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Abstract
Carbon monoxide (CO) is a ubiquitous atmospheric trace gas produced by natural and anthropogenic sources. Some aerobic
bacteria can oxidize atmospheric CO and, collectively, they account for the net loss of ~250 teragrams of CO from the
atmosphere each year. However, the physiological role, genetic basis, and ecological distribution of this process remain
incompletely resolved. In this work, we addressed these knowledge gaps through culture-based and culture-independent
work. We confirmed through shotgun proteomic and transcriptional analysis that the genetically tractable aerobic soil
actinobacterium Mycobacterium smegmatis upregulates expression of a form I molydenum–copper carbon monoxide
dehydrogenase by 50-fold when exhausted for organic carbon substrates. Whole-cell biochemical assays in wild-type and
mutant backgrounds confirmed that this organism aerobically respires CO, including at sub-atmospheric concentrations,
using the enzyme. Contrary to current paradigms on CO oxidation, the enzyme did not support chemolithoautotrophic
growth and was dispensable for CO detoxification. However, it significantly enhanced long-term survival, suggesting that
atmospheric CO serves a supplemental energy source during organic carbon starvation. Phylogenetic analysis indicated that
atmospheric CO oxidation is widespread and an ancestral trait of CO dehydrogenases. Homologous enzymes are encoded by
685 sequenced species of bacteria and archaea, including from seven dominant soil phyla, and we confirmed genes encoding
this enzyme are abundant and expressed in terrestrial and marine environments. On this basis, we propose a new survival-
centric model for the evolution of aerobic CO oxidation and conclude that, like atmospheric H2, atmospheric CO is a major
energy source supporting persistence of aerobic heterotrophic bacteria in deprived or changeable environments.

Introduction

Carbon monoxide (CO) is a chemically reactive trace gas
that is produced through natural processes and anthro-
pogenic pollution. The average global mixing ratio of this
gas is ~90 ppbv in the troposphere (lower atmosphere),
though this concentration greatly varies across time and
space, with levels particularly high in urban areas [1–4].
Currently, human activity is responsible for ~60% of
emissions, with the remainder attributable to natural pro-
cesses [1]. Counteracting these emissions, CO is rapidly
removed from the atmosphere (lifetime of 2 months) by two
major processes: geochemical oxidation by atmospheric
hydroxyl radicals (85%) and biological oxidation by soil
microorganisms (10%) [1, 5]. Soil microorganisms account
for the net consumption of ~250 teragrams of atmospheric
CO [1, 5, 6]; on a molar basis, this amount is seven times
higher than the amount of methane consumed by soil bac-
teria [7]. Aerobic CO-oxidizing microorganisms are also
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abundant in the oceans; while oceans are a minor source of
atmospheric CO overall [8, 9], this reflects that substantial
amounts of the gas are produced photochemically within the
water column and the majority is oxidized by marine bac-
teria before it is emitted to the atmosphere [10].

Aerobic CO-oxidizing microorganisms are traditionally
categorized into two major groups, the carboxydotrophs
and carboxydovores [11]. The better studied of the two
groups, carboxydotrophs grow chemolithoautotrophically
with CO as the sole energy and carbon source when present
at elevated concentrations. To date, this process has been
reported in 11 bacterial genera from four classes (Table S1):
Alphaproteobacteria [12–15], Gammaproteobacteria [12, 15–
18], Actinobacteria [19–21], and Bacilli [22]. Genetic and
biochemical studies on the model alphaproteobacterial car-
boxydotroph Oligotropha carboxidovorans have demon-
strated that form I carbon monoxide dehydrogenases mediate
aerobic CO oxidation [23–25]. The catalytic subunit of this
heterotrimeric enzyme (CoxL) contains a molybdenum–

copper center that specifically binds and hydroxylates CO
[24, 25]. In such organisms, electrons derived from CO
oxidation are relayed through both the aerobic respiratory
chain to support ATP generation and the Calvin–Benson
cycle to support CO2 fixation [11, 26]. With some exceptions
[19], these CO dehydrogenases have a high catalytic rate but
exhibit low-affinity for their substrate (Km > 400 nM) [27].
Thus, carboxydotrophs can grow in specific environments
with elevated CO concentrations, but often cannot oxidize
atmospheric CO [11, 28].

Carboxydovores are a broader group of bacteria and
archaea adapted to oxidize CO at lower concentrations,
including atmospheric levels, in a broad range of environ-
ments. These bacteria can oxidize CO but, in contrast to
carboxydotrophs, require organic carbon for growth
[11, 29]. Carboxydovores have now been cultured from
some 31 bacterial and archaeal genera to date (Table S1),
spanning classes Alphaproteobacteria [29–32], Gamma-
proteobacteria [29, 33–36], Actinobacteria [18, 37–40],
Bacilli [41], Thermomicrobia [41–44], Ktedonobacteria
[44, 45], Deinococcota [41], Thermoprotei [46, 47], and
Halobacteria [33, 48]. Carboxydovores are also thought
to use form I CO dehydrogenases, but usually encode
slower-acting, higher-affinity enzymes. In contrast to car-
boxydotrophs, carboxydovores usually lack a complete
Calvin–Benson cycle, suggesting they can support aerobic
respiration, but not carbon fixation, using CO [11]. A
related enzyme family (tentatively annotated as form II CO
dehydrogenases) was also proposed to mediate CO oxida-
tion in carboxydovores [11, 29, 49], but recent studies
suggest CO is not their physiological substrate [32].

