 1987. The missing term in effective pair potentials.
The Journal of Physical Chemistry 91(24):6269–6271 DOI 10.1021/j100308a038.

Bhagat J, Nishimura N, Shimada Y. 2021. Toxicological interactions of microplastics/nanoplastics
and environmental contaminants: current knowledge and future perspectives. Journal of
Hazardous Materials 405:123913 DOI 10.1016/j.jhazmat.2020.123913.

BIOVIA Dassault Systèmes. 2021. Biovia materials studio. Available at https://www.3ds.com/
products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/.

Bochicchio D, Cantu L, Cadario MV, Palchetti L, Natali F, Monticelli L, Rossi G, Favero ED.
2022. Polystyrene perturbs the structure, dynamics, and mechanical properties of DPPC
membranes: an experimental and computational study. Journal of Colloid and Interface Science
605(6496):110–119 DOI 10.1016/j.jcis.2021.07.069.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 18/24

http://dx.doi.org/10.1021/acs.est.7b05559
http://dx.doi.org/10.1002/jcc.21600
http://dx.doi.org/10.1016/j.marpolbul.2019.110797
http://dx.doi.org/10.1016/j.marpolbul.2012.09.010
http://dx.doi.org/10.1021/j100308a038
http://dx.doi.org/10.1016/j.jhazmat.2020.123913
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-materials-studio/
http://dx.doi.org/10.1016/j.jcis.2021.07.069
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


Bochicchio D, Panizon E, Monticelli L, Rossi G. 2017. Interaction of hydrophobic polymers with
model lipid bilayers. Scientific Reports 7(1):1–9 DOI 10.1038/s41598-017-06668-0.

Bogdanov M, Dowhan W. 2021. Chapter 1 - functional roles of lipids in biological membranes.
In: Ridgway ND, McLeod RS, eds. Biochemistry of Lipids, Lipoproteins and Membranes. Seventh
Edition. Amsterdam: Elsevier, 1–51.

Braun E, Gilmer J, Mayes HB, Mobley DL, Monroe JI, Prasad S, Zuckerman DM. 2019. Best
practices for foundations in molecular simulations [article v1.0]. Living Journal of
Computational Molecular Science 1(1):5957 DOI 10.33011/livecoms.1.1.5957.

Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,
Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J,
Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW,
Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W,
York DM, Karplus M. 2009. CHARMM: the biomolecular simulation program. Journal of
Computational Chemistry 30(10):1545–1614 DOI 10.1002/jcc.21287.

Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C,
Wang B, Woods RJ. 2005. The Amber biomolecular simulation programs. Journal of
Computational Chemistry 26:1668–1688 DOI 10.1002/(ISSN)1096-987X.

Chen Y, Li J, Wang F, Yang H, Liu L. 2021. Adsorption of tetracyclines onto polyethylene
microplastics: a combined study of experiment and molecular dynamics simulation.
Chemosphere 265:129133 DOI 10.1016/j.chemosphere.2020.129133.

Collard F, Das K, Gilbert B, Eppe G, Parmentier E. 2017. Microplastics contamination in three
planktivorous and commercial fish species. Amsterdam: Elsevier Inc.

Cortés-Arriagada D. 2021. Elucidating the co-transport of bisphenol A with polyethylene
terephthalate (PET) nanoplastics: a theoretical study of the adsorption mechanism.
Environmental Pollution 270:116192 DOI 10.1016/j.envpol.2020.116192.

Dettmann LF, Kühn O, Ahmed AA. 2021. Coarse-grained molecular dynamics simulations of
nanoplastics interacting with a hydrophobic environment in aqueous solution. RSC Advances
11(44):27734–27744 DOI 10.1039/D1RA04439G.

Dias C, Nylandsted J. 2021. Cell discovery plasma membrane integrity in health and disease:
significance and therapeutic potential. Dias and Nylandsted Cell Discovery 7(1):4
DOI 10.1038/s41421-020-00233-2.

Domenech J, de Britto M, Velázquez A, Pastor S, Hernández A, Marcos R, Cortés C. 2021.
Long-term effects of polystyrene nanoplastics in human intestinal caco-2 cells. Biomolecules
11(10):1442 DOI 10.3390/biom11101442.