The physiological role of CO oxidation in carbox-
ydovores has remained unclear. It was originally thought

that such microorganisms oxidize CO primarily to support
mixotrophic growth [29, 30], but a recent study focused on
the alphaproteobacterial carboxydovore Ruegeria pomeroyi
showed that CO neither stimulated growth nor influenced
metabolite profiles [31]. We recently developed an alter-
native explanation: consumption of atmospheric CO
enables carboxydovores to survive carbon limitation
[44, 50, 51]. This hypothesis is inspired by studies showing
atmospheric H2 oxidation enhances survival [44, 52–57]. In
support of this, CO dehydrogenases have been shown to be
upregulated by five different bacteria during carbon lim-
itation [38, 44, 53, 58, 59] and atmospheric CO is consumed
by stationary-phase cells [44, 60]. Moreover, ecological
studies have shown that CO is rapidly oxidized in ecosys-
tems containing low organic carbon [51, 61, 62]. However,
in contrast to atmospheric H2 [53–55, 57, 63], it has not yet
been genetically or biochemically proven that atmospheric
CO supports survival. To address this, we studied CO
oxidation in Mycobacterium smegmatis, a genetically
tractable representative of a globally abundant soil actino-
bacterial genus [64, 65]. This organism encodes a form I
CO dehydrogenase and six other putative enzymes from the
wider molybdenum-containing hydroxylase superfamily,
but lacks a form II CO dehydrogenase [18, 29]. We show,
through proteomic, genetic, and biochemical analyses, that
its CO dehydrogenase is (i) strongly induced by organic
carbon starvation, (ii) mediates aerobic respiration of
atmospheric CO, and (iii) enhances survival of carbon-
starved cells. On this basis, we confirm that atmospheric CO
supports microbial survival and, with support from geno-
mic, metagenomic, and metatranscriptomic analyses, pro-
pose a survival-centric model for the evolution and ecology
of carboxydovores.

Materials and methods

Bacterial strains and growth conditions

Table S7 lists the bacterial strains and plasmids used in this
study. Mycobacterium smegmatis mc2155 [66] and the
derived strain ΔcoxL were maintained on lysogeny broth
(LB) agar plates supplemented with 0.05% (w/v) Tween80.
For broth culture, M. smegmatis was grown on Hartmans de
Bont minimal medium [67] supplemented with 0.05% (w/v)
tyloxapol and 5.8 mM glycerol. Escherichia coli TOP10
cells were maintained on LB agar plates and grown in LB
broth. Liquid cultures of both M. smegmatis and E. coli
were incubated on a rotary shaker at 200 rpm, 37 °C unless
otherwise specified. Selective LB or LBT media used for
cloning experiments contained gentamycin at 5 µg mL−1 for
M. smegmatis and 20 µg mL−1 for E. coli.
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Mutant construction

A markerless deletion of the coxL gene (MSMEG_0746)
was constructed by allelic exchange mutagenesis. Briefly, a
2245 bp fragment containing the fused left and right flanks
of the MSMEG_0746 gene was synthesized by GenScript.
This fragment was cloned into the SpeI site of the myco-
bacterial shuttle plasmid pX33 [68] with E. coli TOP10 and
transformed into M. smegmatis mc2155 electrocompetent
cells. To allow for temperature-sensitive vector replication,
the transformants were incubated on LBT-gentamycin agar
at 28 °C for 5 days until colonies were visible. Catechol-
reactive colonies were sub-cultured on to LBT-gentamycin
agar plates incubated at 40 °C for 3 days to facilitate the first
recombination of the coxL flanks into the chromosome. To
allow the second recombination and removal of the back-
bone vector to occur, colonies that were gentamycin-
resistant and catechol-reactive were sub-cultured in
LBT-sucrose agar and incubated at 40 °C for 3 days. The
resultant colonies were screened by PCR to discriminate
ΔcoxL mutants from wild-type revertants (Fig. S1). Whole-
genome sequencing (Peter Doherty Institute, University of
Melbourne) confirmed coxL was deleted and no other SNPs
were present in the ΔcoxL strain. Table S8 lists the cloning
and screening primers used in this study.

Shotgun proteome analysis

For shotgun proteome analysis, 500 mL cultures of M.
smegmatis were grown in triplicate in 2.5 L aerated conical
flasks. Cells were harvested at mid-exponential phase
(OD600 ~ 0.25) and mid-stationary phase (72 h post ODmax

~ 0.9) by centrifugation (10,000 × g, 10 min, 4 °C). They
were subsequently washed in phosphate-buffered saline
(PBS; 137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4 and
2 mM KH2PO4, pH 7.4), recentrifuged, and resuspended in
8 mL lysis buffer (50 mM Tris-HCl, pH 8.0, 1 mM PMSF,
2 mM MgCl2, 5 mg mL−1 lysozyme, 1 mg DNase). The
resultant suspension was then lysed by passage through a
Constant Systems cell disruptor (40,000 psi, four times),
with unbroken cells removed by centrifugation (10,000 × g,
20 min, 4 °C). To denature proteins, lysates were supple-
mented with 20% SDS to a final concentration of 4%,
boiled at 95 °C for 10 min, and sonicated in a Bioruptor
(Diagenode) using 20 cycles of ‘30 s on’ followed by ‘30 s
off’. The lysates were clarified by centrifugation (14,000 ×
g, 10 mins, room temperature). Protein concentration was
confirmed using the bicinchoninic acid assay kit (Thermo
Fisher Scientific) and equal amounts of protein were pro-
cessed from both exponential and stationary phase samples
for downstream analyses. After removal of SDS by
chloroform/methanol precipitation, the proteins were pro-
teolytically digested with trypsin (Promega) and purified

using OMIX C18 Mini-Bed tips (Agilent Technologies)
prior to LC-MS/MS analysis. Using a Dionex UltiMate
3000 RSL Cnano system equipped with a Dionex UltiMate
3000 RS autosampler, the samples were loaded via an
Acclaim PepMap 100 trap column (100 µm × 2 cm, nano-
Viper, C18, 5 µm, 100 Å; Thermo Scientific) onto an
Acclaim PepMap RSLC analytical column (75 µm × 50 cm,
nanoViper, C18, 2 µm, 100 Å; Thermo Scientific). The
peptides were separated by increasing concentrations of
buffer B (80% acetonitrile/0.1% formic acid) for 158 min
and analyzed with an Orbitrap Fusion Tribrid mass spec-
trometer (Thermo Scientific) operated in data-dependent
acquisition mode using in-house, LFQ-optimized para-
meters. Acquired.raw files were analyzed with MaxQuant
[69] to globally identify and quantify proteins across the
two conditions. Data visualization and statistical analyses
were performed in Perseus [70].

Activity staining

For CO dehydrogenase activity staining, 500 mL cultures of
wild-type and ΔcoxL M. smegmatis were grown to mid-
stationary phase (72 h post ODmax ~ 0.9) in 2.5 L aerated
conical flasks. Cells were harvested by centrifugation,
resuspended in lysis buffer, and lysed with a cell disruptor
as described above. Following removal of unlysed cells by
centrifugation (10,000 × g, 20 min, 4 °C), the whole-cell
lysates were fractionated into cytosols and membranes by
ultracentrifugation (150,000 × g, 60 min, 4 °C). The protein
concentration of the lysates, cytosols, and membranes was
determined using the bicinchoninic acid assay [71] against
bovine serum albumin standards. Next, 20 µg protein from
each fraction was loaded onto native Bis-Tris poly-
acrylamide gels (7.5% w/v running gel, 3.75% w/v stacking
gel) prepared as described elsewhere [72] and run alongside
a protein standard (NativeMark Unstained Protein Standard,
Thermo Fisher Scientific) at 25 mA for 3 h. For total protein
staining, gels were incubated in AcquaStain Protein Gel
Stain (Bulldog Bio) at 4 °C for 3 h. For CO dehydrogenase
staining [14], gels were incubated in 50 mM Tris-HCl buffer
containing 50 µM nitroblue tetrazolium chloride (NBT) and
100 µM phenazine methosulfate in an anaerobic jar (100%
CO v/v atmosphere) at room temperature for 24 h. Weak
bands corresponding to CO dehydrogenase activity were
also observed for wild-type fractions after 4 h.

Gas chromatography

Gas chromatography was used to determine the kinetics and
threshold of CO dehydrogenase activity of M. smegmatis.
Briefly, 30 mL stationary-phase cultures of wild-type and
ΔcoxL M. smegmatis strains were grown in 120 mL serum
vials sealed with butyl rubber stoppers. At 72 h post-ODmax,

2870 P. R. F. Cordero et al.



cultures were reaerated (1 h), resealed, and amended with
CO (via 1% v/v CO in N2 gas cylinder, 99.999% pure) to
achieve headspace concentrations of ~200 ppmv. Cultures
were agitated (150 rpm) for the duration of the incubation
period to enhance CO transfer to the cultures and maintain
an aerobic environment. Headspace samples of 1 mL were
periodically collected using a gas-tight syringe to measure
CO. Gas concentrations in samples were measured by gas
chromatography using a pulsed discharge helium ionization
detector (model TGA-6791-W-4U-2, Valco Instruments
Company Inc.) as previously described [44]. Concentrations
of CO in each sample were regularly calibrated against
ultra-pure CO gas standards of known concentrations to the
limit of detection of 9 ppbv CO. Kinetic analysis was per-
formed as described, except cultures were amended with six
different starting concentrations of CO (4000, 2000, 1000,
500, 200, 50 ppmv) and oxidation was measured at up to
five timepoints (0, 2, 4, 6, 8 h). Reaction velocity relative to
the gas concentration was calculated at each timepoint and
plotted on a Michaelis–Menten curve. Vmax app and Km app

values were derived through a non-linear regression model
(GraphPad Prism, Michaelis–Menten, least squares fit) and
linear regressions based on Lineweaver-Burk, Eadie-Hofs-
tee, and Hanes-Woolf plots.

Respirometry measurements

For respirometry measurements, 30 mL cultures of wild-
type and ΔcoxL M. smegmatis were grown to mid-
stationary phase (72 h post ODmax ~ 0.9) in 125 mL aera-
ted conical flasks. Rates of O2 consumption were measured
before and after CO addition using a Unisense O2 micro-
sensor. Prior to measurement, the electrode was polarized at
−800 mV for 1 h with a Unisense multimeter and calibrated
with O2 standards of known concentration. Gas-saturated
PBS was prepared by bubbling PBS with 100% (v/v) of
either O2 or CO for 5 min. Initially, O2 consumption was
measured in 1.1 mL microrespiration assay chambers
sequentially amended with M. smegmatis cell suspensions
(0.9 mL) and O2-saturated PBS (0.1 mL) that were stirred at
250 rpm at room temperature. After initial measurements,
0.1 mL of CO-saturated PBS was added into the assay
mixture. Changes in O2 concentrations were recorded using
Unisense Logger Software (Unisense, Denmark). Upon
observing a linear change in O2 concentration, rates of
consumption were calculated over a period of 20 s and
normalized against total protein concentration.

Gene expression analysis

To assess CO dehydrogenase gene expression by qRT-PCR,
synchronized 30 mL cultures of M. smegmatis were grown
in triplicate in either 125 mL aerated conical flasks or

120 mL sealed serum vials supplemented with 1% (w/v)
CO. Cultures were quenched at mid-exponential phase
(OD600 ~ 0.25) or mid-stationary phase (3 days post-ODmax

~ 0.9) with 60 mL cold 3:2 glycerol:saline solution
(−20 °C). They were subsequently harvested by cen-
trifugation (20,000 × g, 30 min, −9 °C), resuspended in
1 mL cold 1:1 glycerol:saline solution (−20 °C), and further
centrifuged (20,000 × g, 30 min, −9 °C). For cell lysis,
pellets were resuspended in 1 mL TRIzol Reagent, mixed
with 0.1 mm zircon beads, and subjected to five cycles of
bead-beating (4000 rpm, 30 s) in a Biospec Mini-
Beadbeater. Total RNA was subsequently extracted using
the phenol-chloroform method as per manufacturer’s
instructions (TRIzol Reagent User Guide, Thermo Fisher
Scientific) and resuspended in diethylpyrocarbonate
(DEPC)-treated water. RNA was treated with DNase using
the TURBO DNA-free kit (Thermo Fisher Scientific) as per
the manufacturer’s instructions. RNA concentration, purity,
and integrity were confirmed by using a NanoDrop ND-
1000 spectrophotometer and running extracts on a 1.2%
agarose gel. cDNA was then synthesized using SuperScript
III First-Strand Synthesis System for qRT-PCR (Thermo
Fisher Scientific) with random hexamer primers as per the
manufacturer’s instructions. qPCR was used to quantify the
copy numbers of the target gene coxL and housekeeping
gene sigA against amplicon standards of known con-
centration. A standard curve was created based on the cycle
threshold (Ct) values of coxL and sigA amplicons that were
serially diluted from 108 to 10 copies (R2 > 0.99). The copy
number of the genes in each sample was interpolated based
on each standard curve and values were normalized to sigA
expression in exponential phase in ambient air. For each
biological replicate, all samples, standards, and negative
controls were run in technical duplicate. All reactions were
run in a single 96-well plate using the PowerUp SYBR
Green Master Mix (Thermo Fisher Scientific) and Light-
Cycler 480 Instrument (Roche) according to each manu-
facturers’ instructions.