Feng H, Liu Y, Xu Y, Li S, Liu X, Dai Y, Zhao J, Yue T. 2022. Benzopyrene and heavy metal ion
adsorption on nanoplastics regulated by humic acid: cooperation/competition mechanisms
revealed by molecular dynamics simulations. Journal of Hazardous Materials 424:127431
DOI 10.1016/j.jhazmat.2021.127431.

Frenkel D, Smit B. 2001. Understanding molecular simulation: from algorithms to applications.
Vol. 1. Second Edition. New York: Elsevier. Academic Press.

Fries E, Dekiff JH, Willmeyer J, Nuelle MT, Ebert M, Remy D. 2013. Identification of polymer
types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning
electron microscopy. Environmental Sciences: Processes and Impacts 15:1949–1956
DOI 10.1039/C3EM00214D.

Fábián B, Darvas M, Picaud S, Sega M, Jedlovszky P. 2015. The effect of anaesthetics on the
properties of alipid membrane in the biologically relevant phase: a computer simulation study.
Physical Chemistry Chemical Physics 17(22):14750–14760 DOI 10.1039/C5CP00851D.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 19/24

http://dx.doi.org/10.1038/s41598-017-06668-0
http://dx.doi.org/10.33011/livecoms.1.1.5957
http://dx.doi.org/10.1002/jcc.21287
http://dx.doi.org/10.1002/(ISSN)1096-987X
http://dx.doi.org/10.1016/j.chemosphere.2020.129133
http://dx.doi.org/10.1016/j.envpol.2020.116192
http://dx.doi.org/10.1039/D1RA04439G
http://dx.doi.org/10.1038/s41421-020-00233-2
http://dx.doi.org/10.3390/biom11101442
http://dx.doi.org/10.1016/j.jhazmat.2021.127431
http://dx.doi.org/10.1039/C3EM00214D
http://dx.doi.org/10.1039/C5CP00851D
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


González-Pleiter M, Pedrouzo-Rodríguez A, Verdú I, Leganés F, Marco E, Rosal R,
Fernández-Piñas F. 2021. Microplastics as vectors of the antibiotics azithromycin and
clarithromycin: effects towards freshwater microalgae. Chemosphere 268(7):128824
DOI 10.1016/j.chemosphere.2020.128824.

Gopinath PM, Saranya V, Vijayakumar S, Meera MM, Ruprekha S, Kunal R, Pranay A,
Thomas J, Mukherjee A, Chandrasekaran N. 2019. Assessment on interactive prospectives of
nanoplastics with plasma proteins and the toxicological impacts of virgin, coronated and
environmentally released-nanoplastics. Scientific Reports 9:8860
DOI 10.1038/s41598-019-45139-6.

Guo X, Liu Y, Wang J. 2019. Sorption of sulfamethazine onto different types of microplastics: a
combined experimental and molecular dynamics simulation study. Marine Pollution Bulletin
145:547–554 DOI 10.1016/j.marpolbul.2019.06.063.

Guo X, Liu Y, Wang J. 2020. Equilibrium, kinetics and molecular dynamic modeling of Sr2+

sorption onto microplastics. Journal of Hazardous Materials 400:123324
DOI 10.1016/j.jhazmat.2020.123324.

Hamm LL, Nakhoul N, Hering-Smith KS. 2015. Acid-base homeostasis. Clinical Journal of the
American Society of Nephrology 10:2232–2242 DOI 10.2215/CJN.07400715.

Hatzimanikatis V, Li C, Ionita JA, Broadbelt LJ. 2004.Metabolic networks: enzyme function and
metabolite structure. Current Opinion in Structural Biology 14:300–306
DOI 10.1016/j.sbi.2004.04.004.

Hollóczki O. 2021. Evidence for protein misfolding in the presence of nanoplastics. International
Journal of Quantum Chemistry 121:e26372 DOI 10.1002/qua.26372.

Hollóczki O, Gehrke S. 2019. Nanoplastics can change the secondary structure of proteins.
Scientific Reports 9(1):16013 DOI 10.1038/s41598-019-52495-w.