Growth and survival assays

For growth and survival assays, cultures were grown in
30 mL media in either 125 mL aerated conical flasks or 120
mL sealed serum vials containing an ambient air headspace
amended with 20% (v/v) CO. Growth was monitored by
measuring optical density at 600 nm (1 cm cuvettes;
Eppendorf BioSpectrometer Basic); when OD600 was above
0.5, cultures were diluted ten-fold before measurement. All
growth experiments were performed using three biological
replicates. To count colony-forming units (CFU mL−1),
each culture was serially diluted in HdB (no carbon source)
and spotted on to agar plates in technical quadruplicates.
Survival experiments were performed on two separate
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occasions using three biological replicates in the first
experiment and six biological replicates in the second
experiment. Percentage survival was calculated for each
replicate by dividing the CFUmL−1 at each timepoint with
the CFUmL−1 count at ODmax.

Glycerol quantification

Glycerol concentration in media was measured color-
imetrically. Samples of 900 µL were taken periodically from
triplicate cultures during growth, cells were pelleted (9500 × g,
2 min, room temperature) and the supernatant was collected
and stored at −20 °C. Glycerol content for all supernatant
samples was measured simultaneously in a single 96-well
plate using a Glycerol Assay Kit (Sigma-Aldrich) as per
manufacturer’s instructions. Absorbance was measured at
570 nm using an Epoch 2 microplate reader (BioTek). A
standard curve was constructed using four standards of gly-
cerol (0mM, 0.3 mM, 0.6 mM, and 1mM; R2 > 0.99). Gly-
cerol concentration was interpolated from this curve. Samples
were diluted either five-fold or two-fold in UltraPure water
such that they fell within the curve. All samples, standards and
blanks were run in technical duplicate.

Genome survey

We compiled the amino acid sequences of the catalytic
subunits of all putative form I CO dehydrogenases (CoxL)
represented in the National Center for Biotechnology
Information (NCBI) Reference Sequence (RefSeq) [73]. All
sequences with greater than 55% sequence identity and 90%
query coverage to CoxL sequences of Oligotropha car-
boxidovorans (WP_013913730.1), Mycobacterum smeg-
matis (WP_003892166.1), and Natronorubrum bangense
(WP_006067999.1) were retrieved by protein BLAST [74].
Homologous sequences with less than 55% sequence
encoded form II CO dehydrogenases and hence were not
retrieved. The dataset was manually curated to dereplicate
sequences within species and remove incomplete sequen-
ces. The final dataset contained a total of 709 CoxL
sequences across 685 different bacterial and archaeal spe-
cies (Table S3).

Phylogenetic analysis

To construct phylogenetic trees, the retrieved sequences were
aligned using ClustalW in MEGA7 [75]. Initially, the phylo-
genetic relationships of 709 sequences were visualized on a
neighbor-joining tree based on the Poisson correction method
and bootstrapped with 500 replicates. Subsequently, the phy-
logenetic relationships of a representative subset of
94 sequences were visualized on a maximum-likelihood tree
based on the Poisson correction method and bootstrapped with

200 replicates. Both trees were rooted with the protein
sequences of five form II CO dehydrogenase catalytic
subunit sequences (WP_012893108.1, WP_012950878.1,
WP_013076571.1, WP_01359081.1, WP_013388721.1). We
confirmed that trees of similar topology were produced upon
using a range of phylogenetic methods, namely neighbor-
joining, maximum-parsimony and maximum-likelihood in
MEGA, Mr Bayes, phyml, and iqtree. In addition, equivalent
trees were created by using the protein sequences of the CO
dehydrogenase medium subunit (CoxM), small subunits
(CoxS), or concatenations of all three subunits (CoxLMS).
Varying the form II CO dehydrogenase sequence used also
had no effect on the overall topology.

Metagenome and metatranscriptome analysis

Forty pairs of metagenomes and metatranscriptomes that
encompassed a range of soil and marine sample types were
selected and downloaded from the Joint Genome Institute
(JGI) Integrated Microbial Genomes System [76] and the
NCBI Sequence Read Archive (SRA) [77]. Table S5 provides
details of the datasets used. Raw metagenomes and meta-
transcriptomes were subjected to quality filtering using NGS
QC Toolkit [78] (version 2.3.3, default settings, i.e., base
quality score and read length threshold are 20 and 70%,
respectively). SortMeRNA [79] (version 2.1, default settings
and default rRNA databases) was used to removed ribosomal
RNA (rRNA) reads from metatranscriptomes. Each metagen-
ome and metatranscriptome was subsampled to an equal depth
of 5 million reads and 2 million reads, respectively, using
seqtk (https://github.com/lh3/seqtk) seeded with parameter
-s100. Subsampled datasets were then screened in DIAMOND
(version 0.9.24.125, default settings, one maximum target
sequence per query) [80] using the 709 CoxL protein
sequences (Table S3) and the 3261 hydrogenase catalytic
subunit gene sequences from HydDB [81]. Hits to CoxL were
filtered with an amino acid alignment length over 40 residues
and a sequence identity over 60%. Clade classification of the
reads was based on their closest match to the CoxL sequence
dataset. Hydrogenase hits were filtered with the same amino
acid alignment length cutoff and a sequence identity over
50%. Group 4 [NiFe]-hydrogenase hits with a sequence
identity below 60% were discarded.

Results

Mycobacterium smegmatis synthesizes carbon
monoxide dehydrogenase in response to organic
carbon starvation

We first performed a proteome analysis to gain a system-
wide context of the levels of CO dehydrogenase during
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growth and survival of M. smegmatis. Shotgun proteomes
were compared for triplicate cultures grown in glycerol-
supplemented minimal media under two conditions: mid-
exponential growth (OD600 ~ 0.25; 5.1 mM glycerol left in
medium) and mid-stationary phase following carbon lim-
itation (72 h post ODmax ~ 0.9; no glycerol detectable in
medium) (Fig. 1a). There was a major change in the pro-
teome profile, with 270 proteins more abundant and 357
proteins less abundant by at least four-fold (p < 0.05) in the
carbon-limited condition (Fig. 1b; Table S2).

The top 50 proteins with increased abundance included
those involved in trace gas metabolism and amino acid
catabolism. In line with our hypotheses, there was an
increase in the structural subunits encoding a putative
form I CO dehydrogenase, including a 54-fold increase in
the catalytic subunit CoxL. Levels of the two uptake
hydrogenases also increased, particularly the catalytic
subunit of hydrogenase-2 (HhyL, 148-fold), in line with
previous observations that mycobacteria persist on atmo-
spheric H2 [54, 63]. There was also evidence that M.
smegmatis generates additional reductant in this condition
by catabolizing amino acid reserves: the three subunits of
a branched-chain keto-acid dehydrogenase complex were
the most differentially abundant proteins overall and there
was also a strong induction of the proline degradation
pathway, including the respiratory proline dehydrogenase
(Fig. 1b).

The abundance of various enzymes mediating organic
carbon catabolism decreased, including the respiratory gly-
cerol 3-phosphate dehydrogenase (10-fold) and glycerol
kinase (8-fold), in line with cultures having exhausted glycerol
supplies (Fig. 1b). The proteome also suggests that various
energetically-expensive processes, such as cell wall, ribosome,
and DNA synthesis, were downregulated (Table S2). Overall,
these results suggest that M. smegmatis reduces its energy
expenditure and expands its metabolic repertoire, including by
oxidizing CO, to stay energized during starvation.

Carbon monoxide dehydrogenase mediates
atmospheric CO oxidation and supports aerobic
respiration

Having confirmed that a putative CO dehydrogenase is
present in stationary-phase M. smegmatis cells, we subse-
quently confirmed its activity through whole-cell bio-
chemical assays. To do so, we constructed a markerless
deletion of the coxL gene (MSMEG_0746) (Fig. S1). Native
polyacrylamide gels containing fractions of wild-type M.
smegmatis harvested in carbon-limited stationary-phase
cells strongly stained for CO dehydrogenase activity in a
100% CO atmosphere; the molecular mass of the band
corresponds to the theoretical molecular mass of a dimer of
CoxLMS subunits (~269 kDa). However, no activity was
observed in the ΔcoxL background (Fig. 2a).

Fig. 1 Comparison of proteome composition of carbon-replete and
carbon-limited cultures of Mycobacterium smegmatis. a Growth of M.
smegmatis in Hartmans de Bont minimal medium supplemented with
5.8 mM glycerol. The glycerol concentration of the external medium is
shown. Error bars show standard deviations of three biological repli-
cates. Cells were harvested for proteomic analysis at OD600= 0.25
(mid-exponential phase, glycerol-rich) and 3 days post ODmax (mid-
stationary phase, glycerol-limited). b Volcano plot showing relative

expression change of genes following carbon limitation. Fold change
was determined by dividing the relative abundance of each protein in
three stationary phase proteomes with that in the three exponential
phase proteomes (biological replicates). Each protein is represented by
a gray dot. Structural subunits of selected metabolic enzymes,
including the form I CO dehydrogenase, are highlighted and their
locus numbers are shown in subscript in the legend

Atmospheric carbon monoxide oxidation is a widespread mechanism supporting microbial survival 2873



Gas chromatography measurements confirmed that M.
smegmatis oxidized carbon monoxide at atmospheric con-
centrations. Stationary-phase cultures consumed the CO
added to the headspace (~200 ppmv) to sub-atmospheric
concentrations (46 ± 5 ppbv) within 100 h (Fig. 2b). The
apparent kinetic parameters of this activity (Vmax app=
3.13 nmol gdw

−1 min−1; Km app= 350 nM; threshold app=
43 pM) are consistent with a moderate-affinity, slow-acting
enzyme (Fig. 2c; Table S4). Such rates are similar to those
previously measured for hydrogenase-2 [63]. It is important
to note, however, that measurements are based on whole-
cell activities and may not reflect the kinetics of the purified
enzyme. No change in CO mixing ratios was observed for
the ΔcoxL strain (Fig. 2b), confirming that the form I CO
dehydrogenase is the sole CO-oxidizing enzyme in M.
smegmatis. In turn, these results provide the first genetic
proof that form I CO dehydrogenases mediate atmospheric
CO oxidation.

We performed oxygen electrode experiments to confirm
whether CO addition stimulated aerobic respiration. In
stationary-phase cultures, addition of CO caused a 15-fold
stimulation of respiratory O2 consumption relative to
background rates (p < 0.0001). This stimulation was
observed in the wild-type strain, but not the ΔcoxL mutant,
demonstrating it is dependent on CO oxidation activity of
the CO dehydrogenase (Fig. 2d, e). Thus, while this enzyme
is predominantly localized in the cytosol (Fig. 2a), it serves
as a bona fide respiratory dehydrogenase that supports
aerobic respiration in M. smegmatis.