Hollóczki O, Gehrke S. 2020. Can nanoplastics alter cell membranes? ChemPhysChem 21(1):9–12
DOI 10.1002/cphc.201900481.

Hüffer T, Praetorius A, Wagner S, Von Der Kammer F, Hofmann T. 2017. Microplastic
exposure assessment in aquatic environments: learning from similarities and differences to
engineered nanoparticles. Environmental Science and Technology 51(5):2499–2507
DOI 10.1021/acs.est.6b04054.

Jorgensen WL, Maxwell DS, Tirado-Rives J. 1996. Development and testing of the OPLS
All-Atom force field on conformational energetics and properties of organic liquids. Journal of
the American Chemical Society 118(45):11225–11236 DOI 10.1021/ja9621760.

Jorgensen WL, Tirado-Rives J. 1988. The OPLS (optimized potentials for liquid simulations)
potential functions for proteins, energy minimizations for crystals of cyclic peptides and
crambin. Journal of the American Chemical Society 110(6):1657–1666
DOI 10.1021/ja00214a001.

Koelmans AA, Bakir A, Burton GA, Janssen CR. 2016. Microplastic as a vector for chemicals in
the aquatic environment: critical review and model-supported reinterpretation of empirical
studies. Environmental Science & Technology 50(7):3315–3326 DOI 10.1021/acs.est.5b06069.

Lameh F, Baseer AQ, Ashiru AG. 2022. Comparative molecular docking and molecular-dynamic
simulation of wild-type- and mutant carboxylesterase with BTA-hydrolase for enhanced binding
to plastic. Engineering in Life Sciences 22(1):13–29 DOI 10.1002/elsc.202100083.

Lee WS, Cho HJ, Kim E, Huh YH, Kim HJ, Kim B, Kang T, Lee JS, Jeong J. 2019.
Bioaccumulation of polystyrene nanoplastics and their effect on the toxicity of Au ions in
zebrafish embryos. Nanoscale 11:3200–3207 DOI 10.1039/C8NR09321K.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 20/24

http://dx.doi.org/10.1016/j.chemosphere.2020.128824
http://dx.doi.org/10.1038/s41598-019-45139-6
http://dx.doi.org/10.1016/j.marpolbul.2019.06.063
http://dx.doi.org/10.1016/j.jhazmat.2020.123324
http://dx.doi.org/10.2215/CJN.07400715
http://dx.doi.org/10.1016/j.sbi.2004.04.004
http://dx.doi.org/10.1002/qua.26372
http://dx.doi.org/10.1038/s41598-019-52495-w
http://dx.doi.org/10.1002/cphc.201900481
http://dx.doi.org/10.1021/acs.est.6b04054
http://dx.doi.org/10.1021/ja9621760
http://dx.doi.org/10.1021/ja00214a001
http://dx.doi.org/10.1021/acs.est.5b06069
http://dx.doi.org/10.1002/elsc.202100083
http://dx.doi.org/10.1039/C8NR09321K
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


Lehner R, Weder C, Petri-Fink A, Rothen-Rutishauser B. 2019. Emergence of nanoplastic in the
environment and possible impact on human health. Environmental Science and Technology
53(4):1748–1765 DOI 10.1021/acs.est.8b05512.

Li C, Ma Y, Liu X, Huang R, Su R, Qi W, Che J, He Z. 2021a. Synergistic effect of polystyrene
nanoplastics and contaminants on the promotion of insulin fibrillation. Ecotoxicology and
Environmental Safety 214(1):112115 DOI 10.1016/j.ecoenv.2021.112115.

Li H, Wang F, Li J, Deng S, Zhang S. 2021b. Adsorption of three pesticides on polyethylene
microplastics in aqueous solutions: kinetics, isotherms, thermodynamics, and molecular
dynamics simulation. Chemosphere 264(5):128556 DOI 10.1016/j.chemosphere.2020.128556.

Li L, Xu Y, Li S, Zhang X, Feng H, Dai Y, Zhao J, Yue T. 2021c. Molecular modeling of
nanoplastic transformations in alveolar fluid and impacts on the lung surfactant film. Journal of
Hazardous Materials 427:127872 in press DOI 10.1016/j.jhazmat.2021.127872.

Li Z, Yi X, Zhou H, Chi T, Li W, Yang K. 2020. Combined effect of polystyrene microplastics and
dibutyl phthalate on the microalgae Chlorella pyrenoidosa. Environmental Pollution 257:113604
DOI 10.1016/j.envpol.2019.113604.

Li P, Yin Y-L, Li D, Kim SW, Wu G. 2007. Amino acids and immune function. British Journal of
Nutrition 98(2):237–252 DOI 10.1017/S000711450769936X.

Li J, Zhang K, Zhang H. 2018. Adsorption of antibiotics on microplastics. Environmental Pollution
237:460–467 DOI 10.1016/j.envpol.2018.02.050.

Lindahl, Abraham, Hess, van der Spoel. 2021. GROMACS 2021.4 manual. Zenodo
DOI 10.5281/zenodo.5636522.

MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J,
Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S,
Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R,
Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M. 1998. All-atom empirical
potential for molecular modeling and dynamics studies of proteins. The Journal of Physical
Chemistry B 102(18):3586–3616 DOI 10.1021/jp973084f.

Malde AK, Zuo L, Breeze M, Stroet M, Poger D, Nair PC, Oostenbrink C, Mark AE. 2011. An
automated force field topology builder (ATB) and repository: version 1.0. Journal of Chemical
Theory and Computation 7(12):4026–4037 DOI 10.1021/ct200196m.

Marrink SJ, Risselada HJ, Yefimov S, Peter D, Vries AHD. 2007. The MARTINI force field:
coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B
111(27):7812–7824 DOI 10.1021/jp071097f.

Martin GM, Siepmann JI. 1998. Transferable potentials for phase equilibria. 1. United-atom
description of n-alkanes. The Journal of Physical Chemistry B 102:2569–2577
DOI 10.1021/jp972543+.

Nelson DL, Cox MM. 2021. Lehninger: principles of biochemistry. Eighth Edition. New York: W. H.
Freeman and Company.

Nobre CR, Moreno BB, Alves AV, de Lima Rosa J, da Rosa Franco H, de Souza Abessa DM,
Maranho LA, Choueri RB, Gusso-Choueri PK, Pereira CDS. 2020. Effects of microplastics
associated with triclosan on the oyster crassostrea brasiliana: an integrated biomarker approach.
Archives of Environmental Contamination and Toxicology 79(1):101–110
DOI 10.1007/s00244-020-00729-8.

Nussey S, Whitehead S. 2001. Endocrinology: an integrated approach. Oxford: BIOS Scientific
Publishers.

Okubo N, Takahashi S, Nakano Y. 2018. Microplastics disturb the anthozoan-algae symbiotic
relationship. Marine Pollution Bulletin 135:83–89 DOI 10.1016/j.marpolbul.2018.07.016.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 21/24

http://dx.doi.org/10.1021/acs.est.8b05512
http://dx.doi.org/10.1016/j.ecoenv.2021.112115
http://dx.doi.org/10.1016/j.chemosphere.2020.128556
http://dx.doi.org/10.1016/j.jhazmat.2021.127872
http://dx.doi.org/10.1016/j.envpol.2019.113604
http://dx.doi.org/10.1017/S000711450769936X
http://dx.doi.org/10.1016/j.envpol.2018.02.050
http://dx.doi.org/10.5281/zenodo.5636522
http://dx.doi.org/10.1021/jp973084f
http://dx.doi.org/10.1021/ct200196m
http://dx.doi.org/10.1021/jp071097f
http://dx.doi.org/10.1021/jp972543+
http://dx.doi.org/10.1007/s00244-020-00729-8
http://dx.doi.org/10.1016/j.marpolbul.2018.07.016
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


Okubo N, Tamura-Nakano M, Watanabe T. 2020. Experimental observation of microplastics
invading the endoderm of anthozoan polyps. Marine Environmental Research 162:105125
DOI 10.1016/j.marenvres.2020.105125.