Carbon monoxide is dispensable for growth and
detoxification, but enhances survival during carbon
starvation

We then performed a series of experiments to resolve the
expression and importance of the CO dehydrogenase during

Fig. 2 Comparison of carbon monoxide dehydrogenase activity of
Mycobacterium smegmatis wild-type and ΔcoxL cultures. a Zymo-
graphic observation of CO dehydrogenase activity and localization.
The upper gel shows enzyme activity stained with the artificial electron
acceptor nitroblue tetrazolium chloride in a CO-rich atmosphere. The
lower gel shows protein ladder and whole protein stained with Coo-
massie Blue. Results are shown for whole-cell lysates (L), cytosolic
fractions (C), and membrane fractions (M) of wild-type (WT) and
ΔcoxL cultures. b Gas chromatography measurement of CO oxidation
to sub-atmospheric levels. Mixing ratios are displayed on a logarithmic
scale, the dotted line shows the average atmospheric mixing ratios of
CO (90 ppbv), and error bars show standard deviations of three

biological replicates. c Apparent kinetic parameters of CO oxidation
by wild-type cultures. Curves of best fit and kinetic parameters were
calculated based on a Michaelis–Menten non-linear regression model.
Vmax app and Km app values derived from other models are shown in
Table S4. d Examples of traces from oxygen electrode measurements.
O2 levels were measured before and after CO addition in both a wild-
type and ΔcoxL background. e Summary of rates of O2 consumption
measured using an oxygen electrode. Center values show means and
error bars show standard deviations from three biological replicates.
For all values with different letters, the difference between means is
statistically significant (p < 0.001) based on Student’s t-tests
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growth and survival. Consistent with the proteomic analyses,
expression levels of coxL were low in carbon-replete cul-
tures (mid-exponential phase; 1.35 × 107 transcripts gdw

−1)
and increased 56-fold in carbon-limited cultures (mid-sta-
tionary phase; 7.48 × 108 transcripts gdw

−1; p < 0.01).
Addition of 1% CO did not significantly change coxL
expression in either growing or stationary cultures (Fig. 3a).
These profiles suggest that M. smegmatis expresses CO
dehydrogenase primarily to enhance survival by scavenging
atmospheric CO, rather than to support growth on elevated
levels of CO.

These inferences were confirmed by monitoring the
growth of the wild-type and ΔcoxL strains under different
conditions. The strains grew identically on glycerol-
supplemented minimal medium. Addition of 20% CO
caused a slight increase in doubling time for both strains
and did not affect growth yield (Fig. 3b). This suggests that
M. smegmatis is highly tolerant of CO but does not require
CO dehydrogenase to detoxify it. M. smegmatis did not
grow chemolithoautotrophically on a minimal medium with
20% CO as the sole carbon and energy source (Fig. 3b).
While carboxydotrophic growth was previously reported for
this strain, the authors potentially observed CO-tolerant
heterotrophic or mixotrophic growth, given the reported
media contained metabolizable organic carbon sources [40].
Consistently, M. smegmatis lacks key enzymes of the
Calvin–Benson cycle (e.g., RuBisCO, ribulose 1,5-

bisphosphate carboxylase) typically required for carbox-
ydotrophic growth.

Finally, we monitored the long-term survival of the two
strains after they reached maximum cell counts upon
exhausting glycerol supplies (Fig. 1a). The percentage
survival of the ΔcoxL strain was lower than the wild-type at
all timepoints, including by 45% after 4 weeks and 50%
after 5 weeks of persistence. These findings were repro-
ducible across two independent experiments and were sig-
nificant at the 98% confidence level (Fig. 3c). Such
reductions in relative percentage survival are similar to
those previously observed for uptake hydrogenase mutants
in M. smegmatis (47%) [53, 54] and Streptomyces avermi-
litis (74%) [57]. These experiments, therefore, provide
genetic evidence that atmospheric CO oxidation mediated
by form I CO dehydrogenases enhances bacterial persis-
tence. It should be noted that we did not attempt to com-
plement the observed phenotypes, though whole-genome
sequencing confirmed that no other substitutions were pre-
sent in ΔcoxL compared to the wild-type cells.

Atmospheric carbon monoxide oxidation is an
ancient, taxonomically widespread and ecologically
important process

We subsequently surveyed genomic, metagenomic, and
metatranscriptomic datasets to gain insights the taxonomic

Fig. 3 Expression and importance of carbon monoxide dehydrogenase
during growth and survival of Mycobacterium smegmatis. a Normal-
ized number of transcripts of the CO dehydrogenase large subunit gene
(coxL; MSMEG_0746) in wild-type cultures harvested during expo-
nential phase (carbon-replete) and stationary phase (carbon-limited) in
the presence of either ambient CO or 1% CO. Error bars show standard
deviations of four biological replicates. For all values with different
letters, the difference between means is statistically significant (p <
0.01) based on Student’s t-tests. b Final growth yields (ODmax) and
specific growth rates wild-type and ΔcoxL strains. Strains were grown
on Hartman de Bont minimal medium supplemented with either

5.5 mM glycerol, 20% CO, or both 5.5 mM glycerol and 20% CO.
Values labeled with different letters are significantly different (p <
0.05) based on Student’s t-tests. Error bars show standard deviations of
three biological replicates. c Long-term survival of wild-type and
ΔcoxL strains in Hartman de Bont minimal medium supplemented
with either 5.5 mM glycerol. Percentage survival was calculated by
dividing the colony-forming units (CFUmL−1) at each timepoint with
those counted at ODmax (day 0). Error bars show standard deviations of
nine biological replicates. For asterisked values, there was a significant
difference in survival of ΔcoxL strains compared to the wild-type (p <
0.05) based on Student’s t-tests
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and ecological distribution of atmospheric CO oxidation.
This yielded 709 amino acid sequences encoding large
subunits of the form I CO dehydrogenases (CoxL) across
some 685 species, 196 genera, 49 orders, and 25 classes of
bacteria and archaea (Table S3; Fig. 4a, b). The retrieved
sequences encompassed all sequenced species, across seven
phyla (Fig. 4b), that have previously been shown to mediate
aerobic CO oxidation (Table S1). We also detected coxL
genes in nine other phyla where aerobic CO oxidation has
yet to be experimentally demonstrated (Fig. 4b). Hence, the
capacity for aerobic CO respiration appears to be a much
more widespread trait among aerobic bacteria and archaea
than previously reported [49, 62]. It is particularly notable
that coxL genes were detected in representatives of seven of
the nine [64, 82] most dominant soil phyla, namely Pro-
teobacteria, Actinobacteriota, Acidobacteriota, Chloro-
flexota, Firmicutes, Gemmatimonadota, and Bacteroidota

(Fig. 4b). While most species surveyed encoded a single
copy, 16 actinobacterial species encoded two isozymes of
CO dehydrogenase (Table S3).