Panizon E, Bochicchio D, Monticelli L, Rossi G. 2015. MARTINI coarse-grained models of
polyethylene and polypropylene. The Journal of Physical Chemistry B 119(25):8209–8216
DOI 10.1021/acs.jpcb.5b03611.

Peng Y, Wu P, Schartup AT, Zhang Y. 2021. Plastic waste release caused by COVID-19 and its
fate in the global ocean. Proceedings of the National Academy of Sciences of the United States of
America 118(47):e2111530118 DOI 10.1073/pnas.2111530118.

Phelps Bondaroff T, Cooke S. 2020. Masks on the beach: the impact of COVID-19 on marine
plastic pollution. Technical report, OceansAsia.

Pittura L, Avio CG, Giuliani ME, d’Errico G, Keiter SH, Cormier B, Gorbi S, Regoli F. 2018.
Microplastics as vehicles of environmental pahs to marine organisms: combined chemical and
physical hazards to the mediterranean mussels, mytilus galloprovincialis. Frontiers in Marine
Science 5:103 DOI 10.3389/fmars.2018.00103.

Plastics Europe. 2020. Plastics— the facts 2020. Available at https://plasticseurope.org/wp-content/
uploads/2021/09/Plastics_the_facts-WEB-2020_versionJun21_final.pdf.

Plimpton S. 1995. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics 117(1):1–19 DOI 10.1006/jcph.1995.1039.

Ponder JW, Case DA. 2003. Force fields for protein simulations. Advances in Protein Chemistry
66:27–85 DOI 10.1016/S0065-3233(03)66002-X.

Qiao R, Lu K, Deng Y, Ren H, Zhang Y. 2019. Combined effects of polystyrene microplastics and
natural organic matter on the accumulation and toxicity of copper in zebrafish. Science of the
Total Environment 682(8):128–137 DOI 10.1016/j.scitotenv.2019.05.163.

Qin J, Xia P-F, Yuan X-Z, Wang S-G. 2022. Chlorine disinfection elevates the toxicity of
polystyrene microplastics to human cells by inducing mitochondria-dependent apoptosis.
Journal of Hazardous Materials 425(2):127842 DOI 10.1016/j.jhazmat.2021.127842.

Ramalho JP, Dordio AV, Carvalho AJ. 2022. The fate of three common plastic nanoparticles in
water: a molecular dynamics study. Journal of Molecular Structure 1249:131520
DOI 10.1016/j.molstruc.2021.131520.

Reichert J, Schellenberg J, Schubert P, Wilke T. 2018. Responses of reef building corals to
microplastic exposure. Environmental Pollution 237:955–960
DOI 10.1016/j.envpol.2017.11.006.

Rodrigues JP, Duarte AC, Santos-Echeandía J, Rocha-Santos T. 2019. Significance of
interactions between microplastics and POPs in the marine environment: a critical overview.
TrAC - Trends in Analytical Chemistry 111:252–260 DOI 10.1016/j.trac.2018.11.038.

Rossi G, Barnoud J, Monticelli L. 2014. Polystyrene nanoparticles perturb lipid membranes. The
Journal of Physical Chemistry Letters 5(1):241–246 DOI 10.1021/jz402234c.

Rossi G, Monticelli L. 2014.Modeling the effect of nano-sized polymer particles on the properties
of lipid membranes. Journal of Physics Condensed Matter 26(50):503101
DOI 10.1088/0953-8984/26/50/503101.

Sarcletti M, Park H, Wirth J, Englisch S, Eigen A, Drobek D, Vivod D, Friedrich B,
Tietze R, Alexiou C, Zahn D, Zubiri BA, Spiecker E, Halik M. 2021. The remediation of
nano-/microplastics from water. Materials Today 48:38–46 DOI 10.1016/j.mattod.2021.02.020.