We constructed phylogenetic trees to visualize the evo-
lutionary relationships of CoxL protein sequences (Fig. 4a;
Fig. S2). The trees contained five monophyletic clades that
differed in phylum-level composition, namely actino-
bacterial, proteobacterial, and halobacterial clades, as well
as mid-branching major (mixed 1) and minor (mixed 2)
clades of mixed composition containing representatives
from seven and three different phyla respectively. Clades
were well-supported by bootstrap values, with exception of
the mixed 2 clade (Fig. 4a; Fig. S2). Trees with equivalent
clades were produced when using seven distinct phyloge-
netic methods, using other CO dehydrogenase subunits
(CoxM, CoxS, and CoxLMS concatenations), or varying
the outgroup sequences. In all cases, major clades included

Fig. 4 Distribution of carbon monoxide dehydrogenases in genomes,
metagenomes, and metatranscriptomes. a Maximum-likelihood phy-
logenetic tree showing the evolutionary history of the catalytic subunit
of the form I CO dehydrogenase (CoxL). Evolutionary distances were
computed using the Poisson correction model, gaps were treated by
partial deletion, and the tree was bootstrapped with 200 replicates. The
tree was constructed using a representative subset of 94 CoxL amino
acid sequences from Table S3 and a neighbor-joining tree containing
all 709 CoxL sequences retrieved in this study is provided in Fig. S2.
The major clades of the tree are labeled, and the colored bars represent

the phylum that each sequence is affiliated with. The tree was rooted
with five form II CO dehydrogenase sequences (not shown).
b Phylum-level distribution of the CoxL-encoding species and orders
identified in this work. c Abundance of coxL genes and transcripts in
environmental samples. In total, 40 pairs of metagenomes and meta-
transcriptomes (20 aquatic, 20 terrestrial) were analyzed from a wide
range of biomes (detailed in Table S5). The abundance of hhyL genes
and transcripts, encoding the high-affinity group 1 h [NiFe]-hydro-
genase, are shown for comparison. Box plots show the individual
values and their mean, quartiles, and range for each dataset
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CoxL proteins of at least one previously characterized car-
boxydotroph or carboxydovore (Table S1). Surprisingly, all
clades also contained species that have been previously
shown to oxidize atmospheric CO (Table S1). This suggests
that atmospheric CO oxidation is a widespread and ancestral
capability among CO dehydrogenases. In contrast, CO
dehydrogenases known to support aerobic carboxydo-
trophic growth were sparsely distributed across the tree
(Fig. 4a; Table S1).

To better understand the ecological significance of
aerobic CO oxidation, we surveyed the abundance of coxL
sequences across 40 pairs of metagenomes and metatran-
scriptomes (Table S5). Genes and transcripts for coxL were
detected across a wide range of biomes. They were parti-
cularly abundant in the oxic terrestrial and marine samples
surveyed (1 in every 8000 reads), for example, grassland
and rainforest soils, coastal and mesopelagic seawater, and
salt marshes (Table S6). In contrast, they were expressed at
very low levels in anaerobic samples (e.g., groundwater,
deep subsurface, peatland) (Figure S3). Across all surveyed
metatranscriptomes, the majority of the coxL hits were
affiliated with the mixed 1 (40%), proteobacterial (25%),
and actinobacterial (25%) clades, with minor representation
of the mixed 2 (8%) and halobacterial (2%) clades
(Table S6). The normalized transcript abundance of coxL
was higher than the genetic determinants of atmospheric H2

oxidation (hhyL; high-affinity hydrogenase) in most sam-
ples (18-fold in aquatic samples, 1.2-fold in terrestrial
samples) (Fig. 4c). Together, this suggests that CO oxida-
tion is of major importance in aerated environments and is
mediated by a wide range of bacteria and archaea.

Discussion

In this work, we validated that atmospheric CO oxidation
supports bacterial survival during nutrient limitation. M.
smegmatis increases the transcription and synthesis of a
form I CO dehydrogenase by 50-fold in response to organic
carbon limitation. Biochemical studies confirmed that this
enzyme is kinetically adapted to scavenge atmospheric
concentrations of CO and uses the derived electrons to
support aerobic respiration. In turn, deletion of the genes
encoding the enzyme did not affect growth under a range of
conditions, but resulted in severe survival defects in carbon-
exhausted cultures. These observations are reminiscent of
previous observations that M. smegmatis expresses two
high-affinity hydrogenases to persist by scavenging atmo-
spheric H2 [53–55, 63]. In common with atmospheric H2,
atmospheric CO is a high-energy, diffusible, and ubiquitous
trace gas [28], and is, therefore, a dependable source of
energy to sustain the maintenance needs of bacteria during
persistence. Overall, the proteome results suggest that M.

smegmatis activates CO scavenging as a core part of a wider
response to enhance its metabolic repertoire; the organism
appears to switch from acquiring energy organotrophically
during growth to mixotrophically during survival by
scavenging a combination of inorganic and organic energy
sources.

Despite this progress in resolving the physiological role
of CO oxidation in this organism, detailed mechanistic
studies are required to understand how M. smegmatis and
other carboxydovores gain energy from atmospheric CO
oxidation. Firstly, it is unclear what enables CO dehy-
drogenase to bind and oxidize atmospheric CO. It is
important to compare whole-cell kinetic parameters with
those of the purified enzyme, given enzyme activity is likely
to be influenced by both structural features and cellular
context. While it is probable that structural adaptations of
the enzyme contribute to high-affinity binding, the only
solved structures of molybdenum–copper CO dehy-
drogenases to date are from the apparent low-affinity car-
boxydotroph O. carboxidovorans [24, 25]. Secondly, it is
unclear how CO dehydrogenase inputs electrons into the
aerobic respiratory chain. Our study indicates that the CO
dehydrogenase is primarily cytosolic, though it can’t be
ruled out that it makes weak or transient associations with
the cell membrane. The proteome data shows M. smegmatis
expresses CoxG (MSMEG_0749), which is implicated as a
membrane anchor for CO dehydrogenase in O. carbox-
idovorans [83–85]. Thirdly, further studies are required to
resolve how M. smegmatis couples CO oxidation to O2

reduction, including with respect to reaction stoichiometry,
electron flow, and terminal oxidase selectivity. In this
regard, one discrepancy is that we observed a surprisingly
high rate of O2 reduction (oxygen electrode measurements)
compared to CO oxidation (gas chromatography); side-by-
side analyses are required to determine whether these
findings are physiologically relevant or instead reflect
methodological differences.

Looking more broadly, it is probable that CO supports
the persistence of many other bacterial and archaeal species.
Atmospheric CO oxidation is a common trait among all
carboxydovores tested to date and has been experimentally
demonstrated in 18 diverse genera of bacteria and archaea
[19, 29, 33, 36, 43, 44, 48]. In this regard, a recent study
demonstrated that the hot spring bacterium Thermo-
microbium roseum (phylum Chloroflexota) upregulates a
form I CO dehydrogenase and oxidizes atmospheric CO as
part of a similar response to carbon starvation [44]. It has
also been demonstrated that the form I CO dehydrogenases
of the known atmospheric CO scavenger Ruegeria pomolori
[58] and a Phaeobacter isolate [59] from the marine
Roseobacter clade (phylum Proteobacteria) are also highly
upregulated under energy-limiting conditions. The capacity
for atmospheric CO uptake has also been demonstrated in
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four halophilic archaeal genera (phylum Halobacterota)
[33, 48] and may also extend to thermophilic archaea
(phylum Crenarchaeota) [46, 47]. Moreover, two cultured
aerobic methanotrophs harbor the capacity for aerobic CO
respiration [86, 87]. Our study, by showing through a
molecular genetic approach that CO oxidation enhances
survival, provides a physiological rationale for these
observations. Altogether, this suggests that most organisms
encoding form I CO dehydrogenases use this enzyme to
support survival rather than growth.

These results also have broader implications for
understanding the biogeochemical cycling and microbial
biodiversity at the ecosystem level. It is well-established
that soil bacteria are major net sinks for atmospheric CO
and marine bacteria mitigate geochemical oceanic emis-
sions of this gas [10]. This study, by confirming the
enzymes responsible and demonstrating that their activities
support bacterial persistence, has ramifications for model-
ing these biogeochemical processes. In turn, we propose
that CO is an important energy source supporting the
biodiversity and stability of aerobic heterotrophic com-
munities in terrestrial and aquatic environments. The
genomic survey supports this by demonstrating that form I
CO dehydrogenases, most of which are predicted to sup-
port atmospheric CO oxidation, are encoded by 685 spe-
cies and 16 phyla of bacteria and archaea. In turn, the
metagenomic and metatranscriptomic analyses confirmed
that coxL genes and transcripts are highly abundant in most
aerated soil and marine ecosystems. The notably high
abundance of coxL transcripts in pelagic samples of var-
ious depths suggests CO may be a major energy source for
maintenance of marine bacteria. In soils, the oxidation of
atmospheric CO may be of similar importance to atmo-
spheric H2; this is suggested by the strength of the soil
sinks for these gases [1, 88], the abundance of coxL and
hhyL genes in soil metagenomes, and the distribution of
these genes in the genomes of soil bacteria [89]. Atmo-
spheric CO may be especially important for sustaining
communities in highly oligotrophic soils, as indicated by
previous studies in polar deserts [51], volcanic deposits
[60, 62, 90], and salt flats [33, 91, 92]. Further work is now
needed to understand which microorganisms mediate
consumption of atmospheric CO in situ and how their
activity is controlled by physicochemical factors.

Integrating these findings with the wider literature, we
propose a new survival-centric model for the evolution of
CO dehydrogenases. It was traditionally thought that
aerobic CO oxidation primarily supports autotrophic and
mixotrophic growth of microorganisms [11, 26]. However,
the majority of studied CO-oxidizing bacteria are, in fact,
carboxydovores, of which those that have been kinetically
characterized can oxidize CO at sub-atmospheric levels
(Table S1). In turn, our phylogenomic analysis revealed

that atmospheric CO-oxidizing bacteria are represented in
all five clades of the phylogenetic tree, suggesting that the
common ancestor of these enzymes also harbored sufficient
substrate affinity to oxidize atmospheric CO. On this basis,
we propose that microorganisms first evolved a sufficiently
high-affinity form I CO dehydrogenase to subsist on low
concentrations of CO. The genes encoding this enzyme
were then horizontally and vertically disseminated to
multiple bacterial and archaeal genera inhabiting different
environments. On multiple occasions, certain bacterial
lineages evolved to support growth on CO in micro-
environments where present at elevated concentrations.
This would have required relatively straightforward
evolutionary innovations, namely acquisition of Calvin–
Benson cycle enzymes (e.g., RuBisCO) and their integra-
tion with CO dehydrogenase. The modulation of CO
dehydrogenase kinetics was likely not a prerequisite, given
these enzymes efficiently oxidize CO at a wide range of
substrate concentrations [19, 44], but may have subse-
quently enhanced carboxydotrophic growth. In this regard,
it remains to be explored whether some cultivated car-
boxydotrophs can also support persistence using trace
concentrations of CO. These evolutionary inferences differ
from hydrogenases, where high-affinity, oxygen-tolerant
enzymes appear to have evolved from low-affinity,
oxygen-sensitive ones [89]. However, it is probable that the
processes of atmospheric CO and H2 oxidation evolved due
to similar physiological pressures and over similar evolu-
tionary timescales.
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