Scott WRP, Hu PH, Tironi IG, Mark AE, Billeter SR, Fennen J, Torda AE, Huber T, Kru P,
Gunsteren WFV. 1999. The GROMOS biomolecular simulation program package. The Journal
of Physical Chemistry A 103(19):3596–3607 DOI 10.1021/jp984217f.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 22/24

http://dx.doi.org/10.1016/j.marenvres.2020.105125
http://dx.doi.org/10.1021/acs.jpcb.5b03611
http://dx.doi.org/10.1073/pnas.2111530118
http://dx.doi.org/10.3389/fmars.2018.00103
https://plasticseurope.org/wp-content/uploads/2021/09/Plastics_the_facts-WEB-2020_versionJun21_final.pdf
https://plasticseurope.org/wp-content/uploads/2021/09/Plastics_the_facts-WEB-2020_versionJun21_final.pdf
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1016/S0065-3233(03)66002-X
http://dx.doi.org/10.1016/j.scitotenv.2019.05.163
http://dx.doi.org/10.1016/j.jhazmat.2021.127842
http://dx.doi.org/10.1016/j.molstruc.2021.131520
http://dx.doi.org/10.1016/j.envpol.2017.11.006
http://dx.doi.org/10.1016/j.trac.2018.11.038
http://dx.doi.org/10.1021/jz402234c
http://dx.doi.org/10.1088/0953-8984/26/50/503101
http://dx.doi.org/10.1016/j.mattod.2021.02.020
http://dx.doi.org/10.1021/jp984217f
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


Sun H. 1998. COMPASS: an ab initio force-field optimized for condensed-phase
applicationssoverview with details on alkane and benzene compounds. The Journal of Physical
Chemistry B 102(38):7338–7364 DOI 10.1021/jp980939v.

Sørensen L, Rogers E, Altin D, Salaberria I, Booth AM. 2020. Sorption of PAHs to microplastic
and their bioavailability and toxicity to marine copepods under co-exposure conditions.
Environmental Pollution 258:113844 DOI 10.1016/j.envpol.2019.113844.

Tan X, Yu X, Cai L, Wang J, Peng J. 2019. Microplastics and associated PAHs in surface water
from the Feilaixia Reservoir in the Beijiang River, China. Chemosphere 221(8):834–840
DOI 10.1016/j.chemosphere.2019.01.022.

Tan H, Yue T, Xu Y, Zhao J, Xing B. 2020. Microplastics reduce lipid digestion in simulated
human gastrointestinal system. Environmental Science & Technology 54(19):12285–12294
DOI 10.1021/acs.est.0c02608.

TohW, Ang EY, Ng TY, Lin R, Liu Z. 2020. An investigation on the effects of nanoplastic particles
on nanoporous graphene membrane desalination. Desalination 496:114765
DOI 10.1016/j.desal.2020.114765.

Tourinho PS, Kočí V, Loureiro S, van Gestel CA. 2019. Partitioning of chemical contaminants to
microplastics: sorption mechanisms, environmental distribution and effects on toxicity and
bioaccumulation. Environmental Pollution 252:1246–1256 DOI 10.1016/j.envpol.2019.06.030.

Toussaint B, Raffael B, Angers-Loustau A, Gilliland D, Kestens V, Petrillo M,
Rio-Echevarria IM, Van den Eede G. 2019. Review of micro- and nanoplastic contamination in
the food chain. Food Additives and Contaminants - Part A Chemistry, Analysis, Control,
Exposure and Risk Assessment 36(5):639–673 DOI 10.1080/19440049.2019.1583381.

Tuckerman ME. 2010. Statistical mechanics: theory and molecular simulations. One Edition.
New York: Oxford University Press.

Wang X, Chen J, Tang X, Wang J, Zhu L, Zhang W, Wang H, Li Y, Zhang Q. 2019b.
Biodegradation mechanism of polyesters by hydrolase from Rhodopseudomonas palustris: an in
silico approach. Chemosphere 231:126–133 DOI 10.1016/j.chemosphere.2019.05.112.

Wang J, Liu X, Liu G, Zhang Z, Wu H, Cui B, Bai J, Zhang W. 2019a. Size effect of polystyrene
microplastics on sorption of phenanthrene and nitrobenzene. Ecotoxicology and Environmental
Safety 173:331–338 DOI 10.1016/j.ecoenv.2019.02.037.

WangW, Wang J. 2018. Different partition of polycyclic aromatic hydrocarbon on environmental
particulates in freshwater: microplastics in comparison to natural sediment. Ecotoxicology and
Environmental Safety 147:648–655 DOI 10.1016/j.ecoenv.2017.09.029.

Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA. 2004. Development and testing of a
general amber force field. Journal of Computational Chemistry 25:1157–1174
DOI 10.1002/(ISSN)1096-987X.

Watson H. 2015. Biological membranes. Essays in Biochemistry 59:43–69
DOI 10.1042/bse0590043.

Wright SL, Kelly FJ. 2017. Plastic and human health: a micro issue? Environmental Science and
Technology 51(12):6634–6647 DOI 10.1021/acs.est.7b00423.

Wright SL, Thompson RC, Galloway TS. 2013. The physical impacts of microplastics on marine
organisms: a review. Environmental Pollution 178(8):483–492
DOI 10.1016/j.envpol.2013.02.031.

Xue Y, O’Mara ML, Surawski PP, Trau M, Mark AE. 2011. Effect of poly(ethylene glycol) (PEG)
spacers on the conformational properties of small peptides: a molecular dynamics study.
Langmuir 27(1):296–303 DOI 10.1021/la103800h.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 23/24

http://dx.doi.org/10.1021/jp980939v
http://dx.doi.org/10.1016/j.envpol.2019.113844
http://dx.doi.org/10.1016/j.chemosphere.2019.01.022
http://dx.doi.org/10.1021/acs.est.0c02608
http://dx.doi.org/10.1016/j.desal.2020.114765
http://dx.doi.org/10.1016/j.envpol.2019.06.030
http://dx.doi.org/10.1080/19440049.2019.1583381
http://dx.doi.org/10.1016/j.chemosphere.2019.05.112
http://dx.doi.org/10.1016/j.ecoenv.2019.02.037
http://dx.doi.org/10.1016/j.ecoenv.2017.09.029
http://dx.doi.org/10.1002/(ISSN)1096-987X
http://dx.doi.org/10.1042/bse0590043
http://dx.doi.org/10.1021/acs.est.7b00423
http://dx.doi.org/10.1016/j.envpol.2013.02.031
http://dx.doi.org/10.1021/la103800h
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/


Yang C, Wu W, Zhou X, Hao Q, Li T, Liu Y. 2021. Comparing the sorption of pyrene and its
derivatives onto polystyrene microplastics: insights from experimental and computational
studies. Marine Pollution Bulletin 173(1):113086 DOI 10.1016/j.marpolbul.2021.113086.

Yeung SE, Hilkewich L, Gillis C, Heine JA, Fenton TR. 2017. Protein intakes are associated with
reduced length of stay: a comparison between Enhanced Recovery After Surgery (ERAS) and
conventional care after elective colorectal surgery. The American Journal of Clinical Nutrition
106:44–51 DOI 10.3945/ajcn.116.148619.

Zhang H, Pap S, Taggart MA, Boyd KG, James NA, Gibb SW. 2020. A review of the potential
utilisation of plastic waste as adsorbent for removal of hazardous priority contaminants from
aqueous environments. Environmental Pollution 258:113698
DOI 10.1016/j.envpol.2019.113698.

Zhang H, Zhao C, Na H. 2020. Theoretical design of biodegradable phthalic acid ester derivatives
in marine and freshwater environments. ChemistryOpen 9(10):1033–1045
DOI 10.1002/open.202000093.

Oliveira et al. (2022), PeerJ, DOI 10.7717/peerj.13618 24/24

http://dx.doi.org/10.1016/j.marpolbul.2021.113086
http://dx.doi.org/10.3945/ajcn.116.148619
http://dx.doi.org/10.1016/j.envpol.2019.113698
http://dx.doi.org/10.1002/open.202000093
http://dx.doi.org/10.7717/peerj.13618
https://peerj.com/

	Pollution caused by nanoplastics: adverse effects and mechanisms of interaction via molecular simulation
	Introduction
	Survey methodology
	General remarks of the simulations and force field analysis
	The effects of nanoplastics in the structural and dynamic properties of biological membranes
	Nanoplastics affecting the folding of proteins
	Sorption of contaminants on nanoplastics
	Studies that used molecular simulation and do not fit into the above sections
	Conclusions
	flink9
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


